/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include #include #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "test/acm_random.h" #include "aom_dsp/ansreader.h" #include "aom_dsp/buf_ans.h" namespace { typedef std::vector > PvVec; const int kPrintStats = 0; // Use a small buffer size to exercise ANS window spills or buffer growth const int kBufAnsSize = 1 << 8; PvVec abs_encode_build_vals(int iters) { PvVec ret; libaom_test::ACMRandom gen(0x30317076); double entropy = 0; for (int i = 0; i < iters; ++i) { uint8_t p; do { p = gen.Rand8(); } while (p == 0); // zero is not a valid coding probability bool b = gen.Rand8() < p; ret.push_back(std::make_pair(static_cast(p), b)); if (kPrintStats) { double d = p / 256.; entropy += -d * log2(d) - (1 - d) * log2(1 - d); } } if (kPrintStats) printf("entropy %f\n", entropy); return ret; } bool check_rabs(const PvVec &pv_vec, uint8_t *buf) { BufAnsCoder a; aom_buf_ans_alloc(&a, NULL, kBufAnsSize); buf_ans_write_init(&a, buf); std::clock_t start = std::clock(); for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { buf_rabs_write(&a, it->second, 256 - it->first); } aom_buf_ans_flush(&a); std::clock_t enc_time = std::clock() - start; int offset = buf_ans_write_end(&a); aom_buf_ans_free(&a); bool okay = true; AnsDecoder d; #if ANS_MAX_SYMBOLS d.window_size = kBufAnsSize; #endif if (ans_read_init(&d, buf, offset)) return false; start = std::clock(); for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { okay = okay && (rabs_read(&d, 256 - it->first) != 0) == it->second; } std::clock_t dec_time = std::clock() - start; if (!okay) return false; if (kPrintStats) printf("uABS size %d enc_time %f dec_time %f\n", offset, static_cast(enc_time) / CLOCKS_PER_SEC, static_cast(dec_time) / CLOCKS_PER_SEC); return ans_read_end(&d) != 0; } const aom_cdf_prob spareto65[] = { 8320, 6018, 4402, 3254, 4259, 3919, 2057, 492, 45, 2 }; const int kRansSymbols = static_cast(sizeof(spareto65) / sizeof(spareto65[0])); struct rans_sym { aom_cdf_prob prob; aom_cdf_prob cum_prob; // not-inclusive }; std::vector ans_encode_build_vals(rans_sym *const tab, int iters) { aom_cdf_prob sum = 0; for (int i = 0; i < kRansSymbols; ++i) { tab[i].cum_prob = sum; tab[i].prob = spareto65[i]; sum += spareto65[i]; } std::vector p_to_sym; for (int i = 0; i < kRansSymbols; ++i) { p_to_sym.insert(p_to_sym.end(), tab[i].prob, i); } assert(p_to_sym.size() == RANS_PRECISION); std::vector ret; libaom_test::ACMRandom gen(18543637); for (int i = 0; i < iters; ++i) { int sym = p_to_sym[((gen.Rand8() << 8) + gen.Rand8()) & (RANS_PRECISION - 1)]; ret.push_back(sym); } return ret; } void rans_build_dec_tab(const struct rans_sym sym_tab[], aom_cdf_prob *dec_tab) { unsigned int sum = 0; for (int i = 0; sum < RANS_PRECISION; ++i) { dec_tab[i] = sum += sym_tab[i].prob; } } bool check_rans(const std::vector &sym_vec, const rans_sym *const tab, uint8_t *buf) { BufAnsCoder a; aom_buf_ans_alloc(&a, NULL, kBufAnsSize); buf_ans_write_init(&a, buf); aom_cdf_prob dec_tab[kRansSymbols]; rans_build_dec_tab(tab, dec_tab); std::clock_t start = std::clock(); for (std::vector::const_iterator it = sym_vec.begin(); it != sym_vec.end(); ++it) { buf_rans_write(&a, tab[*it].cum_prob, tab[*it].prob); } aom_buf_ans_flush(&a); std::clock_t enc_time = std::clock() - start; int offset = buf_ans_write_end(&a); aom_buf_ans_free(&a); bool okay = true; AnsDecoder d; #if ANS_MAX_SYMBOLS d.window_size = kBufAnsSize; #endif if (ans_read_init(&d, buf, offset)) return false; start = std::clock(); for (std::vector::const_iterator it = sym_vec.begin(); it != sym_vec.end(); ++it) { okay &= rans_read(&d, dec_tab) == *it; } std::clock_t dec_time = std::clock() - start; if (!okay) return false; if (kPrintStats) printf("rANS size %d enc_time %f dec_time %f\n", offset, static_cast(enc_time) / CLOCKS_PER_SEC, static_cast(dec_time) / CLOCKS_PER_SEC); return ans_read_end(&d) != 0; } class AbsTestFix : public ::testing::Test { protected: static void SetUpTestCase() { pv_vec_ = abs_encode_build_vals(kNumBools); } virtual void SetUp() { buf_ = new uint8_t[kNumBools / 8]; } virtual void TearDown() { delete[] buf_; } static const int kNumBools = 100000000; static PvVec pv_vec_; uint8_t *buf_; }; PvVec AbsTestFix::pv_vec_; class AnsTestFix : public ::testing::Test { protected: static void SetUpTestCase() { sym_vec_ = ans_encode_build_vals(rans_sym_tab_, kNumSyms); } virtual void SetUp() { buf_ = new uint8_t[kNumSyms / 2]; } virtual void TearDown() { delete[] buf_; } static const int kNumSyms = 25000000; static std::vector sym_vec_; static rans_sym rans_sym_tab_[kRansSymbols]; uint8_t *buf_; }; std::vector AnsTestFix::sym_vec_; rans_sym AnsTestFix::rans_sym_tab_[kRansSymbols]; TEST_F(AbsTestFix, Rabs) { EXPECT_TRUE(check_rabs(pv_vec_, buf_)); } TEST_F(AnsTestFix, Rans) { EXPECT_TRUE(check_rans(sym_vec_, rans_sym_tab_, buf_)); } TEST(AnsTest, FinalStateSerialization) { for (unsigned i = L_BASE; i < L_BASE * IO_BASE; ++i) { uint8_t buf[8]; AnsCoder c; ans_write_init(&c, buf); c.state = i; const int written_size = ans_write_end(&c); ASSERT_LT(static_cast(written_size), sizeof(buf)); AnsDecoder d; #if ANS_MAX_SYMBOLS // There is no real data window here because no symbols are sent through // ans (only synthetic states), so use a dummy value d.window_size = 1024; #endif const int read_init_status = ans_read_init(&d, buf, written_size); EXPECT_EQ(read_init_status, 0); EXPECT_EQ(d.state, i); } } } // namespace