/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include "./aom_scale_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/binary_codes_writer.h" #include "aom_dsp/psnr.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "aom_ports/system_state.h" #include "av1/common/onyxc_int.h" #include "av1/common/quant_common.h" #include "av1/common/restoration.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/encoder.h" #include "av1/encoder/picklpf.h" #include "av1/encoder/pickrst.h" // When set to RESTORE_WIENER or RESTORE_SGRPROJ only those are allowed. // When set to RESTORE_NONE (0) we allow switchable. const RestorationType force_restore_type = RESTORE_NONE; // Number of Wiener iterations #define NUM_WIENER_ITERS 10 typedef double (*search_restore_type)(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int partial_frame, RestorationInfo *info, RestorationType *rest_level, double *best_tile_cost, YV12_BUFFER_CONFIG *dst_frame); const int frame_level_restore_bits[RESTORE_TYPES] = { 2, 2, 2, 2 }; static int64_t sse_restoration_tile(const YV12_BUFFER_CONFIG *src, const YV12_BUFFER_CONFIG *dst, const AV1_COMMON *cm, int h_start, int width, int v_start, int height, int components_pattern) { int64_t filt_err = 0; (void)cm; // Y and UV components cannot be mixed assert(components_pattern == 1 || components_pattern == 2 || components_pattern == 4 || components_pattern == 6); #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) { if ((components_pattern >> AOM_PLANE_Y) & 1) { filt_err += aom_highbd_get_y_sse_part(src, dst, h_start, width, v_start, height); } if ((components_pattern >> AOM_PLANE_U) & 1) { filt_err += aom_highbd_get_u_sse_part(src, dst, h_start, width, v_start, height); } if ((components_pattern >> AOM_PLANE_V) & 1) { filt_err += aom_highbd_get_v_sse_part(src, dst, h_start, width, v_start, height); } return filt_err; } #endif // CONFIG_HIGHBITDEPTH if ((components_pattern >> AOM_PLANE_Y) & 1) { filt_err += aom_get_y_sse_part(src, dst, h_start, width, v_start, height); } if ((components_pattern >> AOM_PLANE_U) & 1) { filt_err += aom_get_u_sse_part(src, dst, h_start, width, v_start, height); } if ((components_pattern >> AOM_PLANE_V) & 1) { filt_err += aom_get_v_sse_part(src, dst, h_start, width, v_start, height); } return filt_err; } static int64_t sse_restoration_frame(AV1_COMMON *const cm, const YV12_BUFFER_CONFIG *src, const YV12_BUFFER_CONFIG *dst, int components_pattern) { int64_t filt_err = 0; #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) { if ((components_pattern >> AOM_PLANE_Y) & 1) { filt_err += aom_highbd_get_y_sse(src, dst); } if ((components_pattern >> AOM_PLANE_U) & 1) { filt_err += aom_highbd_get_u_sse(src, dst); } if ((components_pattern >> AOM_PLANE_V) & 1) { filt_err += aom_highbd_get_v_sse(src, dst); } return filt_err; } #else (void)cm; #endif // CONFIG_HIGHBITDEPTH if ((components_pattern >> AOM_PLANE_Y) & 1) { filt_err = aom_get_y_sse(src, dst); } if ((components_pattern >> AOM_PLANE_U) & 1) { filt_err += aom_get_u_sse(src, dst); } if ((components_pattern >> AOM_PLANE_V) & 1) { filt_err += aom_get_v_sse(src, dst); } return filt_err; } static int64_t try_restoration_tile(const YV12_BUFFER_CONFIG *src, AV1_COMP *const cpi, RestorationInfo *rsi, int components_pattern, int partial_frame, int tile_idx, int subtile_idx, int subtile_bits, YV12_BUFFER_CONFIG *dst_frame) { AV1_COMMON *const cm = &cpi->common; int64_t filt_err; int tile_width, tile_height, nhtiles, nvtiles; int h_start, h_end, v_start, v_end; int ntiles, width, height; // Y and UV components cannot be mixed assert(components_pattern == 1 || components_pattern == 2 || components_pattern == 4 || components_pattern == 6); if (components_pattern == 1) { // Y only width = src->y_crop_width; height = src->y_crop_height; } else { // Color width = src->uv_crop_width; height = src->uv_crop_height; } ntiles = av1_get_rest_ntiles( width, height, cm->rst_info[components_pattern > 1].restoration_tilesize, &tile_width, &tile_height, &nhtiles, &nvtiles); (void)ntiles; av1_loop_restoration_frame(cm->frame_to_show, cm, rsi, components_pattern, partial_frame, dst_frame); av1_get_rest_tile_limits(tile_idx, subtile_idx, subtile_bits, nhtiles, nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); filt_err = sse_restoration_tile(src, dst_frame, cm, h_start, h_end - h_start, v_start, v_end - v_start, components_pattern); return filt_err; } static int64_t try_restoration_frame(const YV12_BUFFER_CONFIG *src, AV1_COMP *const cpi, RestorationInfo *rsi, int components_pattern, int partial_frame, YV12_BUFFER_CONFIG *dst_frame) { AV1_COMMON *const cm = &cpi->common; int64_t filt_err; av1_loop_restoration_frame(cm->frame_to_show, cm, rsi, components_pattern, partial_frame, dst_frame); filt_err = sse_restoration_frame(cm, src, dst_frame, components_pattern); return filt_err; } static int64_t get_pixel_proj_error(uint8_t *src8, int width, int height, int src_stride, uint8_t *dat8, int dat_stride, int bit_depth, int32_t *flt1, int flt1_stride, int32_t *flt2, int flt2_stride, int *xqd) { int i, j; int64_t err = 0; int xq[2]; decode_xq(xqd, xq); if (bit_depth == 8) { const uint8_t *src = src8; const uint8_t *dat = dat8; for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); const int32_t f1 = (int32_t)flt1[i * flt1_stride + j] - u; const int32_t f2 = (int32_t)flt2[i * flt2_stride + j] - u; const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS); const int32_t e = ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[i * src_stride + j]; err += e * e; } } } else { const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); const int32_t f1 = (int32_t)flt1[i * flt1_stride + j] - u; const int32_t f2 = (int32_t)flt2[i * flt2_stride + j] - u; const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS); const int32_t e = ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[i * src_stride + j]; err += e * e; } } } return err; } static void get_proj_subspace(uint8_t *src8, int width, int height, int src_stride, uint8_t *dat8, int dat_stride, int bit_depth, int32_t *flt1, int flt1_stride, int32_t *flt2, int flt2_stride, int *xq) { int i, j; double H[2][2] = { { 0, 0 }, { 0, 0 } }; double C[2] = { 0, 0 }; double Det; double x[2]; const int size = width * height; aom_clear_system_state(); // Default xq[0] = 0; xq[1] = 0; if (bit_depth == 8) { const uint8_t *src = src8; const uint8_t *dat = dat8; for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const double u = (double)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); const double s = (double)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; const double f1 = (double)flt1[i * flt1_stride + j] - u; const double f2 = (double)flt2[i * flt2_stride + j] - u; H[0][0] += f1 * f1; H[1][1] += f2 * f2; H[0][1] += f1 * f2; C[0] += f1 * s; C[1] += f2 * s; } } } else { const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const double u = (double)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); const double s = (double)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; const double f1 = (double)flt1[i * flt1_stride + j] - u; const double f2 = (double)flt2[i * flt2_stride + j] - u; H[0][0] += f1 * f1; H[1][1] += f2 * f2; H[0][1] += f1 * f2; C[0] += f1 * s; C[1] += f2 * s; } } } H[0][0] /= size; H[0][1] /= size; H[1][1] /= size; H[1][0] = H[0][1]; C[0] /= size; C[1] /= size; Det = (H[0][0] * H[1][1] - H[0][1] * H[1][0]); if (Det < 1e-8) return; // ill-posed, return default values x[0] = (H[1][1] * C[0] - H[0][1] * C[1]) / Det; x[1] = (H[0][0] * C[1] - H[1][0] * C[0]) / Det; xq[0] = (int)rint(x[0] * (1 << SGRPROJ_PRJ_BITS)); xq[1] = (int)rint(x[1] * (1 << SGRPROJ_PRJ_BITS)); } void encode_xq(int *xq, int *xqd) { xqd[0] = xq[0]; xqd[0] = clamp(xqd[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0); xqd[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1]; xqd[1] = clamp(xqd[1], SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1); } static void search_selfguided_restoration(uint8_t *dat8, int width, int height, int dat_stride, uint8_t *src8, int src_stride, int bit_depth, int *eps, int *xqd, int32_t *rstbuf) { int32_t *flt1 = rstbuf; int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX; int32_t *tmpbuf2 = flt2 + RESTORATION_TILEPELS_MAX; int ep, bestep = 0; int64_t err, besterr = -1; int exqd[2], bestxqd[2] = { 0, 0 }; for (ep = 0; ep < SGRPROJ_PARAMS; ep++) { int exq[2]; #if CONFIG_HIGHBITDEPTH if (bit_depth > 8) { uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); #if USE_HIGHPASS_IN_SGRPROJ av1_highpass_filter_highbd(dat, width, height, dat_stride, flt1, width, sgr_params[ep].corner, sgr_params[ep].edge); #else av1_selfguided_restoration_highbd(dat, width, height, dat_stride, flt1, width, bit_depth, sgr_params[ep].r1, sgr_params[ep].e1, tmpbuf2); #endif // USE_HIGHPASS_IN_SGRPROJ av1_selfguided_restoration_highbd(dat, width, height, dat_stride, flt2, width, bit_depth, sgr_params[ep].r2, sgr_params[ep].e2, tmpbuf2); } else { #endif #if USE_HIGHPASS_IN_SGRPROJ av1_highpass_filter(dat8, width, height, dat_stride, flt1, width, sgr_params[ep].corner, sgr_params[ep].edge); #else av1_selfguided_restoration(dat8, width, height, dat_stride, flt1, width, sgr_params[ep].r1, sgr_params[ep].e1, tmpbuf2); #endif // USE_HIGHPASS_IN_SGRPROJ av1_selfguided_restoration(dat8, width, height, dat_stride, flt2, width, sgr_params[ep].r2, sgr_params[ep].e2, tmpbuf2); #if CONFIG_HIGHBITDEPTH } #endif get_proj_subspace(src8, width, height, src_stride, dat8, dat_stride, bit_depth, flt1, width, flt2, width, exq); encode_xq(exq, exqd); err = get_pixel_proj_error(src8, width, height, src_stride, dat8, dat_stride, bit_depth, flt1, width, flt2, width, exqd); if (besterr == -1 || err < besterr) { bestep = ep; besterr = err; bestxqd[0] = exqd[0]; bestxqd[1] = exqd[1]; } } *eps = bestep; xqd[0] = bestxqd[0]; xqd[1] = bestxqd[1]; } static int count_sgrproj_bits(SgrprojInfo *sgrproj_info, SgrprojInfo *ref_sgrproj_info) { int bits = SGRPROJ_PARAMS_BITS; bits += aom_count_primitive_refsubexpfin( SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); bits += aom_count_primitive_refsubexpfin( SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); return bits; } static double search_sgrproj(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int partial_frame, RestorationInfo *info, RestorationType *type, double *best_tile_cost, YV12_BUFFER_CONFIG *dst_frame) { SgrprojInfo *sgrproj_info = info->sgrproj_info; double err, cost_norestore, cost_sgrproj; int bits; MACROBLOCK *x = &cpi->td.mb; AV1_COMMON *const cm = &cpi->common; const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show; RestorationInfo *rsi = &cpi->rst_search[0]; int tile_idx, tile_width, tile_height, nhtiles, nvtiles; int h_start, h_end, v_start, v_end; // Allocate for the src buffer at high precision const int ntiles = av1_get_rest_ntiles( cm->width, cm->height, cm->rst_info[0].restoration_tilesize, &tile_width, &tile_height, &nhtiles, &nvtiles); SgrprojInfo ref_sgrproj_info; set_default_sgrproj(&ref_sgrproj_info); rsi->frame_restoration_type = RESTORE_SGRPROJ; for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { rsi->restoration_type[tile_idx] = RESTORE_NONE; } // Compute best Sgrproj filters for each tile for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { av1_get_rest_tile_limits(tile_idx, 0, 0, nhtiles, nvtiles, tile_width, tile_height, cm->width, cm->height, 0, 0, &h_start, &h_end, &v_start, &v_end); err = sse_restoration_tile(src, cm->frame_to_show, cm, h_start, h_end - h_start, v_start, v_end - v_start, 1); // #bits when a tile is not restored bits = av1_cost_bit(RESTORE_NONE_SGRPROJ_PROB, 0); cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err); best_tile_cost[tile_idx] = DBL_MAX; search_selfguided_restoration( dgd->y_buffer + v_start * dgd->y_stride + h_start, h_end - h_start, v_end - v_start, dgd->y_stride, src->y_buffer + v_start * src->y_stride + h_start, src->y_stride, #if CONFIG_HIGHBITDEPTH cm->bit_depth, #else 8, #endif // CONFIG_HIGHBITDEPTH &rsi->sgrproj_info[tile_idx].ep, rsi->sgrproj_info[tile_idx].xqd, cm->rst_internal.tmpbuf); rsi->restoration_type[tile_idx] = RESTORE_SGRPROJ; err = try_restoration_tile(src, cpi, rsi, 1, partial_frame, tile_idx, 0, 0, dst_frame); bits = count_sgrproj_bits(&rsi->sgrproj_info[tile_idx], &ref_sgrproj_info) << AV1_PROB_COST_SHIFT; bits += av1_cost_bit(RESTORE_NONE_SGRPROJ_PROB, 1); cost_sgrproj = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err); if (cost_sgrproj >= cost_norestore) { type[tile_idx] = RESTORE_NONE; } else { type[tile_idx] = RESTORE_SGRPROJ; memcpy(&sgrproj_info[tile_idx], &rsi->sgrproj_info[tile_idx], sizeof(sgrproj_info[tile_idx])); bits = count_sgrproj_bits(&rsi->sgrproj_info[tile_idx], &ref_sgrproj_info) << AV1_PROB_COST_SHIFT; memcpy(&ref_sgrproj_info, &sgrproj_info[tile_idx], sizeof(ref_sgrproj_info)); best_tile_cost[tile_idx] = err; } rsi->restoration_type[tile_idx] = RESTORE_NONE; } // Cost for Sgrproj filtering set_default_sgrproj(&ref_sgrproj_info); bits = frame_level_restore_bits[rsi->frame_restoration_type] << AV1_PROB_COST_SHIFT; for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { bits += av1_cost_bit(RESTORE_NONE_SGRPROJ_PROB, type[tile_idx] != RESTORE_NONE); memcpy(&rsi->sgrproj_info[tile_idx], &sgrproj_info[tile_idx], sizeof(sgrproj_info[tile_idx])); if (type[tile_idx] == RESTORE_SGRPROJ) { bits += count_sgrproj_bits(&rsi->sgrproj_info[tile_idx], &ref_sgrproj_info) << AV1_PROB_COST_SHIFT; memcpy(&ref_sgrproj_info, &rsi->sgrproj_info[tile_idx], sizeof(ref_sgrproj_info)); } rsi->restoration_type[tile_idx] = type[tile_idx]; } err = try_restoration_frame(src, cpi, rsi, 1, partial_frame, dst_frame); cost_sgrproj = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err); return cost_sgrproj; } static double find_average(uint8_t *src, int h_start, int h_end, int v_start, int v_end, int stride) { uint64_t sum = 0; double avg = 0; int i, j; aom_clear_system_state(); for (i = v_start; i < v_end; i++) for (j = h_start; j < h_end; j++) sum += src[i * stride + j]; avg = (double)sum / ((v_end - v_start) * (h_end - h_start)); return avg; } static void compute_stats(uint8_t *dgd, uint8_t *src, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, double *M, double *H) { int i, j, k, l; double Y[WIENER_WIN2]; const double avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); memset(M, 0, sizeof(*M) * WIENER_WIN2); memset(H, 0, sizeof(*H) * WIENER_WIN2 * WIENER_WIN2); for (i = v_start; i < v_end; i++) { for (j = h_start; j < h_end; j++) { const double X = (double)src[i * src_stride + j] - avg; int idx = 0; for (k = -WIENER_HALFWIN; k <= WIENER_HALFWIN; k++) { for (l = -WIENER_HALFWIN; l <= WIENER_HALFWIN; l++) { Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg; idx++; } } for (k = 0; k < WIENER_WIN2; ++k) { M[k] += Y[k] * X; H[k * WIENER_WIN2 + k] += Y[k] * Y[k]; for (l = k + 1; l < WIENER_WIN2; ++l) { // H is a symmetric matrix, so we only need to fill out the upper // triangle here. We can copy it down to the lower triangle outside // the (i, j) loops. H[k * WIENER_WIN2 + l] += Y[k] * Y[l]; } } } } for (k = 0; k < WIENER_WIN2; ++k) { for (l = k + 1; l < WIENER_WIN2; ++l) { H[l * WIENER_WIN2 + k] = H[k * WIENER_WIN2 + l]; } } } #if CONFIG_HIGHBITDEPTH static double find_average_highbd(uint16_t *src, int h_start, int h_end, int v_start, int v_end, int stride) { uint64_t sum = 0; double avg = 0; int i, j; aom_clear_system_state(); for (i = v_start; i < v_end; i++) for (j = h_start; j < h_end; j++) sum += src[i * stride + j]; avg = (double)sum / ((v_end - v_start) * (h_end - h_start)); return avg; } static void compute_stats_highbd(uint8_t *dgd8, uint8_t *src8, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, double *M, double *H) { int i, j, k, l; double Y[WIENER_WIN2]; uint16_t *src = CONVERT_TO_SHORTPTR(src8); uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); const double avg = find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); memset(M, 0, sizeof(*M) * WIENER_WIN2); memset(H, 0, sizeof(*H) * WIENER_WIN2 * WIENER_WIN2); for (i = v_start; i < v_end; i++) { for (j = h_start; j < h_end; j++) { const double X = (double)src[i * src_stride + j] - avg; int idx = 0; for (k = -WIENER_HALFWIN; k <= WIENER_HALFWIN; k++) { for (l = -WIENER_HALFWIN; l <= WIENER_HALFWIN; l++) { Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg; idx++; } } for (k = 0; k < WIENER_WIN2; ++k) { M[k] += Y[k] * X; H[k * WIENER_WIN2 + k] += Y[k] * Y[k]; for (l = k + 1; l < WIENER_WIN2; ++l) { // H is a symmetric matrix, so we only need to fill out the upper // triangle here. We can copy it down to the lower triangle outside // the (i, j) loops. H[k * WIENER_WIN2 + l] += Y[k] * Y[l]; } } } } for (k = 0; k < WIENER_WIN2; ++k) { for (l = k + 1; l < WIENER_WIN2; ++l) { H[l * WIENER_WIN2 + k] = H[k * WIENER_WIN2 + l]; } } } #endif // CONFIG_HIGHBITDEPTH // Solves Ax = b, where x and b are column vectors static int linsolve(int n, double *A, int stride, double *b, double *x) { int i, j, k; double c; aom_clear_system_state(); // Forward elimination for (k = 0; k < n - 1; k++) { // Bring the largest magitude to the diagonal position for (i = n - 1; i > k; i--) { if (fabs(A[(i - 1) * stride + k]) < fabs(A[i * stride + k])) { for (j = 0; j < n; j++) { c = A[i * stride + j]; A[i * stride + j] = A[(i - 1) * stride + j]; A[(i - 1) * stride + j] = c; } c = b[i]; b[i] = b[i - 1]; b[i - 1] = c; } } for (i = k; i < n - 1; i++) { if (fabs(A[k * stride + k]) < 1e-10) return 0; c = A[(i + 1) * stride + k] / A[k * stride + k]; for (j = 0; j < n; j++) A[(i + 1) * stride + j] -= c * A[k * stride + j]; b[i + 1] -= c * b[k]; } } // Backward substitution for (i = n - 1; i >= 0; i--) { if (fabs(A[i * stride + i]) < 1e-10) return 0; c = 0; for (j = i + 1; j <= n - 1; j++) c += A[i * stride + j] * x[j]; x[i] = (b[i] - c) / A[i * stride + i]; } return 1; } static INLINE int wrap_index(int i) { return (i >= WIENER_HALFWIN1 ? WIENER_WIN - 1 - i : i); } // Fix vector b, update vector a static void update_a_sep_sym(double **Mc, double **Hc, double *a, double *b) { int i, j; double S[WIENER_WIN]; double A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; int w, w2; memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B)); for (i = 0; i < WIENER_WIN; i++) { for (j = 0; j < WIENER_WIN; ++j) { const int jj = wrap_index(j); A[jj] += Mc[i][j] * b[i]; } } for (i = 0; i < WIENER_WIN; i++) { for (j = 0; j < WIENER_WIN; j++) { int k, l; for (k = 0; k < WIENER_WIN; ++k) for (l = 0; l < WIENER_WIN; ++l) { const int kk = wrap_index(k); const int ll = wrap_index(l); B[ll * WIENER_HALFWIN1 + kk] += Hc[j * WIENER_WIN + i][k * WIENER_WIN2 + l] * b[i] * b[j]; } } } // Normalization enforcement in the system of equations itself w = WIENER_WIN; w2 = (w >> 1) + 1; for (i = 0; i < w2 - 1; ++i) A[i] -= A[w2 - 1] * 2 + B[i * w2 + w2 - 1] - 2 * B[(w2 - 1) * w2 + (w2 - 1)]; for (i = 0; i < w2 - 1; ++i) for (j = 0; j < w2 - 1; ++j) B[i * w2 + j] -= 2 * (B[i * w2 + (w2 - 1)] + B[(w2 - 1) * w2 + j] - 2 * B[(w2 - 1) * w2 + (w2 - 1)]); if (linsolve(w2 - 1, B, w2, A, S)) { S[w2 - 1] = 1.0; for (i = w2; i < w; ++i) { S[i] = S[w - 1 - i]; S[w2 - 1] -= 2 * S[i]; } memcpy(a, S, w * sizeof(*a)); } } // Fix vector a, update vector b static void update_b_sep_sym(double **Mc, double **Hc, double *a, double *b) { int i, j; double S[WIENER_WIN]; double A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; int w, w2; memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B)); for (i = 0; i < WIENER_WIN; i++) { const int ii = wrap_index(i); for (j = 0; j < WIENER_WIN; j++) A[ii] += Mc[i][j] * a[j]; } for (i = 0; i < WIENER_WIN; i++) { for (j = 0; j < WIENER_WIN; j++) { const int ii = wrap_index(i); const int jj = wrap_index(j); int k, l; for (k = 0; k < WIENER_WIN; ++k) for (l = 0; l < WIENER_WIN; ++l) B[jj * WIENER_HALFWIN1 + ii] += Hc[i * WIENER_WIN + j][k * WIENER_WIN2 + l] * a[k] * a[l]; } } // Normalization enforcement in the system of equations itself w = WIENER_WIN; w2 = WIENER_HALFWIN1; for (i = 0; i < w2 - 1; ++i) A[i] -= A[w2 - 1] * 2 + B[i * w2 + w2 - 1] - 2 * B[(w2 - 1) * w2 + (w2 - 1)]; for (i = 0; i < w2 - 1; ++i) for (j = 0; j < w2 - 1; ++j) B[i * w2 + j] -= 2 * (B[i * w2 + (w2 - 1)] + B[(w2 - 1) * w2 + j] - 2 * B[(w2 - 1) * w2 + (w2 - 1)]); if (linsolve(w2 - 1, B, w2, A, S)) { S[w2 - 1] = 1.0; for (i = w2; i < w; ++i) { S[i] = S[w - 1 - i]; S[w2 - 1] -= 2 * S[i]; } memcpy(b, S, w * sizeof(*b)); } } static int wiener_decompose_sep_sym(double *M, double *H, double *a, double *b) { static const double init_filt[WIENER_WIN] = { 0.035623, -0.127154, 0.211436, 0.760190, 0.211436, -0.127154, 0.035623, }; int i, j, iter; double *Hc[WIENER_WIN2]; double *Mc[WIENER_WIN]; for (i = 0; i < WIENER_WIN; i++) { Mc[i] = M + i * WIENER_WIN; for (j = 0; j < WIENER_WIN; j++) { Hc[i * WIENER_WIN + j] = H + i * WIENER_WIN * WIENER_WIN2 + j * WIENER_WIN; } } memcpy(a, init_filt, sizeof(*a) * WIENER_WIN); memcpy(b, init_filt, sizeof(*b) * WIENER_WIN); iter = 1; while (iter < NUM_WIENER_ITERS) { update_a_sep_sym(Mc, Hc, a, b); update_b_sep_sym(Mc, Hc, a, b); iter++; } return 1; } // Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares // against identity filters; Final score is defined as the difference between // the function values static double compute_score(double *M, double *H, InterpKernel vfilt, InterpKernel hfilt) { double ab[WIENER_WIN * WIENER_WIN]; int i, k, l; double P = 0, Q = 0; double iP = 0, iQ = 0; double Score, iScore; double a[WIENER_WIN], b[WIENER_WIN]; aom_clear_system_state(); a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = 1.0; for (i = 0; i < WIENER_HALFWIN; ++i) { a[i] = a[WIENER_WIN - i - 1] = (double)vfilt[i] / WIENER_FILT_STEP; b[i] = b[WIENER_WIN - i - 1] = (double)hfilt[i] / WIENER_FILT_STEP; a[WIENER_HALFWIN] -= 2 * a[i]; b[WIENER_HALFWIN] -= 2 * b[i]; } for (k = 0; k < WIENER_WIN; ++k) { for (l = 0; l < WIENER_WIN; ++l) ab[k * WIENER_WIN + l] = a[l] * b[k]; } for (k = 0; k < WIENER_WIN2; ++k) { P += ab[k] * M[k]; for (l = 0; l < WIENER_WIN2; ++l) Q += ab[k] * H[k * WIENER_WIN2 + l] * ab[l]; } Score = Q - 2 * P; iP = M[WIENER_WIN2 >> 1]; iQ = H[(WIENER_WIN2 >> 1) * WIENER_WIN2 + (WIENER_WIN2 >> 1)]; iScore = iQ - 2 * iP; return Score - iScore; } static void quantize_sym_filter(double *f, InterpKernel fi) { int i; for (i = 0; i < WIENER_HALFWIN; ++i) { fi[i] = RINT(f[i] * WIENER_FILT_STEP); } // Specialize for 7-tap filter fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV); fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); // Satisfy filter constraints fi[WIENER_WIN - 1] = fi[0]; fi[WIENER_WIN - 2] = fi[1]; fi[WIENER_WIN - 3] = fi[2]; // The central element has an implicit +WIENER_FILT_STEP fi[3] = -2 * (fi[0] + fi[1] + fi[2]); } static int count_wiener_bits(WienerInfo *wiener_info, WienerInfo *ref_wiener_info) { int bits = 0; bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, WIENER_FILT_TAP0_SUBEXP_K, ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, WIENER_FILT_TAP1_SUBEXP_K, ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, WIENER_FILT_TAP2_SUBEXP_K, ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, WIENER_FILT_TAP0_SUBEXP_K, ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, WIENER_FILT_TAP1_SUBEXP_K, ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, WIENER_FILT_TAP2_SUBEXP_K, ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); return bits; } static double search_wiener_uv(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int partial_frame, int plane, RestorationInfo *info, RestorationType *type, YV12_BUFFER_CONFIG *dst_frame) { WienerInfo *wiener_info = info->wiener_info; AV1_COMMON *const cm = &cpi->common; RestorationInfo *rsi = cpi->rst_search; int64_t err; int bits; double cost_wiener, cost_norestore, cost_wiener_frame, cost_norestore_frame; MACROBLOCK *x = &cpi->td.mb; double M[WIENER_WIN2]; double H[WIENER_WIN2 * WIENER_WIN2]; double vfilterd[WIENER_WIN], hfilterd[WIENER_WIN]; const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show; const int width = src->uv_crop_width; const int height = src->uv_crop_height; const int src_stride = src->uv_stride; const int dgd_stride = dgd->uv_stride; double score; int tile_idx, tile_width, tile_height, nhtiles, nvtiles; int h_start, h_end, v_start, v_end; const int ntiles = av1_get_rest_ntiles(width, height, cm->rst_info[1].restoration_tilesize, &tile_width, &tile_height, &nhtiles, &nvtiles); WienerInfo ref_wiener_info; set_default_wiener(&ref_wiener_info); assert(width == dgd->uv_crop_width); assert(height == dgd->uv_crop_height); rsi[plane].frame_restoration_type = RESTORE_NONE; err = sse_restoration_frame(cm, src, cm->frame_to_show, (1 << plane)); bits = 0; cost_norestore_frame = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err); rsi[plane].frame_restoration_type = RESTORE_WIENER; for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { rsi[plane].restoration_type[tile_idx] = RESTORE_NONE; } // Compute best Wiener filters for each tile for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { av1_get_rest_tile_limits(tile_idx, 0, 0, nhtiles, nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); err = sse_restoration_tile(src, cm->frame_to_show, cm, h_start, h_end - h_start, v_start, v_end - v_start, 1 << plane); // #bits when a tile is not restored bits = av1_cost_bit(RESTORE_NONE_WIENER_PROB, 0); cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err); // best_tile_cost[tile_idx] = DBL_MAX; av1_get_rest_tile_limits(tile_idx, 0, 0, nhtiles, nvtiles, tile_width, tile_height, width, height, WIENER_HALFWIN, WIENER_HALFWIN, &h_start, &h_end, &v_start, &v_end); if (plane == AOM_PLANE_U) { #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) compute_stats_highbd(dgd->u_buffer, src->u_buffer, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H); else #endif // CONFIG_HIGHBITDEPTH compute_stats(dgd->u_buffer, src->u_buffer, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H); } else if (plane == AOM_PLANE_V) { #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) compute_stats_highbd(dgd->v_buffer, src->v_buffer, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H); else #endif // CONFIG_HIGHBITDEPTH compute_stats(dgd->v_buffer, src->v_buffer, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H); } else { assert(0); } type[tile_idx] = RESTORE_WIENER; if (!wiener_decompose_sep_sym(M, H, vfilterd, hfilterd)) { type[tile_idx] = RESTORE_NONE; continue; } quantize_sym_filter(vfilterd, rsi[plane].wiener_info[tile_idx].vfilter); quantize_sym_filter(hfilterd, rsi[plane].wiener_info[tile_idx].hfilter); // Filter score computes the value of the function x'*A*x - x'*b for the // learned filter and compares it against identity filer. If there is no // reduction in the function, the filter is reverted back to identity score = compute_score(M, H, rsi[plane].wiener_info[tile_idx].vfilter, rsi[plane].wiener_info[tile_idx].hfilter); if (score > 0.0) { type[tile_idx] = RESTORE_NONE; continue; } rsi[plane].restoration_type[tile_idx] = RESTORE_WIENER; err = try_restoration_tile(src, cpi, rsi, 1 << plane, partial_frame, tile_idx, 0, 0, dst_frame); bits = count_wiener_bits(&rsi[plane].wiener_info[tile_idx], &ref_wiener_info) << AV1_PROB_COST_SHIFT; // bits = WIENER_FILT_BITS << AV1_PROB_COST_SHIFT; bits += av1_cost_bit(RESTORE_NONE_WIENER_PROB, 1); cost_wiener = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err); if (cost_wiener >= cost_norestore) { type[tile_idx] = RESTORE_NONE; } else { type[tile_idx] = RESTORE_WIENER; memcpy(&wiener_info[tile_idx], &rsi[plane].wiener_info[tile_idx], sizeof(wiener_info[tile_idx])); memcpy(&ref_wiener_info, &rsi[plane].wiener_info[tile_idx], sizeof(ref_wiener_info)); } rsi[plane].restoration_type[tile_idx] = RESTORE_NONE; } // Cost for Wiener filtering set_default_wiener(&ref_wiener_info); bits = 0; for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { bits += av1_cost_bit(RESTORE_NONE_WIENER_PROB, type[tile_idx] != RESTORE_NONE); memcpy(&rsi[plane].wiener_info[tile_idx], &wiener_info[tile_idx], sizeof(wiener_info[tile_idx])); if (type[tile_idx] == RESTORE_WIENER) { bits += count_wiener_bits(&rsi[plane].wiener_info[tile_idx], &ref_wiener_info) << AV1_PROB_COST_SHIFT; memcpy(&ref_wiener_info, &rsi[plane].wiener_info[tile_idx], sizeof(ref_wiener_info)); } rsi[plane].restoration_type[tile_idx] = type[tile_idx]; } err = try_restoration_frame(src, cpi, rsi, 1 << plane, partial_frame, dst_frame); cost_wiener_frame = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err); if (cost_wiener_frame < cost_norestore_frame) { info->frame_restoration_type = RESTORE_WIENER; } else { info->frame_restoration_type = RESTORE_NONE; } return info->frame_restoration_type == RESTORE_WIENER ? cost_wiener_frame : cost_norestore_frame; } static double search_wiener(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int partial_frame, RestorationInfo *info, RestorationType *type, double *best_tile_cost, YV12_BUFFER_CONFIG *dst_frame) { WienerInfo *wiener_info = info->wiener_info; AV1_COMMON *const cm = &cpi->common; RestorationInfo *rsi = cpi->rst_search; int64_t err; int bits; double cost_wiener, cost_norestore; MACROBLOCK *x = &cpi->td.mb; double M[WIENER_WIN2]; double H[WIENER_WIN2 * WIENER_WIN2]; double vfilterd[WIENER_WIN], hfilterd[WIENER_WIN]; const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show; const int width = cm->width; const int height = cm->height; const int src_stride = src->y_stride; const int dgd_stride = dgd->y_stride; double score; int tile_idx, tile_width, tile_height, nhtiles, nvtiles; int h_start, h_end, v_start, v_end; const int ntiles = av1_get_rest_ntiles(width, height, cm->rst_info[0].restoration_tilesize, &tile_width, &tile_height, &nhtiles, &nvtiles); WienerInfo ref_wiener_info; set_default_wiener(&ref_wiener_info); assert(width == dgd->y_crop_width); assert(height == dgd->y_crop_height); assert(width == src->y_crop_width); assert(height == src->y_crop_height); rsi->frame_restoration_type = RESTORE_WIENER; for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { rsi->restoration_type[tile_idx] = RESTORE_NONE; } // Construct a (WIENER_HALFWIN)-pixel border around the frame #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) extend_frame_highbd(CONVERT_TO_SHORTPTR(dgd->y_buffer), width, height, dgd_stride); else #endif extend_frame(dgd->y_buffer, width, height, dgd_stride); // Compute best Wiener filters for each tile for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { av1_get_rest_tile_limits(tile_idx, 0, 0, nhtiles, nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); err = sse_restoration_tile(src, cm->frame_to_show, cm, h_start, h_end - h_start, v_start, v_end - v_start, 1); // #bits when a tile is not restored bits = av1_cost_bit(RESTORE_NONE_WIENER_PROB, 0); cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err); best_tile_cost[tile_idx] = DBL_MAX; av1_get_rest_tile_limits(tile_idx, 0, 0, nhtiles, nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) compute_stats_highbd(dgd->y_buffer, src->y_buffer, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H); else #endif // CONFIG_HIGHBITDEPTH compute_stats(dgd->y_buffer, src->y_buffer, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H); type[tile_idx] = RESTORE_WIENER; if (!wiener_decompose_sep_sym(M, H, vfilterd, hfilterd)) { type[tile_idx] = RESTORE_NONE; continue; } quantize_sym_filter(vfilterd, rsi->wiener_info[tile_idx].vfilter); quantize_sym_filter(hfilterd, rsi->wiener_info[tile_idx].hfilter); // Filter score computes the value of the function x'*A*x - x'*b for the // learned filter and compares it against identity filer. If there is no // reduction in the function, the filter is reverted back to identity score = compute_score(M, H, rsi->wiener_info[tile_idx].vfilter, rsi->wiener_info[tile_idx].hfilter); if (score > 0.0) { type[tile_idx] = RESTORE_NONE; continue; } rsi->restoration_type[tile_idx] = RESTORE_WIENER; err = try_restoration_tile(src, cpi, rsi, 1, partial_frame, tile_idx, 0, 0, dst_frame); bits = count_wiener_bits(&rsi->wiener_info[tile_idx], &ref_wiener_info) << AV1_PROB_COST_SHIFT; bits += av1_cost_bit(RESTORE_NONE_WIENER_PROB, 1); cost_wiener = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err); if (cost_wiener >= cost_norestore) { type[tile_idx] = RESTORE_NONE; } else { type[tile_idx] = RESTORE_WIENER; memcpy(&wiener_info[tile_idx], &rsi->wiener_info[tile_idx], sizeof(wiener_info[tile_idx])); memcpy(&ref_wiener_info, &rsi->wiener_info[tile_idx], sizeof(ref_wiener_info)); bits = count_wiener_bits(&wiener_info[tile_idx], &ref_wiener_info) << AV1_PROB_COST_SHIFT; best_tile_cost[tile_idx] = err; } rsi->restoration_type[tile_idx] = RESTORE_NONE; } // Cost for Wiener filtering set_default_wiener(&ref_wiener_info); bits = frame_level_restore_bits[rsi->frame_restoration_type] << AV1_PROB_COST_SHIFT; for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { bits += av1_cost_bit(RESTORE_NONE_WIENER_PROB, type[tile_idx] != RESTORE_NONE); memcpy(&rsi->wiener_info[tile_idx], &wiener_info[tile_idx], sizeof(wiener_info[tile_idx])); if (type[tile_idx] == RESTORE_WIENER) { bits += count_wiener_bits(&rsi->wiener_info[tile_idx], &ref_wiener_info) << AV1_PROB_COST_SHIFT; memcpy(&ref_wiener_info, &rsi->wiener_info[tile_idx], sizeof(ref_wiener_info)); } rsi->restoration_type[tile_idx] = type[tile_idx]; } err = try_restoration_frame(src, cpi, rsi, 1, partial_frame, dst_frame); cost_wiener = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err); return cost_wiener; } static double search_norestore(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int partial_frame, RestorationInfo *info, RestorationType *type, double *best_tile_cost, YV12_BUFFER_CONFIG *dst_frame) { double err, cost_norestore; int bits; MACROBLOCK *x = &cpi->td.mb; AV1_COMMON *const cm = &cpi->common; int tile_idx, tile_width, tile_height, nhtiles, nvtiles; int h_start, h_end, v_start, v_end; const int ntiles = av1_get_rest_ntiles( cm->width, cm->height, cm->rst_info[0].restoration_tilesize, &tile_width, &tile_height, &nhtiles, &nvtiles); (void)info; (void)dst_frame; (void)partial_frame; for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { av1_get_rest_tile_limits(tile_idx, 0, 0, nhtiles, nvtiles, tile_width, tile_height, cm->width, cm->height, 0, 0, &h_start, &h_end, &v_start, &v_end); err = sse_restoration_tile(src, cm->frame_to_show, cm, h_start, h_end - h_start, v_start, v_end - v_start, 1); type[tile_idx] = RESTORE_NONE; best_tile_cost[tile_idx] = err; } // RD cost associated with no restoration err = sse_restoration_tile(src, cm->frame_to_show, cm, 0, cm->width, 0, cm->height, 1); bits = frame_level_restore_bits[RESTORE_NONE] << AV1_PROB_COST_SHIFT; cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err); return cost_norestore; } static double search_switchable_restoration( AV1_COMP *cpi, int partial_frame, RestorationInfo *rsi, double *tile_cost[RESTORE_SWITCHABLE_TYPES]) { AV1_COMMON *const cm = &cpi->common; MACROBLOCK *x = &cpi->td.mb; double cost_switchable = 0; int bits, tile_idx; RestorationType r; const int ntiles = av1_get_rest_ntiles(cm->width, cm->height, cm->rst_info[0].restoration_tilesize, NULL, NULL, NULL, NULL); SgrprojInfo ref_sgrproj_info; set_default_sgrproj(&ref_sgrproj_info); WienerInfo ref_wiener_info; set_default_wiener(&ref_wiener_info); (void)partial_frame; rsi->frame_restoration_type = RESTORE_SWITCHABLE; bits = frame_level_restore_bits[rsi->frame_restoration_type] << AV1_PROB_COST_SHIFT; cost_switchable = RDCOST_DBL(x->rdmult, x->rddiv, bits >> 4, 0); for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { double best_cost = RDCOST_DBL( x->rdmult, x->rddiv, (cpi->switchable_restore_cost[RESTORE_NONE] >> 4), tile_cost[RESTORE_NONE][tile_idx]); rsi->restoration_type[tile_idx] = RESTORE_NONE; for (r = 1; r < RESTORE_SWITCHABLE_TYPES; r++) { if (force_restore_type != 0) if (r != force_restore_type) continue; int tilebits = 0; if (r == RESTORE_WIENER) tilebits += count_wiener_bits(&rsi->wiener_info[tile_idx], &ref_wiener_info); else if (r == RESTORE_SGRPROJ) tilebits += count_sgrproj_bits(&rsi->sgrproj_info[tile_idx], &ref_sgrproj_info); tilebits <<= AV1_PROB_COST_SHIFT; tilebits += cpi->switchable_restore_cost[r]; double cost = RDCOST_DBL(x->rdmult, x->rddiv, tilebits >> 4, tile_cost[r][tile_idx]); if (cost < best_cost) { rsi->restoration_type[tile_idx] = r; best_cost = cost; } } if (rsi->restoration_type[tile_idx] == RESTORE_WIENER) memcpy(&ref_wiener_info, &rsi->wiener_info[tile_idx], sizeof(ref_wiener_info)); else if (rsi->restoration_type[tile_idx] == RESTORE_SGRPROJ) memcpy(&ref_sgrproj_info, &rsi->sgrproj_info[tile_idx], sizeof(ref_sgrproj_info)); if (force_restore_type != 0) assert(rsi->restoration_type[tile_idx] == force_restore_type || rsi->restoration_type[tile_idx] == RESTORE_NONE); cost_switchable += best_cost; } return cost_switchable; } void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, LPF_PICK_METHOD method) { static search_restore_type search_restore_fun[RESTORE_SWITCHABLE_TYPES] = { search_norestore, search_wiener, search_sgrproj, }; AV1_COMMON *const cm = &cpi->common; double cost_restore[RESTORE_TYPES]; double *tile_cost[RESTORE_SWITCHABLE_TYPES]; RestorationType *restore_types[RESTORE_SWITCHABLE_TYPES]; double best_cost_restore; RestorationType r, best_restore; const int ntiles = av1_get_rest_ntiles(cm->width, cm->height, cm->rst_info[0].restoration_tilesize, NULL, NULL, NULL, NULL); for (r = 0; r < RESTORE_SWITCHABLE_TYPES; r++) { tile_cost[r] = (double *)aom_malloc(sizeof(*tile_cost[0]) * ntiles); restore_types[r] = (RestorationType *)aom_malloc(sizeof(*restore_types[0]) * ntiles); } for (r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) { if (force_restore_type != 0) if (r != RESTORE_NONE && r != force_restore_type) continue; cost_restore[r] = search_restore_fun[r]( src, cpi, method == LPF_PICK_FROM_SUBIMAGE, &cm->rst_info[0], restore_types[r], tile_cost[r], &cpi->trial_frame_rst); } cost_restore[RESTORE_SWITCHABLE] = search_switchable_restoration( cpi, method == LPF_PICK_FROM_SUBIMAGE, &cm->rst_info[0], tile_cost); best_cost_restore = DBL_MAX; best_restore = 0; for (r = 0; r < RESTORE_TYPES; ++r) { if (force_restore_type != 0) if (r != RESTORE_NONE && r != force_restore_type) continue; if (cost_restore[r] < best_cost_restore) { best_restore = r; best_cost_restore = cost_restore[r]; } } cm->rst_info[0].frame_restoration_type = best_restore; if (force_restore_type != 0) assert(best_restore == force_restore_type || best_restore == RESTORE_NONE); if (best_restore != RESTORE_SWITCHABLE) { memcpy(cm->rst_info[0].restoration_type, restore_types[best_restore], ntiles * sizeof(restore_types[best_restore][0])); } // Color components search_wiener_uv(src, cpi, method == LPF_PICK_FROM_SUBIMAGE, AOM_PLANE_U, &cm->rst_info[AOM_PLANE_U], cm->rst_info[AOM_PLANE_U].restoration_type, &cpi->trial_frame_rst); search_wiener_uv(src, cpi, method == LPF_PICK_FROM_SUBIMAGE, AOM_PLANE_V, &cm->rst_info[AOM_PLANE_V], cm->rst_info[AOM_PLANE_V].restoration_type, &cpi->trial_frame_rst); /* printf("Frame %d/%d restore types: %d %d %d\n", cm->current_video_frame, cm->show_frame, cm->rst_info[0].frame_restoration_type, cm->rst_info[1].frame_restoration_type, cm->rst_info[2].frame_restoration_type); printf("Frame %d/%d frame_restore_type %d : %f %f %f %f\n", cm->current_video_frame, cm->show_frame, cm->rst_info[0].frame_restoration_type, cost_restore[0], cost_restore[1], cost_restore[2], cost_restore[3]); */ for (r = 0; r < RESTORE_SWITCHABLE_TYPES; r++) { aom_free(tile_cost[r]); aom_free(restore_types[r]); } }