/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "test/acm_random.h" #include "test/util.h" #include "test/av1_txfm_test.h" #include "av1/common/av1_txfm.h" #include "./av1_rtcd.h" using libaom_test::ACMRandom; using libaom_test::input_base; using libaom_test::bd; using libaom_test::compute_avg_abs_error; using libaom_test::Fwd_Txfm2d_Func; using libaom_test::TYPE_TXFM; namespace { #if CONFIG_HIGHBITDEPTH // tx_type_, tx_size_, max_error_, max_avg_error_ typedef std::tr1::tuple AV1FwdTxfm2dParam; class AV1FwdTxfm2d : public ::testing::TestWithParam { public: virtual void SetUp() { tx_type_ = GET_PARAM(0); tx_size_ = GET_PARAM(1); max_error_ = GET_PARAM(2); max_avg_error_ = GET_PARAM(3); count_ = 500; TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg = av1_get_fwd_txfm_cfg(tx_type_, tx_size_); // TODO(sarahparker) this test will need to be updated when these // functions are extended to support rectangular transforms int amplify_bit = fwd_txfm_flip_cfg.row_cfg->shift[0] + fwd_txfm_flip_cfg.row_cfg->shift[1] + fwd_txfm_flip_cfg.row_cfg->shift[2]; ud_flip_ = fwd_txfm_flip_cfg.ud_flip; lr_flip_ = fwd_txfm_flip_cfg.lr_flip; amplify_factor_ = amplify_bit >= 0 ? (1 << amplify_bit) : (1.0 / (1 << -amplify_bit)); fwd_txfm_ = libaom_test::fwd_txfm_func_ls[tx_size_]; txfm1d_size_ = libaom_test::get_txfm1d_size(tx_size_); txfm2d_size_ = txfm1d_size_ * txfm1d_size_; get_txfm1d_type(tx_type_, &type0_, &type1_); input_ = reinterpret_cast( aom_memalign(16, sizeof(input_[0]) * txfm2d_size_)); output_ = reinterpret_cast( aom_memalign(16, sizeof(output_[0]) * txfm2d_size_)); ref_input_ = reinterpret_cast( aom_memalign(16, sizeof(ref_input_[0]) * txfm2d_size_)); ref_output_ = reinterpret_cast( aom_memalign(16, sizeof(ref_output_[0]) * txfm2d_size_)); } void RunFwdAccuracyCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); double avg_abs_error = 0; for (int ci = 0; ci < count_; ci++) { for (int ni = 0; ni < txfm2d_size_; ++ni) { input_[ni] = rnd.Rand16() % input_base; ref_input_[ni] = static_cast(input_[ni]); output_[ni] = 0; ref_output_[ni] = 0; } fwd_txfm_(input_, output_, txfm1d_size_, tx_type_, bd); if (lr_flip_ && ud_flip_) libaom_test::fliplrud(ref_input_, txfm1d_size_, txfm1d_size_); else if (lr_flip_) libaom_test::fliplr(ref_input_, txfm1d_size_, txfm1d_size_); else if (ud_flip_) libaom_test::flipud(ref_input_, txfm1d_size_, txfm1d_size_); reference_hybrid_2d(ref_input_, ref_output_, txfm1d_size_, type0_, type1_); for (int ni = 0; ni < txfm2d_size_; ++ni) { ref_output_[ni] = round(ref_output_[ni] * amplify_factor_); EXPECT_GE(max_error_, fabs(output_[ni] - ref_output_[ni]) / amplify_factor_); } avg_abs_error += compute_avg_abs_error( output_, ref_output_, txfm2d_size_); } avg_abs_error /= amplify_factor_; avg_abs_error /= count_; // max_abs_avg_error comes from upper bound of avg_abs_error // printf("type0: %d type1: %d txfm_size: %d accuracy_avg_abs_error: // %f\n", type0_, type1_, txfm1d_size_, avg_abs_error); EXPECT_GE(max_avg_error_, avg_abs_error); } virtual void TearDown() { aom_free(input_); aom_free(output_); aom_free(ref_input_); aom_free(ref_output_); } private: double max_error_; double max_avg_error_; int count_; double amplify_factor_; TX_TYPE tx_type_; TX_SIZE tx_size_; int txfm1d_size_; int txfm2d_size_; Fwd_Txfm2d_Func fwd_txfm_; TYPE_TXFM type0_; TYPE_TXFM type1_; int16_t *input_; int32_t *output_; double *ref_input_; double *ref_output_; int ud_flip_; // flip upside down int lr_flip_; // flip left to right }; TEST_P(AV1FwdTxfm2d, RunFwdAccuracyCheck) { RunFwdAccuracyCheck(); } const AV1FwdTxfm2dParam av1_fwd_txfm2d_param_c[] = { #if CONFIG_EXT_TX AV1FwdTxfm2dParam(FLIPADST_DCT, TX_4X4, 2, 0.2), AV1FwdTxfm2dParam(DCT_FLIPADST, TX_4X4, 2, 0.2), AV1FwdTxfm2dParam(FLIPADST_FLIPADST, TX_4X4, 2, 0.2), AV1FwdTxfm2dParam(ADST_FLIPADST, TX_4X4, 2, 0.2), AV1FwdTxfm2dParam(FLIPADST_ADST, TX_4X4, 2, 0.2), AV1FwdTxfm2dParam(FLIPADST_DCT, TX_8X8, 5, 0.6), AV1FwdTxfm2dParam(DCT_FLIPADST, TX_8X8, 5, 0.6), AV1FwdTxfm2dParam(FLIPADST_FLIPADST, TX_8X8, 5, 0.6), AV1FwdTxfm2dParam(ADST_FLIPADST, TX_8X8, 5, 0.6), AV1FwdTxfm2dParam(FLIPADST_ADST, TX_8X8, 5, 0.6), AV1FwdTxfm2dParam(FLIPADST_DCT, TX_16X16, 11, 1.5), AV1FwdTxfm2dParam(DCT_FLIPADST, TX_16X16, 11, 1.5), AV1FwdTxfm2dParam(FLIPADST_FLIPADST, TX_16X16, 11, 1.5), AV1FwdTxfm2dParam(ADST_FLIPADST, TX_16X16, 11, 1.5), AV1FwdTxfm2dParam(FLIPADST_ADST, TX_16X16, 11, 1.5), AV1FwdTxfm2dParam(FLIPADST_DCT, TX_32X32, 70, 7), AV1FwdTxfm2dParam(DCT_FLIPADST, TX_32X32, 70, 7), AV1FwdTxfm2dParam(FLIPADST_FLIPADST, TX_32X32, 70, 7), AV1FwdTxfm2dParam(ADST_FLIPADST, TX_32X32, 70, 7), AV1FwdTxfm2dParam(FLIPADST_ADST, TX_32X32, 70, 7), #endif AV1FwdTxfm2dParam(DCT_DCT, TX_4X4, 2, 0.2), AV1FwdTxfm2dParam(ADST_DCT, TX_4X4, 2, 0.2), AV1FwdTxfm2dParam(DCT_ADST, TX_4X4, 2, 0.2), AV1FwdTxfm2dParam(ADST_ADST, TX_4X4, 2, 0.2), AV1FwdTxfm2dParam(DCT_DCT, TX_8X8, 5, 0.6), AV1FwdTxfm2dParam(ADST_DCT, TX_8X8, 5, 0.6), AV1FwdTxfm2dParam(DCT_ADST, TX_8X8, 5, 0.6), AV1FwdTxfm2dParam(ADST_ADST, TX_8X8, 5, 0.6), AV1FwdTxfm2dParam(DCT_DCT, TX_16X16, 11, 1.5), AV1FwdTxfm2dParam(ADST_DCT, TX_16X16, 11, 1.5), AV1FwdTxfm2dParam(DCT_ADST, TX_16X16, 11, 1.5), AV1FwdTxfm2dParam(ADST_ADST, TX_16X16, 11, 1.5), AV1FwdTxfm2dParam(DCT_DCT, TX_32X32, 70, 7), AV1FwdTxfm2dParam(ADST_DCT, TX_32X32, 70, 7), AV1FwdTxfm2dParam(DCT_ADST, TX_32X32, 70, 7), AV1FwdTxfm2dParam(ADST_ADST, TX_32X32, 70, 7) }; INSTANTIATE_TEST_CASE_P(C, AV1FwdTxfm2d, ::testing::ValuesIn(av1_fwd_txfm2d_param_c)); #endif // CONFIG_HIGHBITDEPTH } // namespace