/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/common/scan.h" #include "av1/common/blockd.h" #include "av1/common/idct.h" #include "av1/common/pred_common.h" #include "av1/encoder/bitstream.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/cost.h" #include "av1/encoder/encodetxb.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/subexp.h" #include "av1/encoder/tokenize.h" void av1_alloc_txb_buf(AV1_COMP *cpi) { #if 0 AV1_COMMON *cm = &cpi->common; int mi_block_size = 1 << MI_SIZE_LOG2; // TODO(angiebird): Make sure cm->subsampling_x/y is set correctly, and then // use precise buffer size according to cm->subsampling_x/y int pixel_stride = mi_block_size * cm->mi_cols; int pixel_height = mi_block_size * cm->mi_rows; int i; for (i = 0; i < MAX_MB_PLANE; ++i) { CHECK_MEM_ERROR( cm, cpi->tcoeff_buf[i], aom_malloc(sizeof(*cpi->tcoeff_buf[i]) * pixel_stride * pixel_height)); } #else (void)cpi; #endif } void av1_free_txb_buf(AV1_COMP *cpi) { #if 0 int i; for (i = 0; i < MAX_MB_PLANE; ++i) { aom_free(cpi->tcoeff_buf[i]); } #else (void)cpi; #endif } static void write_golomb(aom_writer *w, int level) { int x = level + 1; int i = x; int length = 0; while (i) { i >>= 1; ++length; } assert(length > 0); for (i = 0; i < length - 1; ++i) aom_write_bit(w, 0); for (i = length - 1; i >= 0; --i) aom_write_bit(w, (x >> i) & 0x01); } void av1_write_coeffs_txb(const AV1_COMMON *const cm, MACROBLOCKD *xd, aom_writer *w, int block, int plane, const tran_low_t *tcoeff, uint16_t eob, TXB_CTX *txb_ctx) { aom_prob *nz_map; aom_prob *eob_flag; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; const PLANE_TYPE plane_type = get_plane_type(plane); const TX_SIZE tx_size = get_tx_size(plane, xd); const TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter_block(mbmi)); const int16_t *scan = scan_order->scan; int c; int is_nz; const int bwl = b_width_log2_lookup[txsize_to_bsize[tx_size]] + 2; const int seg_eob = tx_size_2d[tx_size]; uint8_t txb_mask[32 * 32] = { 0 }; uint16_t update_eob = 0; aom_write(w, eob == 0, cm->fc->txb_skip[tx_size][txb_ctx->txb_skip_ctx]); if (eob == 0) return; #if CONFIG_TXK_SEL av1_write_tx_type(cm, xd, block, plane, w); #endif nz_map = cm->fc->nz_map[tx_size][plane_type]; eob_flag = cm->fc->eob_flag[tx_size][plane_type]; for (c = 0; c < eob; ++c) { int coeff_ctx = get_nz_map_ctx(tcoeff, txb_mask, scan[c], bwl); int eob_ctx = get_eob_ctx(tcoeff, scan[c], bwl); tran_low_t v = tcoeff[scan[c]]; is_nz = (v != 0); if (c == seg_eob - 1) break; aom_write(w, is_nz, nz_map[coeff_ctx]); if (is_nz) { aom_write(w, c == (eob - 1), eob_flag[eob_ctx]); } txb_mask[scan[c]] = 1; } int i; for (i = 0; i < NUM_BASE_LEVELS; ++i) { aom_prob *coeff_base = cm->fc->coeff_base[tx_size][plane_type][i]; update_eob = 0; for (c = eob - 1; c >= 0; --c) { tran_low_t v = tcoeff[scan[c]]; tran_low_t level = abs(v); int sign = (v < 0) ? 1 : 0; int ctx; if (level <= i) continue; ctx = get_base_ctx(tcoeff, scan[c], bwl, i + 1); if (level == i + 1) { aom_write(w, 1, coeff_base[ctx]); if (c == 0) { aom_write(w, sign, cm->fc->dc_sign[plane_type][txb_ctx->dc_sign_ctx]); } else { aom_write_bit(w, sign); } continue; } aom_write(w, 0, coeff_base[ctx]); update_eob = AOMMAX(update_eob, c); } } for (c = update_eob; c >= 0; --c) { tran_low_t v = tcoeff[scan[c]]; tran_low_t level = abs(v); int sign = (v < 0) ? 1 : 0; int idx; int ctx; if (level <= NUM_BASE_LEVELS) continue; if (c == 0) { aom_write(w, sign, cm->fc->dc_sign[plane_type][txb_ctx->dc_sign_ctx]); } else { aom_write_bit(w, sign); } // level is above 1. ctx = get_level_ctx(tcoeff, scan[c], bwl); for (idx = 0; idx < COEFF_BASE_RANGE; ++idx) { if (level == (idx + 1 + NUM_BASE_LEVELS)) { aom_write(w, 1, cm->fc->coeff_lps[tx_size][plane_type][ctx]); break; } aom_write(w, 0, cm->fc->coeff_lps[tx_size][plane_type][ctx]); } if (idx < COEFF_BASE_RANGE) continue; // use 0-th order Golomb code to handle the residual level. write_golomb(w, level - COEFF_BASE_RANGE - 1 - NUM_BASE_LEVELS); } } void av1_write_coeffs_mb(const AV1_COMMON *const cm, MACROBLOCK *x, aom_writer *w, int plane) { MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; BLOCK_SIZE bsize = mbmi->sb_type; struct macroblockd_plane *pd = &xd->plane[plane]; #if CONFIG_CB4X4 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); #else const BLOCK_SIZE plane_bsize = get_plane_block_size(AOMMAX(bsize, BLOCK_8X8), pd); #endif const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); const int max_blocks_high = max_block_high(xd, plane_bsize, plane); TX_SIZE tx_size = get_tx_size(plane, xd); const int bkw = tx_size_wide_unit[tx_size]; const int bkh = tx_size_high_unit[tx_size]; const int step = tx_size_wide_unit[tx_size] * tx_size_high_unit[tx_size]; int row, col; int block = 0; for (row = 0; row < max_blocks_high; row += bkh) { for (col = 0; col < max_blocks_wide; col += bkw) { tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block); uint16_t eob = x->mbmi_ext->eobs[plane][block]; TXB_CTX txb_ctx = { x->mbmi_ext->txb_skip_ctx[plane][block], x->mbmi_ext->dc_sign_ctx[plane][block] }; av1_write_coeffs_txb(cm, xd, w, block, plane, tcoeff, eob, &txb_ctx); block += step; } } } static INLINE void get_base_ctx_set(const tran_low_t *tcoeffs, int c, // raster order const int bwl, int ctx_set[NUM_BASE_LEVELS]) { const int row = c >> bwl; const int col = c - (row << bwl); const int stride = 1 << bwl; int mag[NUM_BASE_LEVELS] = { 0 }; int idx; tran_low_t abs_coeff; int i; for (idx = 0; idx < BASE_CONTEXT_POSITION_NUM; ++idx) { int ref_row = row + base_ref_offset[idx][0]; int ref_col = col + base_ref_offset[idx][1]; int pos = (ref_row << bwl) + ref_col; if (ref_row < 0 || ref_col < 0 || ref_row >= stride || ref_col >= stride) continue; abs_coeff = abs(tcoeffs[pos]); for (i = 0; i < NUM_BASE_LEVELS; ++i) { ctx_set[i] += abs_coeff > i; if (base_ref_offset[idx][0] >= 0 && base_ref_offset[idx][1] >= 0) mag[i] |= abs_coeff > (i + 1); } } for (i = 0; i < NUM_BASE_LEVELS; ++i) { ctx_set[i] = (ctx_set[i] + 1) >> 1; if (row == 0 && col == 0) ctx_set[i] = (ctx_set[i] << 1) + mag[i]; else if (row == 0) ctx_set[i] = 8 + (ctx_set[i] << 1) + mag[i]; else if (col == 0) ctx_set[i] = 18 + (ctx_set[i] << 1) + mag[i]; else ctx_set[i] = 28 + (ctx_set[i] << 1) + mag[i]; } return; } int av1_cost_coeffs_txb(const AV1_COMP *const cpi, MACROBLOCK *x, int plane, int block, TXB_CTX *txb_ctx) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; const TX_SIZE tx_size = get_tx_size(plane, xd); const PLANE_TYPE plane_type = get_plane_type(plane); const TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; const struct macroblock_plane *p = &x->plane[plane]; const int eob = p->eobs[block]; const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); int c, cost; const int seg_eob = AOMMIN(eob, tx_size_2d[tx_size] - 1); int txb_skip_ctx = txb_ctx->txb_skip_ctx; aom_prob *nz_map = xd->fc->nz_map[tx_size][plane_type]; const int bwl = b_width_log2_lookup[txsize_to_bsize[tx_size]] + 2; // txb_mask is only initialized for once here. After that, it will be set when // coding zero map and then reset when coding level 1 info. uint8_t txb_mask[32 * 32] = { 0 }; aom_prob(*coeff_base)[COEFF_BASE_CONTEXTS] = xd->fc->coeff_base[tx_size][plane_type]; const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter_block(mbmi)); const int16_t *scan = scan_order->scan; cost = 0; if (eob == 0) { cost = av1_cost_bit(xd->fc->txb_skip[tx_size][txb_skip_ctx], 1); return cost; } cost = av1_cost_bit(xd->fc->txb_skip[tx_size][txb_skip_ctx], 0); #if CONFIG_TXK_SEL cost += av1_tx_type_cost(cpi, xd, mbmi->sb_type, plane, tx_size, tx_type); #endif for (c = 0; c < eob; ++c) { tran_low_t v = qcoeff[scan[c]]; int is_nz = (v != 0); int level = abs(v); if (c < seg_eob) { int coeff_ctx = get_nz_map_ctx(qcoeff, txb_mask, scan[c], bwl); cost += av1_cost_bit(nz_map[coeff_ctx], is_nz); } if (is_nz) { int ctx_ls[NUM_BASE_LEVELS] = { 0 }; int sign = (v < 0) ? 1 : 0; // sign bit cost if (c == 0) { int dc_sign_ctx = txb_ctx->dc_sign_ctx; cost += av1_cost_bit(xd->fc->dc_sign[plane_type][dc_sign_ctx], sign); } else { cost += av1_cost_bit(128, sign); } get_base_ctx_set(qcoeff, scan[c], bwl, ctx_ls); int i; for (i = 0; i < NUM_BASE_LEVELS; ++i) { if (level <= i) continue; if (level == i + 1) { cost += av1_cost_bit(coeff_base[i][ctx_ls[i]], 1); continue; } cost += av1_cost_bit(coeff_base[i][ctx_ls[i]], 0); } if (level > NUM_BASE_LEVELS) { int idx; int ctx; ctx = get_level_ctx(qcoeff, scan[c], bwl); for (idx = 0; idx < COEFF_BASE_RANGE; ++idx) { if (level == (idx + 1 + NUM_BASE_LEVELS)) { cost += av1_cost_bit(xd->fc->coeff_lps[tx_size][plane_type][ctx], 1); break; } cost += av1_cost_bit(xd->fc->coeff_lps[tx_size][plane_type][ctx], 0); } if (idx >= COEFF_BASE_RANGE) { // residual cost int r = level - COEFF_BASE_RANGE - NUM_BASE_LEVELS; int ri = r; int length = 0; while (ri) { ri >>= 1; ++length; } for (ri = 0; ri < length - 1; ++ri) cost += av1_cost_bit(128, 0); for (ri = length - 1; ri >= 0; --ri) cost += av1_cost_bit(128, (r >> ri) & 0x01); } } if (c < seg_eob) { int eob_ctx = get_eob_ctx(qcoeff, scan[c], bwl); cost += av1_cost_bit(xd->fc->eob_flag[tx_size][plane_type][eob_ctx], c == (eob - 1)); } } txb_mask[scan[c]] = 1; } return cost; } typedef struct TxbParams { const AV1_COMP *cpi; ThreadData *td; int rate; } TxbParams; int av1_get_txb_entropy_context(const tran_low_t *qcoeff, const SCAN_ORDER *scan_order, int eob) { const int16_t *scan = scan_order->scan; int cul_level = 0; int c; for (c = 0; c < eob; ++c) { cul_level += abs(qcoeff[scan[c]]); } cul_level = AOMMIN(COEFF_CONTEXT_MASK, cul_level); set_dc_sign(&cul_level, qcoeff[0]); return cul_level; } static void update_txb_context(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { TxbParams *const args = arg; const AV1_COMP *cpi = args->cpi; const AV1_COMMON *cm = &cpi->common; ThreadData *const td = args->td; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct macroblock_plane *p = &x->plane[plane]; struct macroblockd_plane *pd = &xd->plane[plane]; const uint16_t eob = p->eobs[block]; const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); const PLANE_TYPE plane_type = pd->plane_type; const TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter_block(mbmi)); (void)plane_bsize; int cul_level = av1_get_txb_entropy_context(qcoeff, scan_order, eob); av1_set_contexts(xd, pd, plane, tx_size, cul_level, blk_col, blk_row); } static void update_and_record_txb_context(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { TxbParams *const args = arg; const AV1_COMP *cpi = args->cpi; const AV1_COMMON *cm = &cpi->common; ThreadData *const td = args->td; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *p = &x->plane[plane]; struct macroblockd_plane *pd = &xd->plane[plane]; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; int eob = p->eobs[block], update_eob = 0; const PLANE_TYPE plane_type = pd->plane_type; const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block); const int segment_id = mbmi->segment_id; const TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter_block(mbmi)); const int16_t *scan = scan_order->scan; const int seg_eob = get_tx_eob(&cpi->common.seg, segment_id, tx_size); int c, i; TXB_CTX txb_ctx; get_txb_ctx(plane_bsize, tx_size, plane, pd->above_context + blk_col, pd->left_context + blk_row, &txb_ctx); const int bwl = b_width_log2_lookup[txsize_to_bsize[tx_size]] + 2; int cul_level = 0; unsigned int(*nz_map_count)[SIG_COEF_CONTEXTS][2]; uint8_t txb_mask[32 * 32] = { 0 }; nz_map_count = &td->counts->nz_map[tx_size][plane_type]; memcpy(tcoeff, qcoeff, sizeof(*tcoeff) * seg_eob); ++td->counts->txb_skip[tx_size][txb_ctx.txb_skip_ctx][eob == 0]; x->mbmi_ext->txb_skip_ctx[plane][block] = txb_ctx.txb_skip_ctx; x->mbmi_ext->eobs[plane][block] = eob; if (eob == 0) { av1_set_contexts(xd, pd, plane, tx_size, 0, blk_col, blk_row); return; } #if CONFIG_TXK_SEL av1_update_tx_type_count(cm, xd, block, plane, mbmi->sb_type, tx_size, td->counts); #endif for (c = 0; c < eob; ++c) { tran_low_t v = qcoeff[scan[c]]; int is_nz = (v != 0); int coeff_ctx = get_nz_map_ctx(tcoeff, txb_mask, scan[c], bwl); int eob_ctx = get_eob_ctx(tcoeff, scan[c], bwl); if (c == seg_eob - 1) break; ++(*nz_map_count)[coeff_ctx][is_nz]; if (is_nz) { ++td->counts->eob_flag[tx_size][plane_type][eob_ctx][c == (eob - 1)]; } txb_mask[scan[c]] = 1; } // Reverse process order to handle coefficient level and sign. for (i = 0; i < NUM_BASE_LEVELS; ++i) { update_eob = 0; for (c = eob - 1; c >= 0; --c) { tran_low_t v = qcoeff[scan[c]]; tran_low_t level = abs(v); int ctx; if (level <= i) continue; ctx = get_base_ctx(tcoeff, scan[c], bwl, i + 1); if (level == i + 1) { ++td->counts->coeff_base[tx_size][plane_type][i][ctx][1]; if (c == 0) { int dc_sign_ctx = txb_ctx.dc_sign_ctx; ++td->counts->dc_sign[plane_type][dc_sign_ctx][v < 0]; x->mbmi_ext->dc_sign_ctx[plane][block] = dc_sign_ctx; } cul_level += level; continue; } ++td->counts->coeff_base[tx_size][plane_type][i][ctx][0]; update_eob = AOMMAX(update_eob, c); } } for (c = update_eob; c >= 0; --c) { tran_low_t v = qcoeff[scan[c]]; tran_low_t level = abs(v); int idx; int ctx; if (level <= NUM_BASE_LEVELS) continue; cul_level += level; if (c == 0) { int dc_sign_ctx = txb_ctx.dc_sign_ctx; ++td->counts->dc_sign[plane_type][dc_sign_ctx][v < 0]; x->mbmi_ext->dc_sign_ctx[plane][block] = dc_sign_ctx; } // level is above 1. ctx = get_level_ctx(tcoeff, scan[c], bwl); for (idx = 0; idx < COEFF_BASE_RANGE; ++idx) { if (level == (idx + 1 + NUM_BASE_LEVELS)) { ++td->counts->coeff_lps[tx_size][plane_type][ctx][1]; break; } ++td->counts->coeff_lps[tx_size][plane_type][ctx][0]; } if (idx < COEFF_BASE_RANGE) continue; // use 0-th order Golomb code to handle the residual level. } cul_level = AOMMIN(COEFF_CONTEXT_MASK, cul_level); // DC value set_dc_sign(&cul_level, tcoeff[0]); av1_set_contexts(xd, pd, plane, tx_size, cul_level, blk_col, blk_row); #if CONFIG_ADAPT_SCAN // Since dqcoeff is not available here, we pass qcoeff into // av1_update_scan_count_facade(). The update behavior should be the same // because av1_update_scan_count_facade() only cares if coefficients are zero // or not. av1_update_scan_count_facade((AV1_COMMON *)cm, td->counts, tx_size, tx_type, qcoeff, eob); #endif } void av1_update_txb_context(const AV1_COMP *cpi, ThreadData *td, RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate, int mi_row, int mi_col) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const int ctx = av1_get_skip_context(xd); const int skip_inc = !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); struct TxbParams arg = { cpi, td, 0 }; (void)rate; (void)mi_row; (void)mi_col; if (mbmi->skip) { if (!dry_run) td->counts->skip[ctx][1] += skip_inc; reset_skip_context(xd, bsize); return; } if (!dry_run) { td->counts->skip[ctx][0] += skip_inc; av1_foreach_transformed_block(xd, bsize, mi_row, mi_col, update_and_record_txb_context, &arg); } else if (dry_run == DRY_RUN_NORMAL) { av1_foreach_transformed_block(xd, bsize, mi_row, mi_col, update_txb_context, &arg); } else { printf("DRY_RUN_COSTCOEFFS is not supported yet\n"); assert(0); } } static void find_new_prob(unsigned int *branch_cnt, aom_prob *oldp, int *savings, int *update, aom_writer *const bc) { const aom_prob upd = DIFF_UPDATE_PROB; int u = 0; aom_prob newp = get_binary_prob(branch_cnt[0], branch_cnt[1]); int s = av1_prob_diff_update_savings_search(branch_cnt, *oldp, &newp, upd, 1); if (s > 0 && newp != *oldp) u = 1; if (u) *savings += s - (int)(av1_cost_zero(upd)); // TODO(jingning): 1? else *savings -= (int)(av1_cost_zero(upd)); if (update) { ++update[u]; return; } aom_write(bc, u, upd); if (u) { /* send/use new probability */ av1_write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } static void write_txb_probs(aom_writer *const bc, AV1_COMP *cpi, TX_SIZE tx_size) { FRAME_CONTEXT *fc = cpi->common.fc; FRAME_COUNTS *counts = cpi->td.counts; int savings = 0; int update[2] = { 0, 0 }; int plane, ctx, level; for (ctx = 0; ctx < TXB_SKIP_CONTEXTS; ++ctx) { find_new_prob(counts->txb_skip[tx_size][ctx], &fc->txb_skip[tx_size][ctx], &savings, update, bc); } for (plane = 0; plane < PLANE_TYPES; ++plane) { for (ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) { find_new_prob(counts->nz_map[tx_size][plane][ctx], &fc->nz_map[tx_size][plane][ctx], &savings, update, bc); } } for (plane = 0; plane < PLANE_TYPES; ++plane) { for (ctx = 0; ctx < EOB_COEF_CONTEXTS; ++ctx) { find_new_prob(counts->eob_flag[tx_size][plane][ctx], &fc->eob_flag[tx_size][plane][ctx], &savings, update, bc); } } for (level = 0; level < NUM_BASE_LEVELS; ++level) { for (plane = 0; plane < PLANE_TYPES; ++plane) { for (ctx = 0; ctx < COEFF_BASE_CONTEXTS; ++ctx) { find_new_prob(counts->coeff_base[tx_size][plane][level][ctx], &fc->coeff_base[tx_size][plane][level][ctx], &savings, update, bc); } } } for (plane = 0; plane < PLANE_TYPES; ++plane) { for (ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) { find_new_prob(counts->coeff_lps[tx_size][plane][ctx], &fc->coeff_lps[tx_size][plane][ctx], &savings, update, bc); } } // Decide if to update the model for this tx_size if (update[1] == 0 || savings < 0) { aom_write_bit(bc, 0); return; } aom_write_bit(bc, 1); for (ctx = 0; ctx < TXB_SKIP_CONTEXTS; ++ctx) { find_new_prob(counts->txb_skip[tx_size][ctx], &fc->txb_skip[tx_size][ctx], &savings, NULL, bc); } for (plane = 0; plane < PLANE_TYPES; ++plane) { for (ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) { find_new_prob(counts->nz_map[tx_size][plane][ctx], &fc->nz_map[tx_size][plane][ctx], &savings, NULL, bc); } } for (plane = 0; plane < PLANE_TYPES; ++plane) { for (ctx = 0; ctx < EOB_COEF_CONTEXTS; ++ctx) { find_new_prob(counts->eob_flag[tx_size][plane][ctx], &fc->eob_flag[tx_size][plane][ctx], &savings, NULL, bc); } } for (level = 0; level < NUM_BASE_LEVELS; ++level) { for (plane = 0; plane < PLANE_TYPES; ++plane) { for (ctx = 0; ctx < COEFF_BASE_CONTEXTS; ++ctx) { find_new_prob(counts->coeff_base[tx_size][plane][level][ctx], &fc->coeff_base[tx_size][plane][level][ctx], &savings, NULL, bc); } } } for (plane = 0; plane < PLANE_TYPES; ++plane) { for (ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) { find_new_prob(counts->coeff_lps[tx_size][plane][ctx], &fc->coeff_lps[tx_size][plane][ctx], &savings, NULL, bc); } } } void av1_write_txb_probs(AV1_COMP *cpi, aom_writer *w) { const TX_MODE tx_mode = cpi->common.tx_mode; const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; TX_SIZE tx_size; int ctx, plane; for (plane = 0; plane < PLANE_TYPES; ++plane) for (ctx = 0; ctx < DC_SIGN_CONTEXTS; ++ctx) av1_cond_prob_diff_update(w, &cpi->common.fc->dc_sign[plane][ctx], cpi->td.counts->dc_sign[plane][ctx], 1); for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) write_txb_probs(w, cpi, tx_size); } #if CONFIG_TXK_SEL int64_t av1_search_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, const ENTROPY_CONTEXT *a, const ENTROPY_CONTEXT *l, int use_fast_coef_costing, RD_STATS *rd_stats) { const AV1_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; TX_TYPE txk_start = DCT_DCT; TX_TYPE txk_end = TX_TYPES - 1; TX_TYPE best_tx_type = txk_start; int64_t best_rd = INT64_MAX; const int coeff_ctx = combine_entropy_contexts(*a, *l); TX_TYPE tx_type; for (tx_type = txk_start; tx_type <= txk_end; ++tx_type) { if (plane == 0) mbmi->txk_type[block] = tx_type; TX_TYPE ref_tx_type = get_tx_type(get_plane_type(plane), xd, block, tx_size); if (tx_type != ref_tx_type) { // use get_tx_type() to check if the tx_type is valid for the current mode // if it's not, we skip it here. continue; } RD_STATS this_rd_stats; av1_invalid_rd_stats(&this_rd_stats); av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, coeff_ctx, AV1_XFORM_QUANT_FP); if (x->plane[plane].eobs[block] && !xd->lossless[mbmi->segment_id]) av1_optimize_b(cm, x, plane, block, tx_size, coeff_ctx); av1_dist_block(cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size, &this_rd_stats.dist, &this_rd_stats.sse, OUTPUT_HAS_PREDICTED_PIXELS); const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, is_inter_block(mbmi)); this_rd_stats.rate = av1_cost_coeffs( cpi, x, plane, block, tx_size, scan_order, a, l, use_fast_coef_costing); int rd = RDCOST(x->rdmult, x->rddiv, this_rd_stats.rate, this_rd_stats.dist); if (rd < best_rd) { best_rd = rd; *rd_stats = this_rd_stats; best_tx_type = tx_type; } } if (plane == 0) mbmi->txk_type[block] = best_tx_type; // TODO(angiebird): Instead of re-call av1_xform_quant and av1_optimize_b, // copy the best result in the above tx_type search for loop av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, coeff_ctx, AV1_XFORM_QUANT_FP); if (x->plane[plane].eobs[block] && !xd->lossless[mbmi->segment_id]) av1_optimize_b(cm, x, plane, block, tx_size, coeff_ctx); if (!is_inter_block(mbmi)) { // intra mode needs decoded result such that the next transform block // can use it for prediction. av1_inverse_transform_block_facade(xd, plane, block, blk_row, blk_col, x->plane[plane].eobs[block]); } return best_rd; } #endif // CONFIG_TXK_SEL