/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "av1/common/common.h" #include "av1/common/entropymode.h" #include "av1/encoder/cost.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/subexp.h" #include "aom_dsp/aom_dsp_common.h" static struct av1_token mv_joint_encodings[MV_JOINTS]; static struct av1_token mv_class_encodings[MV_CLASSES]; static struct av1_token mv_fp_encodings[MV_FP_SIZE]; void av1_entropy_mv_init(void) { av1_tokens_from_tree(mv_joint_encodings, av1_mv_joint_tree); av1_tokens_from_tree(mv_class_encodings, av1_mv_class_tree); av1_tokens_from_tree(mv_fp_encodings, av1_mv_fp_tree); } static void encode_mv_component(aom_writer *w, int comp, nmv_component *mvcomp, int usehp) { int offset; const int sign = comp < 0; const int mag = sign ? -comp : comp; const int mv_class = av1_get_mv_class(mag - 1, &offset); const int d = offset >> 3; // int mv data const int fr = (offset >> 1) & 3; // fractional mv data const int hp = offset & 1; // high precision mv data assert(comp != 0); // Sign aom_write(w, sign, mvcomp->sign); // Class aom_write_symbol(w, mv_class, mvcomp->class_cdf, MV_CLASSES); // Integer bits if (mv_class == MV_CLASS_0) { aom_write(w, d, mvcomp->class0[0]); } else { int i; const int n = mv_class + CLASS0_BITS - 1; // number of bits for (i = 0; i < n; ++i) aom_write(w, (d >> i) & 1, mvcomp->bits[i]); } // Fractional bits aom_write_symbol( w, fr, mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf, MV_FP_SIZE); // High precision bit if (usehp) aom_write(w, hp, mv_class == MV_CLASS_0 ? mvcomp->class0_hp : mvcomp->hp); } static void build_nmv_component_cost_table(int *mvcost, const nmv_component *const mvcomp, int usehp) { int i, v; int sign_cost[2], class_cost[MV_CLASSES], class0_cost[CLASS0_SIZE]; int bits_cost[MV_OFFSET_BITS][2]; int class0_fp_cost[CLASS0_SIZE][MV_FP_SIZE], fp_cost[MV_FP_SIZE]; int class0_hp_cost[2], hp_cost[2]; sign_cost[0] = av1_cost_zero(mvcomp->sign); sign_cost[1] = av1_cost_one(mvcomp->sign); av1_cost_tokens(class_cost, mvcomp->classes, av1_mv_class_tree); av1_cost_tokens(class0_cost, mvcomp->class0, av1_mv_class0_tree); for (i = 0; i < MV_OFFSET_BITS; ++i) { bits_cost[i][0] = av1_cost_zero(mvcomp->bits[i]); bits_cost[i][1] = av1_cost_one(mvcomp->bits[i]); } for (i = 0; i < CLASS0_SIZE; ++i) av1_cost_tokens(class0_fp_cost[i], mvcomp->class0_fp[i], av1_mv_fp_tree); av1_cost_tokens(fp_cost, mvcomp->fp, av1_mv_fp_tree); if (usehp) { class0_hp_cost[0] = av1_cost_zero(mvcomp->class0_hp); class0_hp_cost[1] = av1_cost_one(mvcomp->class0_hp); hp_cost[0] = av1_cost_zero(mvcomp->hp); hp_cost[1] = av1_cost_one(mvcomp->hp); } mvcost[0] = 0; for (v = 1; v <= MV_MAX; ++v) { int z, c, o, d, e, f, cost = 0; z = v - 1; c = av1_get_mv_class(z, &o); cost += class_cost[c]; d = (o >> 3); /* int mv data */ f = (o >> 1) & 3; /* fractional pel mv data */ e = (o & 1); /* high precision mv data */ if (c == MV_CLASS_0) { cost += class0_cost[d]; } else { const int b = c + CLASS0_BITS - 1; /* number of bits */ for (i = 0; i < b; ++i) cost += bits_cost[i][((d >> i) & 1)]; } if (c == MV_CLASS_0) { cost += class0_fp_cost[d][f]; } else { cost += fp_cost[f]; } if (usehp) { if (c == MV_CLASS_0) { cost += class0_hp_cost[e]; } else { cost += hp_cost[e]; } } mvcost[v] = cost + sign_cost[0]; mvcost[-v] = cost + sign_cost[1]; } } static void update_mv(aom_writer *w, const unsigned int ct[2], aom_prob *cur_p, aom_prob upd_p) { (void)upd_p; #if CONFIG_TILE_GROUPS // Just use the default maximum number of tile groups to avoid passing in the // actual // number av1_cond_prob_diff_update(w, cur_p, ct, DEFAULT_MAX_NUM_TG); #else av1_cond_prob_diff_update(w, cur_p, ct, 1); #endif } #if !CONFIG_EC_ADAPT static void write_mv_update(const aom_tree_index *tree, aom_prob probs[/*n - 1*/], const unsigned int counts[/*n - 1*/], int n, aom_writer *w) { int i; unsigned int branch_ct[32][2]; // Assuming max number of probabilities <= 32 assert(n <= 32); av1_tree_probs_from_distribution(tree, branch_ct, counts); for (i = 0; i < n - 1; ++i) update_mv(w, branch_ct[i], &probs[i], MV_UPDATE_PROB); } #endif void av1_write_nmv_probs(AV1_COMMON *cm, int usehp, aom_writer *w, nmv_context_counts *const nmv_counts) { int i; int nmv_ctx = 0; for (nmv_ctx = 0; nmv_ctx < NMV_CONTEXTS; ++nmv_ctx) { nmv_context *const mvc = &cm->fc->nmvc[nmv_ctx]; nmv_context_counts *const counts = &nmv_counts[nmv_ctx]; #if !CONFIG_EC_ADAPT write_mv_update(av1_mv_joint_tree, mvc->joints, counts->joints, MV_JOINTS, w); for (i = 0; i < 2; ++i) { int j; nmv_component *comp = &mvc->comps[i]; nmv_component_counts *comp_counts = &counts->comps[i]; update_mv(w, comp_counts->sign, &comp->sign, MV_UPDATE_PROB); write_mv_update(av1_mv_class_tree, comp->classes, comp_counts->classes, MV_CLASSES, w); write_mv_update(av1_mv_class0_tree, comp->class0, comp_counts->class0, CLASS0_SIZE, w); for (j = 0; j < MV_OFFSET_BITS; ++j) update_mv(w, comp_counts->bits[j], &comp->bits[j], MV_UPDATE_PROB); } for (i = 0; i < 2; ++i) { int j; for (j = 0; j < CLASS0_SIZE; ++j) write_mv_update(av1_mv_fp_tree, mvc->comps[i].class0_fp[j], counts->comps[i].class0_fp[j], MV_FP_SIZE, w); write_mv_update(av1_mv_fp_tree, mvc->comps[i].fp, counts->comps[i].fp, MV_FP_SIZE, w); } #endif if (usehp) { for (i = 0; i < 2; ++i) { update_mv(w, counts->comps[i].class0_hp, &mvc->comps[i].class0_hp, MV_UPDATE_PROB); update_mv(w, counts->comps[i].hp, &mvc->comps[i].hp, MV_UPDATE_PROB); } } } } void av1_encode_mv(AV1_COMP *cpi, aom_writer *w, const MV *mv, const MV *ref, nmv_context *mvctx, int usehp) { const MV diff = { mv->row - ref->row, mv->col - ref->col }; const MV_JOINT_TYPE j = av1_get_mv_joint(&diff); aom_write_symbol(w, j, mvctx->joint_cdf, MV_JOINTS); if (mv_joint_vertical(j)) encode_mv_component(w, diff.row, &mvctx->comps[0], usehp); if (mv_joint_horizontal(j)) encode_mv_component(w, diff.col, &mvctx->comps[1], usehp); // If auto_mv_step_size is enabled then keep track of the largest // motion vector component used. if (cpi->sf.mv.auto_mv_step_size) { unsigned int maxv = AOMMAX(abs(mv->row), abs(mv->col)) >> 3; cpi->max_mv_magnitude = AOMMAX(maxv, cpi->max_mv_magnitude); } } #if CONFIG_INTRABC void av1_encode_dv(aom_writer *w, const MV *mv, const MV *ref, nmv_context *mvctx) { const MV diff = { mv->row - ref->row, mv->col - ref->col }; const MV_JOINT_TYPE j = av1_get_mv_joint(&diff); aom_write_symbol(w, j, mvctx->joint_cdf, MV_JOINTS); if (mv_joint_vertical(j)) encode_mv_component(w, diff.row, &mvctx->comps[0], 0); if (mv_joint_horizontal(j)) encode_mv_component(w, diff.col, &mvctx->comps[1], 0); } #endif // CONFIG_INTRABC void av1_build_nmv_cost_table(int *mvjoint, int *mvcost[2], const nmv_context *ctx, int usehp) { av1_cost_tokens(mvjoint, ctx->joints, av1_mv_joint_tree); build_nmv_component_cost_table(mvcost[0], &ctx->comps[0], usehp); build_nmv_component_cost_table(mvcost[1], &ctx->comps[1], usehp); } #if CONFIG_EXT_INTER static void inc_mvs(const MB_MODE_INFO *mbmi, const MB_MODE_INFO_EXT *mbmi_ext, const int_mv mvs[2], const int_mv pred_mvs[2], nmv_context_counts *nmv_counts) { int i; PREDICTION_MODE mode = mbmi->mode; if (mode == NEWMV || mode == NEW_NEWMV) { for (i = 0; i < 1 + has_second_ref(mbmi); ++i) { const MV *ref = &mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0].as_mv; const MV diff = { mvs[i].as_mv.row - ref->row, mvs[i].as_mv.col - ref->col }; int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type], mbmi_ext->ref_mv_stack[rf_type], i, mbmi->ref_mv_idx); nmv_context_counts *counts = &nmv_counts[nmv_ctx]; (void)pred_mvs; av1_inc_mv(&diff, counts, 1); } } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) { const MV *ref = &mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_mv; const MV diff = { mvs[1].as_mv.row - ref->row, mvs[1].as_mv.col - ref->col }; int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type], mbmi_ext->ref_mv_stack[rf_type], 1, mbmi->ref_mv_idx); nmv_context_counts *counts = &nmv_counts[nmv_ctx]; av1_inc_mv(&diff, counts, 1); } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) { const MV *ref = &mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_mv; const MV diff = { mvs[0].as_mv.row - ref->row, mvs[0].as_mv.col - ref->col }; int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type], mbmi_ext->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx); nmv_context_counts *counts = &nmv_counts[nmv_ctx]; av1_inc_mv(&diff, counts, 1); } } static void inc_mvs_sub8x8(const MODE_INFO *mi, int block, const int_mv mvs[2], const MB_MODE_INFO_EXT *mbmi_ext, nmv_context_counts *nmv_counts) { int i; PREDICTION_MODE mode = mi->bmi[block].as_mode; const MB_MODE_INFO *mbmi = &mi->mbmi; if (mode == NEWMV || mode == NEW_NEWMV) { for (i = 0; i < 1 + has_second_ref(&mi->mbmi); ++i) { const MV *ref = &mi->bmi[block].ref_mv[i].as_mv; const MV diff = { mvs[i].as_mv.row - ref->row, mvs[i].as_mv.col - ref->col }; int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type], mbmi_ext->ref_mv_stack[rf_type], i, mbmi->ref_mv_idx); nmv_context_counts *counts = &nmv_counts[nmv_ctx]; av1_inc_mv(&diff, counts, 1); } } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) { const MV *ref = &mi->bmi[block].ref_mv[1].as_mv; const MV diff = { mvs[1].as_mv.row - ref->row, mvs[1].as_mv.col - ref->col }; int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type], mbmi_ext->ref_mv_stack[rf_type], 1, mbmi->ref_mv_idx); nmv_context_counts *counts = &nmv_counts[nmv_ctx]; av1_inc_mv(&diff, counts, 1); } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) { const MV *ref = &mi->bmi[block].ref_mv[0].as_mv; const MV diff = { mvs[0].as_mv.row - ref->row, mvs[0].as_mv.col - ref->col }; int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type], mbmi_ext->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx); nmv_context_counts *counts = &nmv_counts[nmv_ctx]; av1_inc_mv(&diff, counts, 1); } } #else static void inc_mvs(const MB_MODE_INFO *mbmi, const MB_MODE_INFO_EXT *mbmi_ext, const int_mv mvs[2], const int_mv pred_mvs[2], nmv_context_counts *nmv_counts) { int i; for (i = 0; i < 1 + has_second_ref(mbmi); ++i) { int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type], mbmi_ext->ref_mv_stack[rf_type], i, mbmi->ref_mv_idx); nmv_context_counts *counts = &nmv_counts[nmv_ctx]; const MV *ref = &pred_mvs[i].as_mv; const MV diff = { mvs[i].as_mv.row - ref->row, mvs[i].as_mv.col - ref->col }; av1_inc_mv(&diff, counts, 1); } } #endif // CONFIG_EXT_INTER void av1_update_mv_count(ThreadData *td) { const MACROBLOCKD *xd = &td->mb.e_mbd; const MODE_INFO *mi = xd->mi[0]; const MB_MODE_INFO *const mbmi = &mi->mbmi; const MB_MODE_INFO_EXT *mbmi_ext = td->mb.mbmi_ext; #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; #endif if (mbmi->sb_type < BLOCK_8X8 && !unify_bsize) { const int num_4x4_w = num_4x4_blocks_wide_lookup[mbmi->sb_type]; const int num_4x4_h = num_4x4_blocks_high_lookup[mbmi->sb_type]; int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int i = idy * 2 + idx; #if CONFIG_EXT_INTER if (have_newmv_in_inter_mode(mi->bmi[i].as_mode)) inc_mvs_sub8x8(mi, i, mi->bmi[i].as_mv, mbmi_ext, td->counts->mv); #else if (mi->bmi[i].as_mode == NEWMV) inc_mvs(mbmi, mbmi_ext, mi->bmi[i].as_mv, mi->bmi[i].pred_mv, td->counts->mv); #endif // CONFIG_EXT_INTER } } } else { #if CONFIG_EXT_INTER if (have_newmv_in_inter_mode(mbmi->mode)) #else if (mbmi->mode == NEWMV) #endif // CONFIG_EXT_INTER inc_mvs(mbmi, mbmi_ext, mbmi->mv, mbmi->pred_mv, td->counts->mv); } }