/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "av1/encoder/cost.h" #include "av1/encoder/palette.h" static float calc_dist(const float *p1, const float *p2, int dim) { float dist = 0; int i; for (i = 0; i < dim; ++i) { const float diff = p1[i] - p2[i]; dist += diff * diff; } return dist; } void av1_calc_indices(const float *data, const float *centroids, uint8_t *indices, int n, int k, int dim) { int i, j; for (i = 0; i < n; ++i) { float min_dist = calc_dist(data + i * dim, centroids, dim); indices[i] = 0; for (j = 1; j < k; ++j) { const float this_dist = calc_dist(data + i * dim, centroids + j * dim, dim); if (this_dist < min_dist) { min_dist = this_dist; indices[i] = j; } } } } // Generate a random number in the range [0, 32768). static unsigned int lcg_rand16(unsigned int *state) { *state = (unsigned int)(*state * 1103515245ULL + 12345); return *state / 65536 % 32768; } static void calc_centroids(const float *data, float *centroids, const uint8_t *indices, int n, int k, int dim) { int i, j, index; int count[PALETTE_MAX_SIZE]; unsigned int rand_state = (unsigned int)data[0]; assert(n <= 32768); memset(count, 0, sizeof(count[0]) * k); memset(centroids, 0, sizeof(centroids[0]) * k * dim); for (i = 0; i < n; ++i) { index = indices[i]; assert(index < k); ++count[index]; for (j = 0; j < dim; ++j) { centroids[index * dim + j] += data[i * dim + j]; } } for (i = 0; i < k; ++i) { if (count[i] == 0) { memcpy(centroids + i * dim, data + (lcg_rand16(&rand_state) % n) * dim, sizeof(centroids[0]) * dim); } else { const float norm = 1.0f / count[i]; for (j = 0; j < dim; ++j) centroids[i * dim + j] *= norm; } } // Round to nearest integers. for (i = 0; i < k * dim; ++i) { centroids[i] = roundf(centroids[i]); } } static float calc_total_dist(const float *data, const float *centroids, const uint8_t *indices, int n, int k, int dim) { float dist = 0; int i; (void)k; for (i = 0; i < n; ++i) dist += calc_dist(data + i * dim, centroids + indices[i] * dim, dim); return dist; } void av1_k_means(const float *data, float *centroids, uint8_t *indices, int n, int k, int dim, int max_itr) { int i; float this_dist; float pre_centroids[2 * PALETTE_MAX_SIZE]; uint8_t pre_indices[MAX_SB_SQUARE]; av1_calc_indices(data, centroids, indices, n, k, dim); this_dist = calc_total_dist(data, centroids, indices, n, k, dim); for (i = 0; i < max_itr; ++i) { const float pre_dist = this_dist; memcpy(pre_centroids, centroids, sizeof(pre_centroids[0]) * k * dim); memcpy(pre_indices, indices, sizeof(pre_indices[0]) * n); calc_centroids(data, centroids, indices, n, k, dim); av1_calc_indices(data, centroids, indices, n, k, dim); this_dist = calc_total_dist(data, centroids, indices, n, k, dim); if (this_dist > pre_dist) { memcpy(centroids, pre_centroids, sizeof(pre_centroids[0]) * k * dim); memcpy(indices, pre_indices, sizeof(pre_indices[0]) * n); break; } if (!memcmp(centroids, pre_centroids, sizeof(pre_centroids[0]) * k * dim)) break; } } static int float_comparer(const void *a, const void *b) { const float fa = *(const float *)a; const float fb = *(const float *)b; return (fa > fb) - (fa < fb); } int av1_remove_duplicates(float *centroids, int num_centroids) { int num_unique; // number of unique centroids int i; qsort(centroids, num_centroids, sizeof(*centroids), float_comparer); // Remove duplicates. num_unique = 1; for (i = 1; i < num_centroids; ++i) { if (centroids[i] != centroids[i - 1]) { // found a new unique centroid centroids[num_unique++] = centroids[i]; } } return num_unique; } int av1_count_colors(const uint8_t *src, int stride, int rows, int cols) { int n = 0, r, c, i, val_count[256]; uint8_t val; memset(val_count, 0, sizeof(val_count)); for (r = 0; r < rows; ++r) { for (c = 0; c < cols; ++c) { val = src[r * stride + c]; ++val_count[val]; } } for (i = 0; i < 256; ++i) { if (val_count[i]) { ++n; } } return n; } #if CONFIG_PALETTE_DELTA_ENCODING static int delta_encode_cost(const int *colors, int num, int bit_depth, int min_val) { if (num <= 0) return 0; int bits_cost = bit_depth; if (num == 1) return bits_cost; bits_cost += 2; int max_delta = 0; int deltas[PALETTE_MAX_SIZE]; const int min_bits = bit_depth - 3; for (int i = 1; i < num; ++i) { const int delta = colors[i] - colors[i - 1]; deltas[i - 1] = delta; assert(delta >= min_val); if (delta > max_delta) max_delta = delta; } int bits_per_delta = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits); assert(bits_per_delta <= bit_depth); int range = (1 << bit_depth) - colors[0] - min_val; for (int i = 0; i < num - 1; ++i) { bits_cost += bits_per_delta; range -= deltas[i]; bits_per_delta = AOMMIN(bits_per_delta, av1_ceil_log2(range)); } return bits_cost; } int av1_index_color_cache(const uint16_t *color_cache, int n_cache, const uint16_t *colors, int n_colors, uint8_t *cache_color_found, int *out_cache_colors) { if (n_cache <= 0) { for (int i = 0; i < n_colors; ++i) out_cache_colors[i] = colors[i]; return n_colors; } memset(cache_color_found, 0, n_cache * sizeof(*cache_color_found)); int n_in_cache = 0; int in_cache_flags[PALETTE_MAX_SIZE]; memset(in_cache_flags, 0, sizeof(in_cache_flags)); for (int i = 0; i < n_cache && n_in_cache < n_colors; ++i) { for (int j = 0; j < n_colors; ++j) { if (colors[j] == color_cache[i]) { in_cache_flags[j] = 1; cache_color_found[i] = 1; ++n_in_cache; break; } } } int j = 0; for (int i = 0; i < n_colors; ++i) if (!in_cache_flags[i]) out_cache_colors[j++] = colors[i]; assert(j == n_colors - n_in_cache); return j; } int av1_get_palette_delta_bits_v(const PALETTE_MODE_INFO *const pmi, int bit_depth, int *zero_count, int *min_bits) { const int n = pmi->palette_size[1]; const int max_val = 1 << bit_depth; int max_d = 0; *min_bits = bit_depth - 4; *zero_count = 0; for (int i = 1; i < n; ++i) { const int delta = pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] - pmi->palette_colors[2 * PALETTE_MAX_SIZE + i - 1]; const int v = abs(delta); const int d = AOMMIN(v, max_val - v); if (d > max_d) max_d = d; if (d == 0) ++(*zero_count); } return AOMMAX(av1_ceil_log2(max_d + 1), *min_bits); } #endif // CONFIG_PALETTE_DELTA_ENCODING int av1_palette_color_cost_y(const PALETTE_MODE_INFO *const pmi, #if CONFIG_PALETTE_DELTA_ENCODING uint16_t *color_cache, int n_cache, #endif // CONFIG_PALETTE_DELTA_ENCODING int bit_depth) { const int n = pmi->palette_size[0]; #if CONFIG_PALETTE_DELTA_ENCODING int out_cache_colors[PALETTE_MAX_SIZE]; uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; const int n_out_cache = av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n, cache_color_found, out_cache_colors); const int total_bits = n_cache + delta_encode_cost(out_cache_colors, n_out_cache, bit_depth, 1); return total_bits * av1_cost_bit(128, 0); #else return bit_depth * n * av1_cost_bit(128, 0); #endif // CONFIG_PALETTE_DELTA_ENCODING } int av1_palette_color_cost_uv(const PALETTE_MODE_INFO *const pmi, #if CONFIG_PALETTE_DELTA_ENCODING uint16_t *color_cache, int n_cache, #endif // CONFIG_PALETTE_DELTA_ENCODING int bit_depth) { const int n = pmi->palette_size[1]; #if CONFIG_PALETTE_DELTA_ENCODING int total_bits = 0; // U channel palette color cost. int out_cache_colors[PALETTE_MAX_SIZE]; uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; const int n_out_cache = av1_index_color_cache( color_cache, n_cache, pmi->palette_colors + PALETTE_MAX_SIZE, n, cache_color_found, out_cache_colors); total_bits += n_cache + delta_encode_cost(out_cache_colors, n_out_cache, bit_depth, 0); // V channel palette color cost. int zero_count = 0, min_bits_v = 0; const int bits_v = av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v); const int bits_using_delta = 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count; const int bits_using_raw = bit_depth * n; total_bits += 1 + AOMMIN(bits_using_delta, bits_using_raw); return total_bits * av1_cost_bit(128, 0); #else return 2 * bit_depth * n * av1_cost_bit(128, 0); #endif // CONFIG_PALETTE_DELTA_ENCODING } #if CONFIG_HIGHBITDEPTH int av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, int cols, int bit_depth) { int n = 0, r, c, i; uint16_t val; uint16_t *src = CONVERT_TO_SHORTPTR(src8); int val_count[1 << 12]; assert(bit_depth <= 12); memset(val_count, 0, (1 << 12) * sizeof(val_count[0])); for (r = 0; r < rows; ++r) { for (c = 0; c < cols; ++c) { val = src[r * stride + c]; ++val_count[val]; } } for (i = 0; i < (1 << bit_depth); ++i) { if (val_count[i]) { ++n; } } return n; } #endif // CONFIG_HIGHBITDEPTH