/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include #include "config/av1_rtcd.h" #include "aom_ports/mem.h" #include "av1/encoder/corner_match.h" DECLARE_ALIGNED(16, static const uint8_t, byte_mask[16]) = { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0 }; #if MATCH_SZ != 13 #error "Need to change byte_mask in corner_match_sse4.c if MATCH_SZ != 13" #endif /* Compute corr(im1, im2) * MATCH_SZ * stddev(im1), where the correlation/standard deviation are taken over MATCH_SZ by MATCH_SZ windows of each image, centered at (x1, y1) and (x2, y2) respectively. */ double compute_cross_correlation_sse4_1(unsigned char *im1, int stride1, int x1, int y1, unsigned char *im2, int stride2, int x2, int y2) { int i; // 2 16-bit partial sums in lanes 0, 4 (== 2 32-bit partial sums in lanes 0, // 2) __m128i sum1_vec = _mm_setzero_si128(); __m128i sum2_vec = _mm_setzero_si128(); // 4 32-bit partial sums of squares __m128i sumsq2_vec = _mm_setzero_si128(); __m128i cross_vec = _mm_setzero_si128(); const __m128i mask = _mm_load_si128((__m128i *)byte_mask); const __m128i zero = _mm_setzero_si128(); im1 += (y1 - MATCH_SZ_BY2) * stride1 + (x1 - MATCH_SZ_BY2); im2 += (y2 - MATCH_SZ_BY2) * stride2 + (x2 - MATCH_SZ_BY2); for (i = 0; i < MATCH_SZ; ++i) { const __m128i v1 = _mm_and_si128(_mm_loadu_si128((__m128i *)&im1[i * stride1]), mask); const __m128i v2 = _mm_and_si128(_mm_loadu_si128((__m128i *)&im2[i * stride2]), mask); // Using the 'sad' intrinsic here is a bit faster than adding // v1_l + v1_r and v2_l + v2_r, plus it avoids the need for a 16->32 bit // conversion step later, for a net speedup of ~10% sum1_vec = _mm_add_epi16(sum1_vec, _mm_sad_epu8(v1, zero)); sum2_vec = _mm_add_epi16(sum2_vec, _mm_sad_epu8(v2, zero)); const __m128i v1_l = _mm_cvtepu8_epi16(v1); const __m128i v1_r = _mm_cvtepu8_epi16(_mm_srli_si128(v1, 8)); const __m128i v2_l = _mm_cvtepu8_epi16(v2); const __m128i v2_r = _mm_cvtepu8_epi16(_mm_srli_si128(v2, 8)); sumsq2_vec = _mm_add_epi32( sumsq2_vec, _mm_add_epi32(_mm_madd_epi16(v2_l, v2_l), _mm_madd_epi16(v2_r, v2_r))); cross_vec = _mm_add_epi32( cross_vec, _mm_add_epi32(_mm_madd_epi16(v1_l, v2_l), _mm_madd_epi16(v1_r, v2_r))); } // Now we can treat the four registers (sum1_vec, sum2_vec, sumsq2_vec, // cross_vec) // as holding 4 32-bit elements each, which we want to sum horizontally. // We do this by transposing and then summing vertically. __m128i tmp_0 = _mm_unpacklo_epi32(sum1_vec, sum2_vec); __m128i tmp_1 = _mm_unpackhi_epi32(sum1_vec, sum2_vec); __m128i tmp_2 = _mm_unpacklo_epi32(sumsq2_vec, cross_vec); __m128i tmp_3 = _mm_unpackhi_epi32(sumsq2_vec, cross_vec); __m128i tmp_4 = _mm_unpacklo_epi64(tmp_0, tmp_2); __m128i tmp_5 = _mm_unpackhi_epi64(tmp_0, tmp_2); __m128i tmp_6 = _mm_unpacklo_epi64(tmp_1, tmp_3); __m128i tmp_7 = _mm_unpackhi_epi64(tmp_1, tmp_3); __m128i res = _mm_add_epi32(_mm_add_epi32(tmp_4, tmp_5), _mm_add_epi32(tmp_6, tmp_7)); int sum1 = _mm_extract_epi32(res, 0); int sum2 = _mm_extract_epi32(res, 1); int sumsq2 = _mm_extract_epi32(res, 2); int cross = _mm_extract_epi32(res, 3); int var2 = sumsq2 * MATCH_SZ_SQ - sum2 * sum2; int cov = cross * MATCH_SZ_SQ - sum1 * sum2; return cov / sqrt((double)var2); }