/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "aom_mem/aom_mem.h" #include "av1/common/pred_common.h" #include "av1/common/tile_common.h" #include "av1/encoder/cost.h" #include "av1/encoder/segmentation.h" #include "av1/encoder/subexp.h" void av1_enable_segmentation(struct segmentation *seg) { seg->enabled = 1; seg->update_map = 1; seg->update_data = 1; } void av1_disable_segmentation(struct segmentation *seg) { seg->enabled = 0; seg->update_map = 0; seg->update_data = 0; } void av1_set_segment_data(struct segmentation *seg, signed char *feature_data, unsigned char abs_delta) { seg->abs_delta = abs_delta; memcpy(seg->feature_data, feature_data, sizeof(seg->feature_data)); } void av1_disable_segfeature(struct segmentation *seg, int segment_id, SEG_LVL_FEATURES feature_id) { seg->feature_mask[segment_id] &= ~(1 << feature_id); } void av1_clear_segdata(struct segmentation *seg, int segment_id, SEG_LVL_FEATURES feature_id) { seg->feature_data[segment_id][feature_id] = 0; } // Based on set of segment counts calculate a probability tree static void calc_segtree_probs(unsigned *segcounts, aom_prob *segment_tree_probs, const aom_prob *cur_tree_probs, const int probwt) { // Work out probabilities of each segment const unsigned cc[4] = { segcounts[0] + segcounts[1], segcounts[2] + segcounts[3], segcounts[4] + segcounts[5], segcounts[6] + segcounts[7] }; const unsigned ccc[2] = { cc[0] + cc[1], cc[2] + cc[3] }; int i; segment_tree_probs[0] = get_binary_prob(ccc[0], ccc[1]); segment_tree_probs[1] = get_binary_prob(cc[0], cc[1]); segment_tree_probs[2] = get_binary_prob(cc[2], cc[3]); segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]); segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]); segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]); segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]); for (i = 0; i < 7; i++) { const unsigned *ct = i == 0 ? ccc : i < 3 ? cc + (i & 2) : segcounts + (i - 3) * 2; av1_prob_diff_update_savings_search(ct, cur_tree_probs[i], &segment_tree_probs[i], DIFF_UPDATE_PROB, probwt); } } // Based on set of segment counts and probabilities calculate a cost estimate static int cost_segmap(unsigned *segcounts, aom_prob *probs) { const int c01 = segcounts[0] + segcounts[1]; const int c23 = segcounts[2] + segcounts[3]; const int c45 = segcounts[4] + segcounts[5]; const int c67 = segcounts[6] + segcounts[7]; const int c0123 = c01 + c23; const int c4567 = c45 + c67; // Cost the top node of the tree int cost = c0123 * av1_cost_zero(probs[0]) + c4567 * av1_cost_one(probs[0]); // Cost subsequent levels if (c0123 > 0) { cost += c01 * av1_cost_zero(probs[1]) + c23 * av1_cost_one(probs[1]); if (c01 > 0) cost += segcounts[0] * av1_cost_zero(probs[3]) + segcounts[1] * av1_cost_one(probs[3]); if (c23 > 0) cost += segcounts[2] * av1_cost_zero(probs[4]) + segcounts[3] * av1_cost_one(probs[4]); } if (c4567 > 0) { cost += c45 * av1_cost_zero(probs[2]) + c67 * av1_cost_one(probs[2]); if (c45 > 0) cost += segcounts[4] * av1_cost_zero(probs[5]) + segcounts[5] * av1_cost_one(probs[5]); if (c67 > 0) cost += segcounts[6] * av1_cost_zero(probs[6]) + segcounts[7] * av1_cost_one(probs[6]); } return cost; } static void count_segs(const AV1_COMMON *cm, MACROBLOCKD *xd, const TileInfo *tile, MODE_INFO **mi, unsigned *no_pred_segcounts, unsigned (*temporal_predictor_count)[2], unsigned *t_unpred_seg_counts, int bw, int bh, int mi_row, int mi_col) { int segment_id; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; xd->mi = mi; segment_id = xd->mi[0]->mbmi.segment_id; set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, #if CONFIG_DEPENDENT_HORZTILES cm->dependent_horz_tiles, #endif // CONFIG_DEPENDENT_HORZTILES cm->mi_rows, cm->mi_cols); // Count the number of hits on each segment with no prediction no_pred_segcounts[segment_id]++; // Temporal prediction not allowed on key frames if (cm->frame_type != KEY_FRAME) { const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; // Test to see if the segment id matches the predicted value. const int pred_segment_id = get_segment_id(cm, cm->last_frame_seg_map, bsize, mi_row, mi_col); const int pred_flag = pred_segment_id == segment_id; const int pred_context = av1_get_pred_context_seg_id(xd); // Store the prediction status for this mb and update counts // as appropriate xd->mi[0]->mbmi.seg_id_predicted = pred_flag; temporal_predictor_count[pred_context][pred_flag]++; // Update the "unpredicted" segment count if (!pred_flag) t_unpred_seg_counts[segment_id]++; } } static void count_segs_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, const TileInfo *tile, MODE_INFO **mi, unsigned *no_pred_segcounts, unsigned (*temporal_predictor_count)[2], unsigned *t_unpred_seg_counts, int mi_row, int mi_col, BLOCK_SIZE bsize) { const int mis = cm->mi_stride; const int bs = mi_size_wide[bsize], hbs = bs / 2; #if CONFIG_EXT_PARTITION_TYPES PARTITION_TYPE partition; #else int bw, bh; #endif // CONFIG_EXT_PARTITION_TYPES if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; #if CONFIG_EXT_PARTITION_TYPES if (bsize == BLOCK_8X8) partition = PARTITION_NONE; else partition = get_partition(cm, mi_row, mi_col, bsize); switch (partition) { case PARTITION_NONE: count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, bs, bs, mi_row, mi_col); break; case PARTITION_HORZ: count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, bs, hbs, mi_row, mi_col); count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, bs, hbs, mi_row + hbs, mi_col); break; case PARTITION_VERT: count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row, mi_col); count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row, mi_col + hbs); break; case PARTITION_HORZ_A: count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, hbs, hbs, mi_row, mi_col); count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, hbs, hbs, mi_row, mi_col + hbs); count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, bs, hbs, mi_row + hbs, mi_col); break; case PARTITION_HORZ_B: count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, bs, hbs, mi_row, mi_col); count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, hbs, hbs, mi_row + hbs, mi_col); count_segs(cm, xd, tile, mi + hbs + hbs * mis, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, hbs, hbs, mi_row + hbs, mi_col + hbs); break; case PARTITION_VERT_A: count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, hbs, hbs, mi_row, mi_col); count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, hbs, hbs, mi_row + hbs, mi_col); count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row, mi_col + hbs); break; case PARTITION_VERT_B: count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row, mi_col); count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, hbs, hbs, mi_row, mi_col + hbs); count_segs(cm, xd, tile, mi + hbs + hbs * mis, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, hbs, hbs, mi_row + hbs, mi_col + hbs); break; case PARTITION_SPLIT: { const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize]; int n; assert(num_8x8_blocks_wide_lookup[mi[0]->mbmi.sb_type] < bs && num_8x8_blocks_high_lookup[mi[0]->mbmi.sb_type] < bs); for (n = 0; n < 4; n++) { const int mi_dc = hbs * (n & 1); const int mi_dr = hbs * (n >> 1); count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, mi_row + mi_dr, mi_col + mi_dc, subsize); } } break; default: assert(0); } #else bw = mi_size_wide[mi[0]->mbmi.sb_type]; bh = mi_size_high[mi[0]->mbmi.sb_type]; if (bw == bs && bh == bs) { count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, bs, bs, mi_row, mi_col); } else if (bw == bs && bh < bs) { count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, bs, hbs, mi_row, mi_col); count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, bs, hbs, mi_row + hbs, mi_col); } else if (bw < bs && bh == bs) { count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row, mi_col); count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row, mi_col + hbs); } else { const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize]; int n; assert(bw < bs && bh < bs); for (n = 0; n < 4; n++) { const int mi_dc = hbs * (n & 1); const int mi_dr = hbs * (n >> 1); count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, mi_row + mi_dr, mi_col + mi_dc, subsize); } } #endif // CONFIG_EXT_PARTITION_TYPES } void av1_choose_segmap_coding_method(AV1_COMMON *cm, MACROBLOCKD *xd) { struct segmentation *seg = &cm->seg; struct segmentation_probs *segp = &cm->fc->seg; int no_pred_cost; int t_pred_cost = INT_MAX; int tile_col, tile_row, mi_row, mi_col; const int probwt = cm->num_tg; unsigned(*temporal_predictor_count)[2] = cm->counts.seg.pred; unsigned *no_pred_segcounts = cm->counts.seg.tree_total; unsigned *t_unpred_seg_counts = cm->counts.seg.tree_mispred; aom_prob no_pred_tree[SEG_TREE_PROBS]; aom_prob t_pred_tree[SEG_TREE_PROBS]; #if !CONFIG_NEW_MULTISYMBOL aom_prob t_nopred_prob[PREDICTION_PROBS]; #endif (void)xd; // We are about to recompute all the segment counts, so zero the accumulators. av1_zero(cm->counts.seg); // First of all generate stats regarding how well the last segment map // predicts this one for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) { TileInfo tile_info; av1_tile_set_row(&tile_info, cm, tile_row); for (tile_col = 0; tile_col < cm->tile_cols; tile_col++) { MODE_INFO **mi_ptr; av1_tile_set_col(&tile_info, cm, tile_col); #if CONFIG_DEPENDENT_HORZTILES av1_tile_set_tg_boundary(&tile_info, cm, tile_row, tile_col); #endif mi_ptr = cm->mi_grid_visible + tile_info.mi_row_start * cm->mi_stride + tile_info.mi_col_start; for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; mi_row += cm->mib_size, mi_ptr += cm->mib_size * cm->mi_stride) { MODE_INFO **mi = mi_ptr; for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; mi_col += cm->mib_size, mi += cm->mib_size) { count_segs_sb(cm, xd, &tile_info, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, mi_row, mi_col, cm->sb_size); } } } } // Work out probability tree for coding segments without prediction // and the cost. calc_segtree_probs(no_pred_segcounts, no_pred_tree, segp->tree_probs, probwt); no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree); // Key frames cannot use temporal prediction if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) { // Work out probability tree for coding those segments not // predicted using the temporal method and the cost. calc_segtree_probs(t_unpred_seg_counts, t_pred_tree, segp->tree_probs, probwt); t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree); #if !CONFIG_NEW_MULTISYMBOL // Add in the cost of the signaling for each prediction context. int i; for (i = 0; i < PREDICTION_PROBS; i++) { const int count0 = temporal_predictor_count[i][0]; const int count1 = temporal_predictor_count[i][1]; t_nopred_prob[i] = get_binary_prob(count0, count1); av1_prob_diff_update_savings_search( temporal_predictor_count[i], segp->pred_probs[i], &t_nopred_prob[i], DIFF_UPDATE_PROB, probwt); // Add in the predictor signaling cost t_pred_cost += count0 * av1_cost_zero(t_nopred_prob[i]) + count1 * av1_cost_one(t_nopred_prob[i]); } #endif } // Now choose which coding method to use. if (t_pred_cost < no_pred_cost) { assert(!cm->error_resilient_mode); seg->temporal_update = 1; } else { seg->temporal_update = 0; } } void av1_reset_segment_features(AV1_COMMON *cm) { struct segmentation *seg = &cm->seg; // Set up default state for MB feature flags seg->enabled = 0; seg->update_map = 0; seg->update_data = 0; av1_clearall_segfeatures(seg); }