/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include "./aom_scale_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/binary_codes_writer.h" #include "aom_dsp/psnr.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "aom_ports/system_state.h" #include "av1/common/onyxc_int.h" #include "av1/common/quant_common.h" #include "av1/common/restoration.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/encoder.h" #include "av1/encoder/mathutils.h" #include "av1/encoder/picklpf.h" #include "av1/encoder/pickrst.h" // When set to RESTORE_WIENER or RESTORE_SGRPROJ only those are allowed. // When set to RESTORE_TYPES we allow switchable. static const RestorationType force_restore_type = RESTORE_TYPES; // Number of Wiener iterations #define NUM_WIENER_ITERS 5 typedef double (*search_restore_type)(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int partial_frame, int plane, RestorationInfo *info, RestorationType *rest_level, int64_t *best_tile_cost, YV12_BUFFER_CONFIG *dst_frame); const int frame_level_restore_bits[RESTORE_TYPES] = { 2, 2, 2, 2 }; static int64_t sse_restoration_tile(const YV12_BUFFER_CONFIG *src, const YV12_BUFFER_CONFIG *dst, const AV1_COMMON *cm, int h_start, int width, int v_start, int height, int components_pattern) { int64_t filt_err = 0; (void)cm; // Y and UV components cannot be mixed assert(components_pattern == 1 || components_pattern == 2 || components_pattern == 4 || components_pattern == 6); #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) { if ((components_pattern >> AOM_PLANE_Y) & 1) { filt_err += aom_highbd_get_y_sse_part(src, dst, h_start, width, v_start, height); } if ((components_pattern >> AOM_PLANE_U) & 1) { filt_err += aom_highbd_get_u_sse_part(src, dst, h_start, width, v_start, height); } if ((components_pattern >> AOM_PLANE_V) & 1) { filt_err += aom_highbd_get_v_sse_part(src, dst, h_start, width, v_start, height); } return filt_err; } #endif // CONFIG_HIGHBITDEPTH if ((components_pattern >> AOM_PLANE_Y) & 1) { filt_err += aom_get_y_sse_part(src, dst, h_start, width, v_start, height); } if ((components_pattern >> AOM_PLANE_U) & 1) { filt_err += aom_get_u_sse_part(src, dst, h_start, width, v_start, height); } if ((components_pattern >> AOM_PLANE_V) & 1) { filt_err += aom_get_v_sse_part(src, dst, h_start, width, v_start, height); } return filt_err; } static int64_t sse_restoration_frame(AV1_COMMON *const cm, const YV12_BUFFER_CONFIG *src, const YV12_BUFFER_CONFIG *dst, int components_pattern) { int64_t filt_err = 0; #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) { if ((components_pattern >> AOM_PLANE_Y) & 1) { filt_err += aom_highbd_get_y_sse(src, dst); } if ((components_pattern >> AOM_PLANE_U) & 1) { filt_err += aom_highbd_get_u_sse(src, dst); } if ((components_pattern >> AOM_PLANE_V) & 1) { filt_err += aom_highbd_get_v_sse(src, dst); } return filt_err; } #else (void)cm; #endif // CONFIG_HIGHBITDEPTH if ((components_pattern >> AOM_PLANE_Y) & 1) { filt_err = aom_get_y_sse(src, dst); } if ((components_pattern >> AOM_PLANE_U) & 1) { filt_err += aom_get_u_sse(src, dst); } if ((components_pattern >> AOM_PLANE_V) & 1) { filt_err += aom_get_v_sse(src, dst); } return filt_err; } static int64_t try_restoration_tile(const YV12_BUFFER_CONFIG *src, AV1_COMP *const cpi, RestorationInfo *rsi, int components_pattern, int partial_frame, int tile_idx, YV12_BUFFER_CONFIG *dst_frame) { AV1_COMMON *const cm = &cpi->common; int64_t filt_err; int tile_width, tile_height, nhtiles, nvtiles; int ntiles, width, height; // Y and UV components cannot be mixed assert(components_pattern == 1 || components_pattern == 2 || components_pattern == 4 || components_pattern == 6); if (components_pattern == 1) { // Y only width = src->y_crop_width; height = src->y_crop_height; } else { // Color width = src->uv_crop_width; height = src->uv_crop_height; } ntiles = av1_get_rest_ntiles( width, height, cm->rst_info[components_pattern > 1].restoration_tilesize, &tile_width, &tile_height, &nhtiles, &nvtiles); (void)ntiles; av1_loop_restoration_frame(cm->frame_to_show, cm, rsi, components_pattern, partial_frame, dst_frame); RestorationTileLimits limits = av1_get_rest_tile_limits( tile_idx, nhtiles, nvtiles, tile_width, tile_height, width, #if CONFIG_STRIPED_LOOP_RESTORATION height, components_pattern > 1 ? cm->subsampling_y : 0); #else height); #endif filt_err = sse_restoration_tile( src, dst_frame, cm, limits.h_start, limits.h_end - limits.h_start, limits.v_start, limits.v_end - limits.v_start, components_pattern); return filt_err; } static int64_t try_restoration_frame(const YV12_BUFFER_CONFIG *src, AV1_COMP *const cpi, RestorationInfo *rsi, int components_pattern, int partial_frame, YV12_BUFFER_CONFIG *dst_frame) { AV1_COMMON *const cm = &cpi->common; int64_t filt_err; av1_loop_restoration_frame(cm->frame_to_show, cm, rsi, components_pattern, partial_frame, dst_frame); filt_err = sse_restoration_frame(cm, src, dst_frame, components_pattern); return filt_err; } static int64_t get_pixel_proj_error(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt1, int flt1_stride, int32_t *flt2, int flt2_stride, int *xqd) { int i, j; int64_t err = 0; int xq[2]; decode_xq(xqd, xq); if (!use_highbitdepth) { const uint8_t *src = src8; const uint8_t *dat = dat8; for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); const int32_t f1 = (int32_t)flt1[i * flt1_stride + j] - u; const int32_t f2 = (int32_t)flt2[i * flt2_stride + j] - u; const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS); const int32_t e = ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[i * src_stride + j]; err += e * e; } } } else { const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); const int32_t f1 = (int32_t)flt1[i * flt1_stride + j] - u; const int32_t f2 = (int32_t)flt2[i * flt2_stride + j] - u; const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS); const int32_t e = ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[i * src_stride + j]; err += e * e; } } } return err; } #define USE_SGRPROJ_REFINEMENT_SEARCH 1 static int64_t finer_search_pixel_proj_error( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt1, int flt1_stride, int32_t *flt2, int flt2_stride, int start_step, int *xqd) { int64_t err = get_pixel_proj_error(src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt1, flt1_stride, flt2, flt2_stride, xqd); (void)start_step; #if USE_SGRPROJ_REFINEMENT_SEARCH int64_t err2; int tap_min[] = { SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MIN1 }; int tap_max[] = { SGRPROJ_PRJ_MAX0, SGRPROJ_PRJ_MAX1 }; for (int s = start_step; s >= 1; s >>= 1) { for (int p = 0; p < 2; ++p) { int skip = 0; do { if (xqd[p] - s >= tap_min[p]) { xqd[p] -= s; err2 = get_pixel_proj_error(src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt1, flt1_stride, flt2, flt2_stride, xqd); if (err2 > err) { xqd[p] += s; } else { err = err2; skip = 1; // At the highest step size continue moving in the same direction if (s == start_step) continue; } } break; } while (1); if (skip) break; do { if (xqd[p] + s <= tap_max[p]) { xqd[p] += s; err2 = get_pixel_proj_error(src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt1, flt1_stride, flt2, flt2_stride, xqd); if (err2 > err) { xqd[p] -= s; } else { err = err2; // At the highest step size continue moving in the same direction if (s == start_step) continue; } } break; } while (1); } } #endif // USE_SGRPROJ_REFINEMENT_SEARCH return err; } static void get_proj_subspace(const uint8_t *src8, int width, int height, int src_stride, uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt1, int flt1_stride, int32_t *flt2, int flt2_stride, int *xq) { int i, j; double H[2][2] = { { 0, 0 }, { 0, 0 } }; double C[2] = { 0, 0 }; double Det; double x[2]; const int size = width * height; aom_clear_system_state(); // Default xq[0] = 0; xq[1] = 0; if (!use_highbitdepth) { const uint8_t *src = src8; const uint8_t *dat = dat8; for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const double u = (double)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); const double s = (double)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; const double f1 = (double)flt1[i * flt1_stride + j] - u; const double f2 = (double)flt2[i * flt2_stride + j] - u; H[0][0] += f1 * f1; H[1][1] += f2 * f2; H[0][1] += f1 * f2; C[0] += f1 * s; C[1] += f2 * s; } } } else { const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const double u = (double)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); const double s = (double)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; const double f1 = (double)flt1[i * flt1_stride + j] - u; const double f2 = (double)flt2[i * flt2_stride + j] - u; H[0][0] += f1 * f1; H[1][1] += f2 * f2; H[0][1] += f1 * f2; C[0] += f1 * s; C[1] += f2 * s; } } } H[0][0] /= size; H[0][1] /= size; H[1][1] /= size; H[1][0] = H[0][1]; C[0] /= size; C[1] /= size; Det = (H[0][0] * H[1][1] - H[0][1] * H[1][0]); if (Det < 1e-8) return; // ill-posed, return default values x[0] = (H[1][1] * C[0] - H[0][1] * C[1]) / Det; x[1] = (H[0][0] * C[1] - H[1][0] * C[0]) / Det; xq[0] = (int)rint(x[0] * (1 << SGRPROJ_PRJ_BITS)); xq[1] = (int)rint(x[1] * (1 << SGRPROJ_PRJ_BITS)); } void encode_xq(int *xq, int *xqd) { xqd[0] = xq[0]; xqd[0] = clamp(xqd[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0); xqd[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1]; xqd[1] = clamp(xqd[1], SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1); } static void search_selfguided_restoration(uint8_t *dat8, int width, int height, int dat_stride, const uint8_t *src8, int src_stride, int use_highbitdepth, int bit_depth, int pu_width, int pu_height, int *eps, int *xqd, int32_t *rstbuf) { int32_t *flt1 = rstbuf; int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX; int ep, bestep = 0; int64_t err, besterr = -1; int exqd[2], bestxqd[2] = { 0, 0 }; int flt1_stride = ((width + 7) & ~7) + 8; int flt2_stride = ((width + 7) & ~7) + 8; assert(pu_width == (RESTORATION_PROC_UNIT_SIZE >> 1) || pu_width == RESTORATION_PROC_UNIT_SIZE); assert(pu_height == (RESTORATION_PROC_UNIT_SIZE >> 1) || pu_height == RESTORATION_PROC_UNIT_SIZE); #if !CONFIG_HIGHBITDEPTH (void)bit_depth; #endif for (ep = 0; ep < SGRPROJ_PARAMS; ep++) { int exq[2]; #if CONFIG_HIGHBITDEPTH if (use_highbitdepth) { uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); for (int i = 0; i < height; i += pu_height) for (int j = 0; j < width; j += pu_width) { const int w = AOMMIN(pu_width, width - j); const int h = AOMMIN(pu_height, height - i); uint16_t *dat_p = dat + i * dat_stride + j; int32_t *flt1_p = flt1 + i * flt1_stride + j; int32_t *flt2_p = flt2 + i * flt2_stride + j; #if USE_HIGHPASS_IN_SGRPROJ av1_highpass_filter_highbd(dat_p, w, h, dat_stride, flt1_p, flt1_stride, sgr_params[ep].corner, sgr_params[ep].edge); #else av1_selfguided_restoration_highbd( dat_p, w, h, dat_stride, flt1_p, flt1_stride, bit_depth, sgr_params[ep].r1, sgr_params[ep].e1); #endif // USE_HIGHPASS_IN_SGRPROJ av1_selfguided_restoration_highbd( dat_p, w, h, dat_stride, flt2_p, flt2_stride, bit_depth, sgr_params[ep].r2, sgr_params[ep].e2); } } else { #endif for (int i = 0; i < height; i += pu_height) for (int j = 0; j < width; j += pu_width) { const int w = AOMMIN(pu_width, width - j); const int h = AOMMIN(pu_height, height - i); uint8_t *dat_p = dat8 + i * dat_stride + j; int32_t *flt1_p = flt1 + i * flt1_stride + j; int32_t *flt2_p = flt2 + i * flt2_stride + j; #if USE_HIGHPASS_IN_SGRPROJ av1_highpass_filter(dat_p, w, h, dat_stride, flt1_p, flt1_stride, sgr_params[ep].corner, sgr_params[ep].edge); #else av1_selfguided_restoration(dat_p, w, h, dat_stride, flt1_p, flt1_stride, sgr_params[ep].r1, sgr_params[ep].e1); #endif // USE_HIGHPASS_IN_SGRPROJ av1_selfguided_restoration(dat_p, w, h, dat_stride, flt2_p, flt2_stride, sgr_params[ep].r2, sgr_params[ep].e2); } #if CONFIG_HIGHBITDEPTH } #endif aom_clear_system_state(); get_proj_subspace(src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt1, flt1_stride, flt2, flt2_stride, exq); aom_clear_system_state(); encode_xq(exq, exqd); err = finer_search_pixel_proj_error( src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt1, flt1_stride, flt2, flt2_stride, 2, exqd); if (besterr == -1 || err < besterr) { bestep = ep; besterr = err; bestxqd[0] = exqd[0]; bestxqd[1] = exqd[1]; } } *eps = bestep; xqd[0] = bestxqd[0]; xqd[1] = bestxqd[1]; } static int count_sgrproj_bits(SgrprojInfo *sgrproj_info, SgrprojInfo *ref_sgrproj_info) { int bits = SGRPROJ_PARAMS_BITS; bits += aom_count_primitive_refsubexpfin( SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); bits += aom_count_primitive_refsubexpfin( SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); return bits; } struct rest_search_ctxt { const YV12_BUFFER_CONFIG *src; AV1_COMP *cpi; uint8_t *dgd_buffer; const uint8_t *src_buffer; int dgd_stride; int src_stride; int partial_frame; RestorationInfo *info; RestorationType *type; int64_t *best_tile_cost; int plane; int plane_width; int plane_height; int nrtiles_x; int nrtiles_y; YV12_BUFFER_CONFIG *dst_frame; }; // Fill in ctxt. Returns the number of restoration tiles for this plane static INLINE int init_rest_search_ctxt( const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int partial_frame, int plane, RestorationInfo *info, RestorationType *type, int64_t *best_tile_cost, YV12_BUFFER_CONFIG *dst_frame, struct rest_search_ctxt *ctxt) { AV1_COMMON *const cm = &cpi->common; ctxt->src = src; ctxt->cpi = cpi; ctxt->partial_frame = partial_frame; ctxt->info = info; ctxt->type = type; ctxt->best_tile_cost = best_tile_cost; ctxt->plane = plane; ctxt->dst_frame = dst_frame; const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show; if (plane == AOM_PLANE_Y) { ctxt->plane_width = src->y_crop_width; ctxt->plane_height = src->y_crop_height; ctxt->src_buffer = src->y_buffer; ctxt->src_stride = src->y_stride; ctxt->dgd_buffer = dgd->y_buffer; ctxt->dgd_stride = dgd->y_stride; assert(ctxt->plane_width == dgd->y_crop_width); assert(ctxt->plane_height == dgd->y_crop_height); assert(ctxt->plane_width == src->y_crop_width); assert(ctxt->plane_height == src->y_crop_height); } else { ctxt->plane_width = src->uv_crop_width; ctxt->plane_height = src->uv_crop_height; ctxt->src_stride = src->uv_stride; ctxt->dgd_stride = dgd->uv_stride; ctxt->src_buffer = plane == AOM_PLANE_U ? src->u_buffer : src->v_buffer; ctxt->dgd_buffer = plane == AOM_PLANE_U ? dgd->u_buffer : dgd->v_buffer; assert(ctxt->plane_width == dgd->uv_crop_width); assert(ctxt->plane_height == dgd->uv_crop_height); } return av1_get_rest_ntiles(ctxt->plane_width, ctxt->plane_height, cm->rst_info[plane].restoration_tilesize, NULL, NULL, &ctxt->nrtiles_x, &ctxt->nrtiles_y); } typedef void (*rtile_visitor_t)(const struct rest_search_ctxt *search_ctxt, int rtile_idx, const RestorationTileLimits *limits, void *arg); static void foreach_rtile_in_tile(const struct rest_search_ctxt *ctxt, int tile_row, int tile_col, rtile_visitor_t fun, void *arg) { const AV1_COMMON *const cm = &ctxt->cpi->common; const RestorationInfo *rsi = ctxt->cpi->rst_search; TileInfo tile_info; av1_tile_set_row(&tile_info, cm, tile_row); av1_tile_set_col(&tile_info, cm, tile_col); int tile_col_start = tile_info.mi_col_start * MI_SIZE; int tile_col_end = tile_info.mi_col_end * MI_SIZE; int tile_row_start = tile_info.mi_row_start * MI_SIZE; int tile_row_end = tile_info.mi_row_end * MI_SIZE; if (ctxt->plane > 0) { tile_col_start = ROUND_POWER_OF_TWO(tile_col_start, cm->subsampling_x); tile_col_end = ROUND_POWER_OF_TWO(tile_col_end, cm->subsampling_x); tile_row_start = ROUND_POWER_OF_TWO(tile_row_start, cm->subsampling_y); tile_row_end = ROUND_POWER_OF_TWO(tile_row_end, cm->subsampling_y); } #if CONFIG_FRAME_SUPERRES // If upscaling is enabled, the tile limits need scaling to match the // upscaled frame where the restoration tiles live. To do this, scale up the // top-left and bottom-right of the tile. if (!av1_superres_unscaled(cm)) { av1_calculate_unscaled_superres_size(&tile_col_start, &tile_row_start, cm->superres_scale_denominator); av1_calculate_unscaled_superres_size(&tile_col_end, &tile_row_end, cm->superres_scale_denominator); // Make sure we don't fall off the bottom-right of the frame. tile_col_end = AOMMIN(tile_col_end, ctxt->plane_width); tile_row_end = AOMMIN(tile_row_end, ctxt->plane_height); } #endif // CONFIG_FRAME_SUPERRES const int rtile_size = rsi->restoration_tilesize; const int rtile_col0 = (tile_col_start + rtile_size - 1) / rtile_size; const int rtile_col1 = AOMMIN((tile_col_end + rtile_size - 1) / rtile_size, ctxt->nrtiles_x); const int rtile_row0 = (tile_row_start + rtile_size - 1) / rtile_size; const int rtile_row1 = AOMMIN((tile_row_end + rtile_size - 1) / rtile_size, ctxt->nrtiles_y); const int rtile_width = AOMMIN(tile_col_end - tile_col_start, rtile_size); const int rtile_height = AOMMIN(tile_row_end - tile_row_start, rtile_size); for (int rtile_row = rtile_row0; rtile_row < rtile_row1; ++rtile_row) { for (int rtile_col = rtile_col0; rtile_col < rtile_col1; ++rtile_col) { const int rtile_idx = rtile_row * ctxt->nrtiles_x + rtile_col; RestorationTileLimits limits = av1_get_rest_tile_limits( rtile_idx, ctxt->nrtiles_x, ctxt->nrtiles_y, rtile_width, rtile_height, ctxt->plane_width, #if CONFIG_STRIPED_LOOP_RESTORATION ctxt->plane_height, ctxt->plane > 0 ? cm->subsampling_y : 0); #else ctxt->plane_height); #endif fun(ctxt, rtile_idx, &limits, arg); } } } static void search_sgrproj_for_rtile(const struct rest_search_ctxt *ctxt, int rtile_idx, const RestorationTileLimits *limits, void *arg) { const MACROBLOCK *const x = &ctxt->cpi->td.mb; const AV1_COMMON *const cm = &ctxt->cpi->common; RestorationInfo *rsi = ctxt->cpi->rst_search; SgrprojInfo *sgrproj_info = ctxt->info->sgrproj_info; SgrprojInfo *ref_sgrproj_info = (SgrprojInfo *)arg; int64_t err = sse_restoration_tile(ctxt->src, cm->frame_to_show, cm, limits->h_start, limits->h_end - limits->h_start, limits->v_start, limits->v_end - limits->v_start, (1 << ctxt->plane)); // #bits when a tile is not restored int bits = av1_cost_bit(RESTORE_NONE_SGRPROJ_PROB, 0); double cost_norestore = RDCOST_DBL(x->rdmult, (bits >> 4), err); ctxt->best_tile_cost[rtile_idx] = INT64_MAX; RestorationInfo *plane_rsi = &rsi[ctxt->plane]; SgrprojInfo *rtile_sgrproj_info = &plane_rsi->sgrproj_info[rtile_idx]; uint8_t *dgd_start = ctxt->dgd_buffer + limits->v_start * ctxt->dgd_stride + limits->h_start; const uint8_t *src_start = ctxt->src_buffer + limits->v_start * ctxt->src_stride + limits->h_start; search_selfguided_restoration( dgd_start, limits->h_end - limits->h_start, limits->v_end - limits->v_start, ctxt->dgd_stride, src_start, ctxt->src_stride, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, cm->bit_depth, #else 0, 8, #endif // CONFIG_HIGHBITDEPTH rsi[ctxt->plane].procunit_width, rsi[ctxt->plane].procunit_height, &rtile_sgrproj_info->ep, rtile_sgrproj_info->xqd, cm->rst_internal.tmpbuf); plane_rsi->restoration_type[rtile_idx] = RESTORE_SGRPROJ; err = try_restoration_tile(ctxt->src, ctxt->cpi, rsi, (1 << ctxt->plane), ctxt->partial_frame, rtile_idx, ctxt->dst_frame); bits = count_sgrproj_bits(&plane_rsi->sgrproj_info[rtile_idx], ref_sgrproj_info) << AV1_PROB_COST_SHIFT; bits += av1_cost_bit(RESTORE_NONE_SGRPROJ_PROB, 1); double cost_sgrproj = RDCOST_DBL(x->rdmult, (bits >> 4), err); if (cost_sgrproj >= cost_norestore) { ctxt->type[rtile_idx] = RESTORE_NONE; } else { ctxt->type[rtile_idx] = RESTORE_SGRPROJ; *ref_sgrproj_info = sgrproj_info[rtile_idx] = plane_rsi->sgrproj_info[rtile_idx]; ctxt->best_tile_cost[rtile_idx] = err; } plane_rsi->restoration_type[rtile_idx] = RESTORE_NONE; } static double search_sgrproj(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int partial_frame, int plane, RestorationInfo *info, RestorationType *type, int64_t *best_tile_cost, YV12_BUFFER_CONFIG *dst_frame) { struct rest_search_ctxt ctxt; const int nrtiles = init_rest_search_ctxt(src, cpi, partial_frame, plane, info, type, best_tile_cost, dst_frame, &ctxt); RestorationInfo *plane_rsi = &cpi->rst_search[plane]; plane_rsi->frame_restoration_type = RESTORE_SGRPROJ; for (int rtile_idx = 0; rtile_idx < nrtiles; ++rtile_idx) { plane_rsi->restoration_type[rtile_idx] = RESTORE_NONE; } // Compute best Sgrproj filters for each rtile, one (encoder/decoder) // tile at a time. const AV1_COMMON *const cm = &cpi->common; #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) extend_frame_highbd(CONVERT_TO_SHORTPTR(ctxt.dgd_buffer), ctxt.plane_width, ctxt.plane_height, ctxt.dgd_stride, SGRPROJ_BORDER_HORZ, SGRPROJ_BORDER_VERT); else #endif extend_frame(ctxt.dgd_buffer, ctxt.plane_width, ctxt.plane_height, ctxt.dgd_stride, SGRPROJ_BORDER_HORZ, SGRPROJ_BORDER_VERT); for (int tile_row = 0; tile_row < cm->tile_rows; ++tile_row) { for (int tile_col = 0; tile_col < cm->tile_cols; ++tile_col) { SgrprojInfo ref_sgrproj_info; set_default_sgrproj(&ref_sgrproj_info); foreach_rtile_in_tile(&ctxt, tile_row, tile_col, search_sgrproj_for_rtile, &ref_sgrproj_info); } } // Cost for Sgrproj filtering SgrprojInfo ref_sgrproj_info; set_default_sgrproj(&ref_sgrproj_info); SgrprojInfo *sgrproj_info = info->sgrproj_info; int bits = frame_level_restore_bits[plane_rsi->frame_restoration_type] << AV1_PROB_COST_SHIFT; for (int rtile_idx = 0; rtile_idx < nrtiles; ++rtile_idx) { bits += av1_cost_bit(RESTORE_NONE_SGRPROJ_PROB, type[rtile_idx] != RESTORE_NONE); plane_rsi->sgrproj_info[rtile_idx] = sgrproj_info[rtile_idx]; if (type[rtile_idx] == RESTORE_SGRPROJ) { bits += count_sgrproj_bits(&plane_rsi->sgrproj_info[rtile_idx], &ref_sgrproj_info) << AV1_PROB_COST_SHIFT; ref_sgrproj_info = plane_rsi->sgrproj_info[rtile_idx]; } plane_rsi->restoration_type[rtile_idx] = type[rtile_idx]; } int64_t err = try_restoration_frame(src, cpi, cpi->rst_search, (1 << plane), partial_frame, dst_frame); double cost_sgrproj = RDCOST_DBL(cpi->td.mb.rdmult, (bits >> 4), err); return cost_sgrproj; } static double find_average(const uint8_t *src, int h_start, int h_end, int v_start, int v_end, int stride) { uint64_t sum = 0; double avg = 0; int i, j; aom_clear_system_state(); for (i = v_start; i < v_end; i++) for (j = h_start; j < h_end; j++) sum += src[i * stride + j]; avg = (double)sum / ((v_end - v_start) * (h_end - h_start)); return avg; } static void compute_stats(int wiener_win, const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, double *M, double *H) { int i, j, k, l; double Y[WIENER_WIN2]; const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin = (wiener_win >> 1); const double avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); memset(M, 0, sizeof(*M) * wiener_win2); memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); for (i = v_start; i < v_end; i++) { for (j = h_start; j < h_end; j++) { const double X = (double)src[i * src_stride + j] - avg; int idx = 0; for (k = -wiener_halfwin; k <= wiener_halfwin; k++) { for (l = -wiener_halfwin; l <= wiener_halfwin; l++) { Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg; idx++; } } assert(idx == wiener_win2); for (k = 0; k < wiener_win2; ++k) { M[k] += Y[k] * X; H[k * wiener_win2 + k] += Y[k] * Y[k]; for (l = k + 1; l < wiener_win2; ++l) { // H is a symmetric matrix, so we only need to fill out the upper // triangle here. We can copy it down to the lower triangle outside // the (i, j) loops. H[k * wiener_win2 + l] += Y[k] * Y[l]; } } } } for (k = 0; k < wiener_win2; ++k) { for (l = k + 1; l < wiener_win2; ++l) { H[l * wiener_win2 + k] = H[k * wiener_win2 + l]; } } } #if CONFIG_HIGHBITDEPTH static double find_average_highbd(const uint16_t *src, int h_start, int h_end, int v_start, int v_end, int stride) { uint64_t sum = 0; double avg = 0; int i, j; aom_clear_system_state(); for (i = v_start; i < v_end; i++) for (j = h_start; j < h_end; j++) sum += src[i * stride + j]; avg = (double)sum / ((v_end - v_start) * (h_end - h_start)); return avg; } static void compute_stats_highbd(int wiener_win, const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, double *M, double *H) { int i, j, k, l; double Y[WIENER_WIN2]; const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin = (wiener_win >> 1); const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); const double avg = find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); memset(M, 0, sizeof(*M) * wiener_win2); memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); for (i = v_start; i < v_end; i++) { for (j = h_start; j < h_end; j++) { const double X = (double)src[i * src_stride + j] - avg; int idx = 0; for (k = -wiener_halfwin; k <= wiener_halfwin; k++) { for (l = -wiener_halfwin; l <= wiener_halfwin; l++) { Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg; idx++; } } assert(idx == wiener_win2); for (k = 0; k < wiener_win2; ++k) { M[k] += Y[k] * X; H[k * wiener_win2 + k] += Y[k] * Y[k]; for (l = k + 1; l < wiener_win2; ++l) { // H is a symmetric matrix, so we only need to fill out the upper // triangle here. We can copy it down to the lower triangle outside // the (i, j) loops. H[k * wiener_win2 + l] += Y[k] * Y[l]; } } } } for (k = 0; k < wiener_win2; ++k) { for (l = k + 1; l < wiener_win2; ++l) { H[l * wiener_win2 + k] = H[k * wiener_win2 + l]; } } } #endif // CONFIG_HIGHBITDEPTH static INLINE int wrap_index(int i, int wiener_win) { const int wiener_halfwin1 = (wiener_win >> 1) + 1; return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i); } // Fix vector b, update vector a static void update_a_sep_sym(int wiener_win, double **Mc, double **Hc, double *a, double *b) { int i, j; double S[WIENER_WIN]; double A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin1 = (wiener_win >> 1) + 1; memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B)); for (i = 0; i < wiener_win; i++) { for (j = 0; j < wiener_win; ++j) { const int jj = wrap_index(j, wiener_win); A[jj] += Mc[i][j] * b[i]; } } for (i = 0; i < wiener_win; i++) { for (j = 0; j < wiener_win; j++) { int k, l; for (k = 0; k < wiener_win; ++k) for (l = 0; l < wiener_win; ++l) { const int kk = wrap_index(k, wiener_win); const int ll = wrap_index(l, wiener_win); B[ll * wiener_halfwin1 + kk] += Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] * b[j]; } } } // Normalization enforcement in the system of equations itself for (i = 0; i < wiener_halfwin1 - 1; ++i) A[i] -= A[wiener_halfwin1 - 1] * 2 + B[i * wiener_halfwin1 + wiener_halfwin1 - 1] - 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]; for (i = 0; i < wiener_halfwin1 - 1; ++i) for (j = 0; j < wiener_halfwin1 - 1; ++j) B[i * wiener_halfwin1 + j] -= 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] + B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] - 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]); if (linsolve(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) { S[wiener_halfwin1 - 1] = 1.0; for (i = wiener_halfwin1; i < wiener_win; ++i) { S[i] = S[wiener_win - 1 - i]; S[wiener_halfwin1 - 1] -= 2 * S[i]; } memcpy(a, S, wiener_win * sizeof(*a)); } } // Fix vector a, update vector b static void update_b_sep_sym(int wiener_win, double **Mc, double **Hc, double *a, double *b) { int i, j; double S[WIENER_WIN]; double A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin1 = (wiener_win >> 1) + 1; memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B)); for (i = 0; i < wiener_win; i++) { const int ii = wrap_index(i, wiener_win); for (j = 0; j < wiener_win; j++) A[ii] += Mc[i][j] * a[j]; } for (i = 0; i < wiener_win; i++) { for (j = 0; j < wiener_win; j++) { const int ii = wrap_index(i, wiener_win); const int jj = wrap_index(j, wiener_win); int k, l; for (k = 0; k < wiener_win; ++k) for (l = 0; l < wiener_win; ++l) B[jj * wiener_halfwin1 + ii] += Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] * a[l]; } } // Normalization enforcement in the system of equations itself for (i = 0; i < wiener_halfwin1 - 1; ++i) A[i] -= A[wiener_halfwin1 - 1] * 2 + B[i * wiener_halfwin1 + wiener_halfwin1 - 1] - 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]; for (i = 0; i < wiener_halfwin1 - 1; ++i) for (j = 0; j < wiener_halfwin1 - 1; ++j) B[i * wiener_halfwin1 + j] -= 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] + B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] - 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]); if (linsolve(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) { S[wiener_halfwin1 - 1] = 1.0; for (i = wiener_halfwin1; i < wiener_win; ++i) { S[i] = S[wiener_win - 1 - i]; S[wiener_halfwin1 - 1] -= 2 * S[i]; } memcpy(b, S, wiener_win * sizeof(*b)); } } static int wiener_decompose_sep_sym(int wiener_win, double *M, double *H, double *a, double *b) { static const int init_filt[WIENER_WIN] = { WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP0_MIDV, }; double *Hc[WIENER_WIN2]; double *Mc[WIENER_WIN]; int i, j, iter; const int plane_off = (WIENER_WIN - wiener_win) >> 1; const int wiener_win2 = wiener_win * wiener_win; for (i = 0; i < wiener_win; i++) { a[i] = b[i] = (double)init_filt[i + plane_off] / WIENER_FILT_STEP; } for (i = 0; i < wiener_win; i++) { Mc[i] = M + i * wiener_win; for (j = 0; j < wiener_win; j++) { Hc[i * wiener_win + j] = H + i * wiener_win * wiener_win2 + j * wiener_win; } } iter = 1; while (iter < NUM_WIENER_ITERS) { update_a_sep_sym(wiener_win, Mc, Hc, a, b); update_b_sep_sym(wiener_win, Mc, Hc, a, b); iter++; } return 1; } // Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares // against identity filters; Final score is defined as the difference between // the function values static double compute_score(int wiener_win, double *M, double *H, InterpKernel vfilt, InterpKernel hfilt) { double ab[WIENER_WIN * WIENER_WIN]; int i, k, l; double P = 0, Q = 0; double iP = 0, iQ = 0; double Score, iScore; double a[WIENER_WIN], b[WIENER_WIN]; const int plane_off = (WIENER_WIN - wiener_win) >> 1; const int wiener_win2 = wiener_win * wiener_win; aom_clear_system_state(); a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = 1.0; for (i = 0; i < WIENER_HALFWIN; ++i) { a[i] = a[WIENER_WIN - i - 1] = (double)vfilt[i] / WIENER_FILT_STEP; b[i] = b[WIENER_WIN - i - 1] = (double)hfilt[i] / WIENER_FILT_STEP; a[WIENER_HALFWIN] -= 2 * a[i]; b[WIENER_HALFWIN] -= 2 * b[i]; } memset(ab, 0, sizeof(ab)); for (k = 0; k < wiener_win; ++k) { for (l = 0; l < wiener_win; ++l) ab[k * wiener_win + l] = a[l + plane_off] * b[k + plane_off]; } for (k = 0; k < wiener_win2; ++k) { P += ab[k] * M[k]; for (l = 0; l < wiener_win2; ++l) Q += ab[k] * H[k * wiener_win2 + l] * ab[l]; } Score = Q - 2 * P; iP = M[wiener_win2 >> 1]; iQ = H[(wiener_win2 >> 1) * wiener_win2 + (wiener_win2 >> 1)]; iScore = iQ - 2 * iP; return Score - iScore; } static void quantize_sym_filter(int wiener_win, double *f, InterpKernel fi) { int i; const int wiener_halfwin = (wiener_win >> 1); for (i = 0; i < wiener_halfwin; ++i) { fi[i] = RINT(f[i] * WIENER_FILT_STEP); } // Specialize for 7-tap filter if (wiener_win == WIENER_WIN) { fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV); fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); } else { fi[2] = CLIP(fi[1], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); fi[1] = CLIP(fi[0], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); fi[0] = 0; } // Satisfy filter constraints fi[WIENER_WIN - 1] = fi[0]; fi[WIENER_WIN - 2] = fi[1]; fi[WIENER_WIN - 3] = fi[2]; // The central element has an implicit +WIENER_FILT_STEP fi[3] = -2 * (fi[0] + fi[1] + fi[2]); } static int count_wiener_bits(int wiener_win, WienerInfo *wiener_info, WienerInfo *ref_wiener_info) { int bits = 0; if (wiener_win == WIENER_WIN) bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, WIENER_FILT_TAP0_SUBEXP_K, ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, WIENER_FILT_TAP1_SUBEXP_K, ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, WIENER_FILT_TAP2_SUBEXP_K, ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); if (wiener_win == WIENER_WIN) bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, WIENER_FILT_TAP0_SUBEXP_K, ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, WIENER_FILT_TAP1_SUBEXP_K, ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, WIENER_FILT_TAP2_SUBEXP_K, ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); return bits; } #define USE_WIENER_REFINEMENT_SEARCH 1 static int64_t finer_tile_search_wiener(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, RestorationInfo *rsi, int start_step, int plane, int wiener_win, int tile_idx, int partial_frame, YV12_BUFFER_CONFIG *dst_frame) { const int plane_off = (WIENER_WIN - wiener_win) >> 1; int64_t err = try_restoration_tile(src, cpi, rsi, 1 << plane, partial_frame, tile_idx, dst_frame); (void)start_step; #if USE_WIENER_REFINEMENT_SEARCH int64_t err2; int tap_min[] = { WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP2_MINV }; int tap_max[] = { WIENER_FILT_TAP0_MAXV, WIENER_FILT_TAP1_MAXV, WIENER_FILT_TAP2_MAXV }; // printf("err pre = %"PRId64"\n", err); for (int s = start_step; s >= 1; s >>= 1) { for (int p = plane_off; p < WIENER_HALFWIN; ++p) { int skip = 0; do { if (rsi[plane].wiener_info[tile_idx].hfilter[p] - s >= tap_min[p]) { rsi[plane].wiener_info[tile_idx].hfilter[p] -= s; rsi[plane].wiener_info[tile_idx].hfilter[WIENER_WIN - p - 1] -= s; rsi[plane].wiener_info[tile_idx].hfilter[WIENER_HALFWIN] += 2 * s; err2 = try_restoration_tile(src, cpi, rsi, 1 << plane, partial_frame, tile_idx, dst_frame); if (err2 > err) { rsi[plane].wiener_info[tile_idx].hfilter[p] += s; rsi[plane].wiener_info[tile_idx].hfilter[WIENER_WIN - p - 1] += s; rsi[plane].wiener_info[tile_idx].hfilter[WIENER_HALFWIN] -= 2 * s; } else { err = err2; skip = 1; // At the highest step size continue moving in the same direction if (s == start_step) continue; } } break; } while (1); if (skip) break; do { if (rsi[plane].wiener_info[tile_idx].hfilter[p] + s <= tap_max[p]) { rsi[plane].wiener_info[tile_idx].hfilter[p] += s; rsi[plane].wiener_info[tile_idx].hfilter[WIENER_WIN - p - 1] += s; rsi[plane].wiener_info[tile_idx].hfilter[WIENER_HALFWIN] -= 2 * s; err2 = try_restoration_tile(src, cpi, rsi, 1 << plane, partial_frame, tile_idx, dst_frame); if (err2 > err) { rsi[plane].wiener_info[tile_idx].hfilter[p] -= s; rsi[plane].wiener_info[tile_idx].hfilter[WIENER_WIN - p - 1] -= s; rsi[plane].wiener_info[tile_idx].hfilter[WIENER_HALFWIN] += 2 * s; } else { err = err2; // At the highest step size continue moving in the same direction if (s == start_step) continue; } } break; } while (1); } for (int p = plane_off; p < WIENER_HALFWIN; ++p) { int skip = 0; do { if (rsi[plane].wiener_info[tile_idx].vfilter[p] - s >= tap_min[p]) { rsi[plane].wiener_info[tile_idx].vfilter[p] -= s; rsi[plane].wiener_info[tile_idx].vfilter[WIENER_WIN - p - 1] -= s; rsi[plane].wiener_info[tile_idx].vfilter[WIENER_HALFWIN] += 2 * s; err2 = try_restoration_tile(src, cpi, rsi, 1 << plane, partial_frame, tile_idx, dst_frame); if (err2 > err) { rsi[plane].wiener_info[tile_idx].vfilter[p] += s; rsi[plane].wiener_info[tile_idx].vfilter[WIENER_WIN - p - 1] += s; rsi[plane].wiener_info[tile_idx].vfilter[WIENER_HALFWIN] -= 2 * s; } else { err = err2; skip = 1; // At the highest step size continue moving in the same direction if (s == start_step) continue; } } break; } while (1); if (skip) break; do { if (rsi[plane].wiener_info[tile_idx].vfilter[p] + s <= tap_max[p]) { rsi[plane].wiener_info[tile_idx].vfilter[p] += s; rsi[plane].wiener_info[tile_idx].vfilter[WIENER_WIN - p - 1] += s; rsi[plane].wiener_info[tile_idx].vfilter[WIENER_HALFWIN] -= 2 * s; err2 = try_restoration_tile(src, cpi, rsi, 1 << plane, partial_frame, tile_idx, dst_frame); if (err2 > err) { rsi[plane].wiener_info[tile_idx].vfilter[p] -= s; rsi[plane].wiener_info[tile_idx].vfilter[WIENER_WIN - p - 1] -= s; rsi[plane].wiener_info[tile_idx].vfilter[WIENER_HALFWIN] += 2 * s; } else { err = err2; // At the highest step size continue moving in the same direction if (s == start_step) continue; } } break; } while (1); } } // printf("err post = %"PRId64"\n", err); #endif // USE_WIENER_REFINEMENT_SEARCH return err; } static void search_wiener_for_rtile(const struct rest_search_ctxt *ctxt, int rtile_idx, const RestorationTileLimits *limits, void *arg) { const MACROBLOCK *const x = &ctxt->cpi->td.mb; const AV1_COMMON *const cm = &ctxt->cpi->common; RestorationInfo *rsi = ctxt->cpi->rst_search; const int wiener_win = (ctxt->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA; double M[WIENER_WIN2]; double H[WIENER_WIN2 * WIENER_WIN2]; double vfilterd[WIENER_WIN], hfilterd[WIENER_WIN]; WienerInfo *ref_wiener_info = (WienerInfo *)arg; int64_t err = sse_restoration_tile(ctxt->src, cm->frame_to_show, cm, limits->h_start, limits->h_end - limits->h_start, limits->v_start, limits->v_end - limits->v_start, (1 << ctxt->plane)); // #bits when a tile is not restored int bits = av1_cost_bit(RESTORE_NONE_WIENER_PROB, 0); double cost_norestore = RDCOST_DBL(x->rdmult, (bits >> 4), err); ctxt->best_tile_cost[rtile_idx] = INT64_MAX; #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) compute_stats_highbd(wiener_win, ctxt->dgd_buffer, ctxt->src_buffer, limits->h_start, limits->h_end, limits->v_start, limits->v_end, ctxt->dgd_stride, ctxt->src_stride, M, H); else #endif // CONFIG_HIGHBITDEPTH compute_stats(wiener_win, ctxt->dgd_buffer, ctxt->src_buffer, limits->h_start, limits->h_end, limits->v_start, limits->v_end, ctxt->dgd_stride, ctxt->src_stride, M, H); ctxt->type[rtile_idx] = RESTORE_WIENER; if (!wiener_decompose_sep_sym(wiener_win, M, H, vfilterd, hfilterd)) { ctxt->type[rtile_idx] = RESTORE_NONE; return; } RestorationInfo *plane_rsi = &rsi[ctxt->plane]; WienerInfo *rtile_wiener_info = &plane_rsi->wiener_info[rtile_idx]; quantize_sym_filter(wiener_win, vfilterd, rtile_wiener_info->vfilter); quantize_sym_filter(wiener_win, hfilterd, rtile_wiener_info->hfilter); // Filter score computes the value of the function x'*A*x - x'*b for the // learned filter and compares it against identity filer. If there is no // reduction in the function, the filter is reverted back to identity double score = compute_score(wiener_win, M, H, rtile_wiener_info->vfilter, rtile_wiener_info->hfilter); if (score > 0.0) { ctxt->type[rtile_idx] = RESTORE_NONE; return; } aom_clear_system_state(); plane_rsi->restoration_type[rtile_idx] = RESTORE_WIENER; err = finer_tile_search_wiener(ctxt->src, ctxt->cpi, rsi, 4, ctxt->plane, wiener_win, rtile_idx, ctxt->partial_frame, ctxt->dst_frame); if (wiener_win != WIENER_WIN) { assert(rtile_wiener_info->vfilter[0] == 0 && rtile_wiener_info->vfilter[WIENER_WIN - 1] == 0); assert(rtile_wiener_info->hfilter[0] == 0 && rtile_wiener_info->hfilter[WIENER_WIN - 1] == 0); } bits = count_wiener_bits(wiener_win, rtile_wiener_info, ref_wiener_info) << AV1_PROB_COST_SHIFT; bits += av1_cost_bit(RESTORE_NONE_WIENER_PROB, 1); double cost_wiener = RDCOST_DBL(x->rdmult, (bits >> 4), err); if (cost_wiener >= cost_norestore) { ctxt->type[rtile_idx] = RESTORE_NONE; } else { ctxt->type[rtile_idx] = RESTORE_WIENER; *ref_wiener_info = ctxt->info->wiener_info[rtile_idx] = *rtile_wiener_info; ctxt->best_tile_cost[rtile_idx] = err; } plane_rsi->restoration_type[rtile_idx] = RESTORE_NONE; } static double search_wiener(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int partial_frame, int plane, RestorationInfo *info, RestorationType *type, int64_t *best_tile_cost, YV12_BUFFER_CONFIG *dst_frame) { struct rest_search_ctxt ctxt; const int nrtiles = init_rest_search_ctxt(src, cpi, partial_frame, plane, info, type, best_tile_cost, dst_frame, &ctxt); RestorationInfo *plane_rsi = &cpi->rst_search[plane]; plane_rsi->frame_restoration_type = RESTORE_WIENER; for (int tile_idx = 0; tile_idx < nrtiles; ++tile_idx) { plane_rsi->restoration_type[tile_idx] = RESTORE_NONE; } AV1_COMMON *const cm = &cpi->common; // Construct a (WIENER_HALFWIN)-pixel border around the frame // Note use this border to gather stats even though the actual filter // may use less border on the top/bottom of a processing unit. #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) extend_frame_highbd(CONVERT_TO_SHORTPTR(ctxt.dgd_buffer), ctxt.plane_width, ctxt.plane_height, ctxt.dgd_stride, WIENER_HALFWIN, WIENER_HALFWIN); else #endif extend_frame(ctxt.dgd_buffer, ctxt.plane_width, ctxt.plane_height, ctxt.dgd_stride, WIENER_HALFWIN, WIENER_HALFWIN); // Compute best Wiener filters for each rtile, one (encoder/decoder) // tile at a time. for (int tile_row = 0; tile_row < cm->tile_rows; ++tile_row) { for (int tile_col = 0; tile_col < cm->tile_cols; ++tile_col) { WienerInfo ref_wiener_info; set_default_wiener(&ref_wiener_info); foreach_rtile_in_tile(&ctxt, tile_row, tile_col, search_wiener_for_rtile, &ref_wiener_info); } } // cost for Wiener filtering WienerInfo ref_wiener_info; set_default_wiener(&ref_wiener_info); int bits = frame_level_restore_bits[plane_rsi->frame_restoration_type] << AV1_PROB_COST_SHIFT; WienerInfo *wiener_info = info->wiener_info; const int wiener_win = (plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA; for (int tile_idx = 0; tile_idx < nrtiles; ++tile_idx) { bits += av1_cost_bit(RESTORE_NONE_WIENER_PROB, type[tile_idx] != RESTORE_NONE); plane_rsi->wiener_info[tile_idx] = wiener_info[tile_idx]; if (type[tile_idx] == RESTORE_WIENER) { bits += count_wiener_bits(wiener_win, &plane_rsi->wiener_info[tile_idx], &ref_wiener_info) << AV1_PROB_COST_SHIFT; ref_wiener_info = plane_rsi->wiener_info[tile_idx]; } plane_rsi->restoration_type[tile_idx] = type[tile_idx]; } int64_t err = try_restoration_frame(src, cpi, cpi->rst_search, 1 << plane, partial_frame, dst_frame); double cost_wiener = RDCOST_DBL(cpi->td.mb.rdmult, (bits >> 4), err); return cost_wiener; } static double search_norestore(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int partial_frame, int plane, RestorationInfo *info, RestorationType *type, int64_t *best_tile_cost, YV12_BUFFER_CONFIG *dst_frame) { int64_t err; double cost_norestore; int bits; MACROBLOCK *x = &cpi->td.mb; AV1_COMMON *const cm = &cpi->common; int tile_idx, tile_width, tile_height, nhtiles, nvtiles; int width, height; if (plane == AOM_PLANE_Y) { width = src->y_crop_width; height = src->y_crop_height; } else { width = src->uv_crop_width; height = src->uv_crop_height; } const int ntiles = av1_get_rest_ntiles( width, height, cm->rst_info[plane].restoration_tilesize, &tile_width, &tile_height, &nhtiles, &nvtiles); (void)info; (void)dst_frame; (void)partial_frame; info->frame_restoration_type = RESTORE_NONE; for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { RestorationTileLimits limits = av1_get_rest_tile_limits( tile_idx, nhtiles, nvtiles, tile_width, tile_height, width, #if CONFIG_STRIPED_LOOP_RESTORATION height, plane != AOM_PLANE_Y ? cm->subsampling_y : 0); #else height); #endif err = sse_restoration_tile(src, cm->frame_to_show, cm, limits.h_start, limits.h_end - limits.h_start, limits.v_start, limits.v_end - limits.v_start, 1 << plane); type[tile_idx] = RESTORE_NONE; best_tile_cost[tile_idx] = err; } // RD cost associated with no restoration err = sse_restoration_frame(cm, src, cm->frame_to_show, (1 << plane)); bits = frame_level_restore_bits[RESTORE_NONE] << AV1_PROB_COST_SHIFT; cost_norestore = RDCOST_DBL(x->rdmult, (bits >> 4), err); return cost_norestore; } struct switchable_rest_search_ctxt { SgrprojInfo sgrproj_info; WienerInfo wiener_info; RestorationType *const *restore_types; int64_t *const *tile_cost; double cost_switchable; }; static void search_switchable_for_rtile(const struct rest_search_ctxt *ctxt, int rtile_idx, const RestorationTileLimits *limits, void *arg) { const MACROBLOCK *x = &ctxt->cpi->td.mb; RestorationInfo *rsi = &ctxt->cpi->common.rst_info[ctxt->plane]; struct switchable_rest_search_ctxt *swctxt = (struct switchable_rest_search_ctxt *)arg; (void)limits; double best_cost = RDCOST_DBL(x->rdmult, (x->switchable_restore_cost[RESTORE_NONE] >> 4), swctxt->tile_cost[RESTORE_NONE][rtile_idx]); rsi->restoration_type[rtile_idx] = RESTORE_NONE; for (RestorationType r = 1; r < RESTORE_SWITCHABLE_TYPES; r++) { if (force_restore_type != RESTORE_TYPES) if (r != force_restore_type) continue; int tilebits = 0; if (swctxt->restore_types[r][rtile_idx] != r) continue; if (r == RESTORE_WIENER) tilebits += count_wiener_bits( (ctxt->plane == AOM_PLANE_Y ? WIENER_WIN : WIENER_WIN - 2), &rsi->wiener_info[rtile_idx], &swctxt->wiener_info); else if (r == RESTORE_SGRPROJ) tilebits += count_sgrproj_bits(&rsi->sgrproj_info[rtile_idx], &swctxt->sgrproj_info); tilebits <<= AV1_PROB_COST_SHIFT; tilebits += x->switchable_restore_cost[r]; double cost = RDCOST_DBL(x->rdmult, tilebits >> 4, swctxt->tile_cost[r][rtile_idx]); if (cost < best_cost) { rsi->restoration_type[rtile_idx] = r; best_cost = cost; } } if (rsi->restoration_type[rtile_idx] == RESTORE_WIENER) swctxt->wiener_info = rsi->wiener_info[rtile_idx]; else if (rsi->restoration_type[rtile_idx] == RESTORE_SGRPROJ) swctxt->sgrproj_info = rsi->sgrproj_info[rtile_idx]; if (force_restore_type != RESTORE_TYPES) assert(rsi->restoration_type[rtile_idx] == force_restore_type || rsi->restoration_type[rtile_idx] == RESTORE_NONE); swctxt->cost_switchable += best_cost; } static double search_switchable_restoration( const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int partial_frame, int plane, RestorationType *const restore_types[RESTORE_SWITCHABLE_TYPES], int64_t *const tile_cost[RESTORE_SWITCHABLE_TYPES], RestorationInfo *rsi) { const AV1_COMMON *const cm = &cpi->common; struct rest_search_ctxt ctxt; init_rest_search_ctxt(src, cpi, partial_frame, plane, NULL, NULL, NULL, NULL, &ctxt); struct switchable_rest_search_ctxt swctxt; swctxt.restore_types = restore_types; swctxt.tile_cost = tile_cost; rsi->frame_restoration_type = RESTORE_SWITCHABLE; int bits = frame_level_restore_bits[rsi->frame_restoration_type] << AV1_PROB_COST_SHIFT; swctxt.cost_switchable = RDCOST_DBL(cpi->td.mb.rdmult, bits >> 4, 0); for (int tile_row = 0; tile_row < cm->tile_rows; ++tile_row) { for (int tile_col = 0; tile_col < cm->tile_cols; ++tile_col) { set_default_sgrproj(&swctxt.sgrproj_info); set_default_wiener(&swctxt.wiener_info); foreach_rtile_in_tile(&ctxt, tile_row, tile_col, search_switchable_for_rtile, &swctxt); } } return swctxt.cost_switchable; } void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, LPF_PICK_METHOD method) { static search_restore_type search_restore_fun[RESTORE_SWITCHABLE_TYPES] = { search_norestore, search_wiener, search_sgrproj, }; AV1_COMMON *const cm = &cpi->common; double cost_restore[RESTORE_TYPES]; int64_t *tile_cost[RESTORE_SWITCHABLE_TYPES]; RestorationType *restore_types[RESTORE_SWITCHABLE_TYPES]; double best_cost_restore; RestorationType r, best_restore; const int ywidth = src->y_crop_width; const int yheight = src->y_crop_height; const int uvwidth = src->uv_crop_width; const int uvheight = src->uv_crop_height; const int ntiles_y = av1_get_rest_ntiles(ywidth, yheight, cm->rst_info[0].restoration_tilesize, NULL, NULL, NULL, NULL); const int ntiles_uv = av1_get_rest_ntiles( uvwidth, uvheight, cm->rst_info[1].restoration_tilesize, NULL, NULL, NULL, NULL); // Assume ntiles_uv is never larger that ntiles_y and so the same arrays work. for (r = 0; r < RESTORE_SWITCHABLE_TYPES; r++) { tile_cost[r] = (int64_t *)aom_malloc(sizeof(*tile_cost[0]) * ntiles_y); restore_types[r] = (RestorationType *)aom_malloc(sizeof(*restore_types[0]) * ntiles_y); } for (int plane = AOM_PLANE_Y; plane <= AOM_PLANE_V; ++plane) { for (r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) { cost_restore[r] = DBL_MAX; if (force_restore_type != RESTORE_TYPES) if (r != RESTORE_NONE && r != force_restore_type) continue; cost_restore[r] = search_restore_fun[r](src, cpi, method == LPF_PICK_FROM_SUBIMAGE, plane, &cm->rst_info[plane], restore_types[r], tile_cost[r], &cpi->trial_frame_rst); } if (plane == AOM_PLANE_Y) cost_restore[RESTORE_SWITCHABLE] = search_switchable_restoration( src, cpi, method == LPF_PICK_FROM_SUBIMAGE, plane, restore_types, tile_cost, &cm->rst_info[plane]); else cost_restore[RESTORE_SWITCHABLE] = DBL_MAX; best_cost_restore = DBL_MAX; best_restore = 0; for (r = 0; r < RESTORE_TYPES; ++r) { if (force_restore_type != RESTORE_TYPES) if (r != RESTORE_NONE && r != force_restore_type) continue; if (cost_restore[r] < best_cost_restore) { best_restore = r; best_cost_restore = cost_restore[r]; } } cm->rst_info[plane].frame_restoration_type = best_restore; if (force_restore_type != RESTORE_TYPES) assert(best_restore == force_restore_type || best_restore == RESTORE_NONE); if (best_restore != RESTORE_SWITCHABLE) { const int nt = (plane == AOM_PLANE_Y ? ntiles_y : ntiles_uv); memcpy(cm->rst_info[plane].restoration_type, restore_types[best_restore], nt * sizeof(restore_types[best_restore][0])); } } /* printf("Frame %d/%d restore types: %d %d %d\n", cm->current_video_frame, cm->show_frame, cm->rst_info[0].frame_restoration_type, cm->rst_info[1].frame_restoration_type, cm->rst_info[2].frame_restoration_type); printf("Frame %d/%d frame_restore_type %d : %f %f %f %f\n", cm->current_video_frame, cm->show_frame, cm->rst_info[0].frame_restoration_type, cost_restore[0], cost_restore[1], cost_restore[2], cost_restore[3]); */ for (r = 0; r < RESTORE_SWITCHABLE_TYPES; r++) { aom_free(tile_cost[r]); aom_free(restore_types[r]); } }