/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "./av1_rtcd.h" #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "aom_dsp/bitwriter.h" #include "aom_dsp/quantize.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "av1/common/idct.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/scan.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/encodemb.h" #if CONFIG_LV_MAP #include "av1/encoder/encodetxb.h" #endif #include "av1/encoder/hybrid_fwd_txfm.h" #include "av1/encoder/rd.h" #include "av1/encoder/tokenize.h" #if CONFIG_PVQ #include "av1/encoder/encint.h" #include "av1/common/partition.h" #include "av1/encoder/pvq_encoder.h" #endif #if CONFIG_CFL #include "av1/common/cfl.h" #endif // Check if one needs to use c version subtraction. static int check_subtract_block_size(int w, int h) { return w < 4 || h < 4; } static void subtract_block(const MACROBLOCKD *xd, int rows, int cols, int16_t *diff, ptrdiff_t diff_stride, const uint8_t *src8, ptrdiff_t src_stride, const uint8_t *pred8, ptrdiff_t pred_stride) { #if !CONFIG_HIGHBITDEPTH (void)xd; #endif if (check_subtract_block_size(rows, cols)) { #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride, xd->bd); return; } #endif // CONFIG_HIGHBITDEPTH aom_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride); return; } #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride, xd->bd); return; } #endif // CONFIG_HIGHBITDEPTH aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride); } void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, int blk_col, int blk_row, TX_SIZE tx_size) { MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; const int diff_stride = block_size_wide[plane_bsize]; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; const int tx1d_width = tx_size_wide[tx_size]; const int tx1d_height = tx_size_high[tx_size]; uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; int16_t *src_diff = &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src, src_stride, dst, dst_stride); } void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; const MACROBLOCKD *xd = &x->e_mbd; subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } // These numbers are empirically obtained. static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = { { 10, 7 }, { 8, 5 }, }; static INLINE unsigned int get_token_bit_costs( unsigned int token_costs[2][COEFF_CONTEXTS][ENTROPY_TOKENS], int skip_eob, int ctx, int token) { (void)skip_eob; return token_costs[token == ZERO_TOKEN || token == EOB_TOKEN][ctx][token]; } #if !CONFIG_LV_MAP static int optimize_b_greedy(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int blk_row, int blk_col, int block, TX_SIZE tx_size, int ctx) { MACROBLOCKD *const xd = &mb->e_mbd; struct macroblock_plane *const p = &mb->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const int ref = is_inter_block(&xd->mi[0]->mbmi); uint8_t token_cache[MAX_TX_SQUARE]; const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const int eob = p->eobs[block]; const PLANE_TYPE plane_type = pd->plane_type; const int16_t *const dequant_ptr = pd->dequant; const uint8_t *const band_translate = get_band_translate(tx_size); TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, block, tx_size); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, &xd->mi[0]->mbmi); const int16_t *const scan = scan_order->scan; const int16_t *const nb = scan_order->neighbors; int dqv; const int shift = av1_get_tx_scale(tx_size); #if CONFIG_AOM_QM int seg_id = xd->mi[0]->mbmi.segment_id; // Use a flat matrix (i.e. no weighting) for 1D and Identity transforms const qm_val_t *iqmatrix = IS_2D_TRANSFORM(tx_type) ? pd->seg_iqmatrix[seg_id][!ref][tx_size] : cm->giqmatrix[NUM_QM_LEVELS - 1][0][0][tx_size]; #endif #if CONFIG_NEW_QUANT int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type); const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq]; #endif // CONFIG_NEW_QUANT int sz = 0; int64_t rd_cost0, rd_cost1; int16_t t0, t1; int i, final_eob; const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd); unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = mb->token_costs[txsize_sqr_map[tx_size]][plane_type][ref]; const int default_eob = tx_size_2d[tx_size]; assert(mb->qindex > 0); assert((!plane_type && !plane) || (plane_type && plane)); assert(eob <= default_eob); int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1; int64_t rate0, rate1; for (i = 0; i < eob; i++) { const int rc = scan[i]; token_cache[rc] = av1_pt_energy_class[av1_get_token(qcoeff[rc])]; } unsigned int(*token_costs_ptr)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = token_costs; final_eob = 0; int64_t eob_cost0, eob_cost1; tran_low_t before_best_eob_qc = 0; tran_low_t before_best_eob_dqc = 0; const int ctx0 = ctx; /* Record the r-d cost */ int64_t accu_rate = 0; // Initialized to the worst possible error for the largest transform size. // This ensures that it never goes negative. int64_t accu_error = ((int64_t)1) << 50; rate0 = get_token_bit_costs(*(token_costs_ptr + band_translate[0]), 0, ctx0, EOB_TOKEN); int64_t best_block_rd_cost = RDCOST(rdmult, rate0, accu_error); // int64_t best_block_rd_cost_all0 = best_block_rd_cost; int x_prev = 1; for (i = 0; i < eob; i++) { const int rc = scan[i]; int x = qcoeff[rc]; sz = -(x < 0); int band_cur = band_translate[i]; int ctx_cur = (i == 0) ? ctx : get_coef_context(nb, token_cache, i); int token_tree_sel_cur = (x_prev == 0); if (x == 0) { // no need to search when x == 0 int token = av1_get_token(x); rate0 = get_token_bit_costs(*(token_costs_ptr + band_cur), token_tree_sel_cur, ctx_cur, token); accu_rate += rate0; x_prev = 0; // accu_error does not change when x==0 } else { /* Computing distortion */ // compute the distortion for the first candidate // and the distortion for quantizing to 0. int dx0 = abs(coeff[rc]) * (1 << shift); #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx0 >>= xd->bd - 8; } #endif int64_t d0 = (int64_t)dx0 * dx0; int x_a = x - 2 * sz - 1; int64_t d2, d2_a; int dx; #if CONFIG_AOM_QM int iwt = iqmatrix[rc]; dqv = dequant_ptr[rc != 0]; dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; #else dqv = dequant_ptr[rc != 0]; #endif dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift); #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int dx_sign = dx < 0 ? 1 : 0; dx = abs(dx) >> (xd->bd - 8); if (dx_sign) dx = -dx; } #endif // CONFIG_HIGHBITDEPTH d2 = (int64_t)dx * dx; /* compute the distortion for the second candidate * x_a = x - 2 * sz + 1; */ if (x_a != 0) { #if CONFIG_NEW_QUANT dx = av1_dequant_coeff_nuq(x, dqv, dequant_val[band_translate[i]]) - (coeff[rc] << shift); #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx >>= xd->bd - 8; } #endif // CONFIG_HIGHBITDEPTH #else // CONFIG_NEW_QUANT #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz; } else { dx -= (dqv + sz) ^ sz; } #else dx -= (dqv + sz) ^ sz; #endif // CONFIG_HIGHBITDEPTH #endif // CONFIG_NEW_QUANT d2_a = (int64_t)dx * dx; } else { d2_a = d0; } /* Computing rates and r-d cost */ int best_x, best_eob_x; int64_t base_bits, next_bits0, next_bits1; int64_t next_eob_bits0, next_eob_bits1; // rate cost of x base_bits = av1_get_token_cost(x, &t0, cat6_bits); rate0 = base_bits + get_token_bit_costs(*(token_costs_ptr + band_cur), token_tree_sel_cur, ctx_cur, t0); base_bits = av1_get_token_cost(x_a, &t1, cat6_bits); rate1 = base_bits + get_token_bit_costs(*(token_costs_ptr + band_cur), token_tree_sel_cur, ctx_cur, t1); next_bits0 = 0; next_bits1 = 0; next_eob_bits0 = 0; next_eob_bits1 = 0; if (i < default_eob - 1) { int ctx_next, token_tree_sel_next; int band_next = band_translate[i + 1]; int token_next = i + 1 != eob ? av1_get_token(qcoeff[scan[i + 1]]) : EOB_TOKEN; token_cache[rc] = av1_pt_energy_class[t0]; ctx_next = get_coef_context(nb, token_cache, i + 1); token_tree_sel_next = (x == 0); next_bits0 = get_token_bit_costs(*(token_costs_ptr + band_next), token_tree_sel_next, ctx_next, token_next); next_eob_bits0 = get_token_bit_costs(*(token_costs_ptr + band_next), token_tree_sel_next, ctx_next, EOB_TOKEN); token_cache[rc] = av1_pt_energy_class[t1]; ctx_next = get_coef_context(nb, token_cache, i + 1); token_tree_sel_next = (x_a == 0); next_bits1 = get_token_bit_costs(*(token_costs_ptr + band_next), token_tree_sel_next, ctx_next, token_next); if (x_a != 0) { next_eob_bits1 = get_token_bit_costs(*(token_costs_ptr + band_next), token_tree_sel_next, ctx_next, EOB_TOKEN); } } rd_cost0 = RDCOST(rdmult, (rate0 + next_bits0), d2); rd_cost1 = RDCOST(rdmult, (rate1 + next_bits1), d2_a); best_x = (rd_cost1 < rd_cost0); eob_cost0 = RDCOST(rdmult, (accu_rate + rate0 + next_eob_bits0), (accu_error + d2 - d0)); eob_cost1 = eob_cost0; if (x_a != 0) { eob_cost1 = RDCOST(rdmult, (accu_rate + rate1 + next_eob_bits1), (accu_error + d2_a - d0)); best_eob_x = (eob_cost1 < eob_cost0); } else { best_eob_x = 0; } int dqc, dqc_a = 0; dqc = dqcoeff[rc]; if (best_x + best_eob_x) { if (x_a != 0) { #if CONFIG_NEW_QUANT dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv, dequant_val[band_translate[i]]); dqc_a = shift ? ROUND_POWER_OF_TWO(dqc_a, shift) : dqc_a; if (sz) dqc_a = -dqc_a; #else if (x_a < 0) dqc_a = -((-x_a * dqv) >> shift); else dqc_a = (x_a * dqv) >> shift; #endif // CONFIG_NEW_QUANT } else { dqc_a = 0; } // if (x_a != 0) } // record the better quantized value if (best_x) { qcoeff[rc] = x_a; dqcoeff[rc] = dqc_a; accu_rate += rate1; accu_error += d2_a - d0; assert(d2_a <= d0); token_cache[rc] = av1_pt_energy_class[t1]; } else { accu_rate += rate0; accu_error += d2 - d0; assert(d2 <= d0); token_cache[rc] = av1_pt_energy_class[t0]; } assert(accu_error >= 0); x_prev = qcoeff[rc]; // determine whether to move the eob position to i+1 int use_a = (x_a != 0) && (best_eob_x); int64_t best_eob_cost_i = use_a ? eob_cost1 : eob_cost0; if (best_eob_cost_i < best_block_rd_cost) { best_block_rd_cost = best_eob_cost_i; final_eob = i + 1; if (use_a) { before_best_eob_qc = x_a; before_best_eob_dqc = dqc_a; } else { before_best_eob_qc = x; before_best_eob_dqc = dqc; } } } // if (x==0) } // for (i) assert(final_eob <= eob); if (final_eob > 0) { assert(before_best_eob_qc != 0); i = final_eob - 1; int rc = scan[i]; qcoeff[rc] = before_best_eob_qc; dqcoeff[rc] = before_best_eob_dqc; } for (i = final_eob; i < eob; i++) { int rc = scan[i]; qcoeff[rc] = 0; dqcoeff[rc] = 0; } mb->plane[plane].eobs[block] = final_eob; return final_eob; } #endif // !CONFIG_LV_MAP int av1_optimize_b(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int blk_row, int blk_col, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, const ENTROPY_CONTEXT *a, const ENTROPY_CONTEXT *l) { MACROBLOCKD *const xd = &mb->e_mbd; struct macroblock_plane *const p = &mb->plane[plane]; const int eob = p->eobs[block]; assert((mb->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0)); if (eob == 0) return eob; if (xd->lossless[xd->mi[0]->mbmi.segment_id]) return eob; #if CONFIG_PVQ (void)cm; (void)tx_size; (void)a; (void)l; return eob; #endif #if !CONFIG_LV_MAP (void)plane_bsize; (void)blk_row; (void)blk_col; #if CONFIG_VAR_TX int ctx = get_entropy_context(tx_size, a, l); #else int ctx = combine_entropy_contexts(*a, *l); #endif // CONFIG_VAR_TX return optimize_b_greedy(cm, mb, plane, blk_row, blk_col, block, tx_size, ctx); #else // !CONFIG_LV_MAP TXB_CTX txb_ctx; get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); return av1_optimize_txb(cm, mb, plane, blk_row, blk_col, block, tx_size, &txb_ctx); #endif // !CONFIG_LV_MAP } #if !CONFIG_PVQ typedef enum QUANT_FUNC { QUANT_FUNC_LOWBD = 0, QUANT_FUNC_HIGHBD = 1, QUANT_FUNC_TYPES = 2 } QUANT_FUNC; static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = { #if !CONFIG_NEW_QUANT { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade }, { av1_quantize_b_facade, av1_highbd_quantize_b_facade }, { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade }, #else // !CONFIG_NEW_QUANT { av1_quantize_fp_nuq_facade, av1_highbd_quantize_fp_nuq_facade }, { av1_quantize_b_nuq_facade, av1_highbd_quantize_b_nuq_facade }, { av1_quantize_dc_nuq_facade, av1_highbd_quantize_dc_nuq_facade }, #endif // !CONFIG_NEW_QUANT { NULL, NULL } }; #endif // !CONFIG_PVQ typedef void (*fwdTxfmFunc)(const int16_t *diff, tran_low_t *coeff, int stride, TxfmParam *txfm_param); static const fwdTxfmFunc fwd_txfm_func[2] = { av1_fwd_txfm, av1_highbd_fwd_txfm }; void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, int ctx, AV1_XFORM_QUANT xform_quant_idx) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; #if !(CONFIG_PVQ || CONFIG_DIST_8X8) const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; #else struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; #endif PLANE_TYPE plane_type = get_plane_type(plane); TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, block, tx_size); #if CONFIG_AOM_QM || CONFIG_NEW_QUANT const int is_inter = is_inter_block(mbmi); #endif const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi); tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = block_size_wide[plane_bsize]; #if CONFIG_AOM_QM int seg_id = mbmi->segment_id; // Use a flat matrix (i.e. no weighting) for 1D and Identity transforms const qm_val_t *qmatrix = IS_2D_TRANSFORM(tx_type) ? pd->seg_qmatrix[seg_id][!is_inter][tx_size] : cm->gqmatrix[NUM_QM_LEVELS - 1][0][0][tx_size]; const qm_val_t *iqmatrix = IS_2D_TRANSFORM(tx_type) ? pd->seg_iqmatrix[seg_id][!is_inter][tx_size] : cm->giqmatrix[NUM_QM_LEVELS - 1][0][0][tx_size]; #endif TxfmParam txfm_param; #if CONFIG_PVQ || CONFIG_DIST_8X8 || CONFIG_LGT || CONFIG_MRC_TX uint8_t *dst; const int dst_stride = pd->dst.stride; #if CONFIG_PVQ || CONFIG_DIST_8X8 int16_t *pred; const int txw = tx_size_wide[tx_size]; const int txh = tx_size_high[tx_size]; int i, j; #endif #endif #if !CONFIG_PVQ const int tx2d_size = tx_size_2d[tx_size]; QUANT_PARAM qparam; const int16_t *src_diff; src_diff = &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; qparam.log_scale = av1_get_tx_scale(tx_size); #if CONFIG_NEW_QUANT qparam.tx_size = tx_size; qparam.dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type); #endif // CONFIG_NEW_QUANT #if CONFIG_AOM_QM qparam.qmatrix = qmatrix; qparam.iqmatrix = iqmatrix; #endif // CONFIG_AOM_QM #else tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block); int skip = 1; PVQ_INFO *pvq_info = NULL; uint8_t *src; int16_t *src_int16; const int src_stride = p->src.stride; (void)ctx; (void)scan_order; (void)qcoeff; if (x->pvq_coded) { assert(block < MAX_PVQ_BLOCKS_IN_SB); pvq_info = &x->pvq[block][plane]; } src = &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; src_int16 = &p->src_int16[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { for (j = 0; j < txh; j++) for (i = 0; i < txw; i++) src_int16[diff_stride * j + i] = CONVERT_TO_SHORTPTR(src)[src_stride * j + i]; } else { #endif // CONFIG_HIGHBITDEPTH for (j = 0; j < txh; j++) for (i = 0; i < txw; i++) src_int16[diff_stride * j + i] = src[src_stride * j + i]; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH #endif #if CONFIG_PVQ || CONFIG_DIST_8X8 || CONFIG_LGT || CONFIG_MRC_TX dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; #if CONFIG_PVQ || CONFIG_DIST_8X8 pred = &pd->pred[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; // copy uint8 orig and predicted block to int16 buffer // in order to use existing VP10 transform functions #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { for (j = 0; j < txh; j++) for (i = 0; i < txw; i++) pred[diff_stride * j + i] = CONVERT_TO_SHORTPTR(dst)[dst_stride * j + i]; } else { #endif // CONFIG_HIGHBITDEPTH for (j = 0; j < txh; j++) for (i = 0; i < txw; i++) pred[diff_stride * j + i] = dst[dst_stride * j + i]; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH #endif // CONFIG_PVQ || CONFIG_DIST_8X8 #endif // CONFIG_PVQ || CONFIG_DIST_8X8 || CONFIG_LGT || CONFIG_MRC_TX (void)ctx; txfm_param.tx_type = tx_type; txfm_param.tx_size = tx_size; txfm_param.lossless = xd->lossless[mbmi->segment_id]; #if CONFIG_MRC_TX || CONFIG_LGT txfm_param.dst = dst; txfm_param.stride = dst_stride; #endif // CONFIG_MRC_TX || CONFIG_LGT #if CONFIG_LGT txfm_param.is_inter = is_inter_block(mbmi); txfm_param.mode = get_prediction_mode(xd->mi[0], plane, tx_size, block); #endif #if !CONFIG_PVQ txfm_param.bd = xd->bd; const int is_hbd = get_bitdepth_data_path_index(xd); fwd_txfm_func[is_hbd](src_diff, coeff, diff_stride, &txfm_param); if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) { if (LIKELY(!x->skip_block)) { quant_func_list[xform_quant_idx][is_hbd]( coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam); } else { av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob); } } #if CONFIG_LV_MAP p->txb_entropy_ctx[block] = (uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob); #endif // CONFIG_LV_MAP return; #else // CONFIG_PVQ (void)xform_quant_idx; #if CONFIG_HIGHBITDEPTH txfm_param.bd = xd->bd; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { av1_highbd_fwd_txfm(src_int16, coeff, diff_stride, &txfm_param); av1_highbd_fwd_txfm(pred, ref_coeff, diff_stride, &txfm_param); } else { #endif av1_fwd_txfm(src_int16, coeff, diff_stride, &txfm_param); av1_fwd_txfm(pred, ref_coeff, diff_stride, &txfm_param); #if CONFIG_HIGHBITDEPTH } #endif // PVQ for inter mode block if (!x->skip_block) { PVQ_SKIP_TYPE ac_dc_coded = av1_pvq_encode_helper(x, coeff, // target original vector ref_coeff, // reference vector dqcoeff, // de-quantized vector eob, // End of Block marker pd->dequant, // aom's quantizers plane, // image plane tx_size, // block size in log_2 - 2 tx_type, &x->rate, // rate measured x->pvq_speed, pvq_info); // PVQ info for a block skip = ac_dc_coded == PVQ_SKIP; } x->pvq_skip[plane] = skip; if (!skip) mbmi->skip = 0; #endif // #if !CONFIG_PVQ } static void encode_block(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; AV1_COMMON *cm = args->cm; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; int ctx; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint8_t *dst; #if !CONFIG_PVQ ENTROPY_CONTEXT *a, *l; #endif #if CONFIG_VAR_TX int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; #endif dst = &pd->dst .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; #if !CONFIG_PVQ a = &args->ta[blk_col]; l = &args->tl[blk_row]; #if CONFIG_VAR_TX ctx = get_entropy_context(tx_size, a, l); #else ctx = combine_entropy_contexts(*a, *l); #endif #else ctx = 0; #endif // CONFIG_PVQ #if CONFIG_VAR_TX // Assert not magic number (uninitialized). assert(x->blk_skip[plane][blk_row * bw + blk_col] != 234); if (x->blk_skip[plane][blk_row * bw + blk_col] == 0) { #else { #endif av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, ctx, AV1_XFORM_QUANT_FP); } #if CONFIG_VAR_TX else { p->eobs[block] = 0; } #endif #if !CONFIG_PVQ av1_optimize_b(cm, x, plane, blk_row, blk_col, block, plane_bsize, tx_size, a, l); av1_set_txb_context(x, plane, block, tx_size, a, l); if (p->eobs[block]) *(args->skip) = 0; if (p->eobs[block] == 0) return; #else (void)ctx; if (!x->pvq_skip[plane]) *(args->skip) = 0; if (x->pvq_skip[plane]) return; #endif TX_TYPE tx_type = av1_get_tx_type(pd->plane_type, xd, blk_row, blk_col, block, tx_size); #if CONFIG_LGT PREDICTION_MODE mode = get_prediction_mode(xd->mi[0], plane, tx_size, block); av1_inverse_transform_block(xd, dqcoeff, mode, tx_type, tx_size, dst, pd->dst.stride, p->eobs[block]); #else av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst, pd->dst.stride, p->eobs[block]); #endif } #if CONFIG_VAR_TX static void encode_block_inter(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int tx_row = blk_row >> (1 - pd->subsampling_y); const int tx_col = blk_col >> (1 - pd->subsampling_x); TX_SIZE plane_tx_size; const int max_blocks_high = max_block_high(xd, plane_bsize, plane); const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; plane_tx_size = plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0] : mbmi->inter_tx_size[tx_row][tx_col]; if (tx_size == plane_tx_size) { encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg); } else { assert(tx_size < TX_SIZES_ALL); #if CONFIG_RECT_TX_EXT int is_qttx = plane_tx_size == quarter_txsize_lookup[plane_bsize]; const TX_SIZE sub_txs = is_qttx ? plane_tx_size : sub_tx_size_map[tx_size]; if (is_qttx) assert(blk_row == 0 && blk_col == 0 && block == 0); #else const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; assert(sub_txs < tx_size); #endif // This is the square transform block partition entry point. int bsl = tx_size_wide_unit[sub_txs]; int i; assert(bsl > 0); for (i = 0; i < 4; ++i) { #if CONFIG_RECT_TX_EXT int is_wide_tx = tx_size_wide_unit[sub_txs] > tx_size_high_unit[sub_txs]; const int offsetr = is_qttx ? (is_wide_tx ? i * tx_size_high_unit[sub_txs] : 0) : blk_row + ((i >> 1) * bsl); const int offsetc = is_qttx ? (is_wide_tx ? 0 : i * tx_size_wide_unit[sub_txs]) : blk_col + ((i & 0x01) * bsl); #else const int offsetr = blk_row + ((i >> 1) * bsl); const int offsetc = blk_col + ((i & 0x01) * bsl); #endif int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs]; if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs, arg); block += step; } } } #endif typedef struct encode_block_pass1_args { AV1_COMMON *cm; MACROBLOCK *x; } encode_block_pass1_args; static void encode_block_pass1(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { encode_block_pass1_args *args = (encode_block_pass1_args *)arg; AV1_COMMON *cm = args->cm; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); TxfmParam txfm_param; uint8_t *dst; int ctx = 0; dst = &pd->dst .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, ctx, AV1_XFORM_QUANT_B); #if !CONFIG_PVQ if (p->eobs[block] > 0) { #else if (!x->pvq_skip[plane]) { { int tx_blk_size; int i, j; // transform block size in pixels tx_blk_size = tx_size_wide[tx_size]; // Since av1 does not have separate function which does inverse transform // but av1_inv_txfm_add_*x*() also does addition of predicted image to // inverse transformed image, // pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) CONVERT_TO_SHORTPTR(dst)[j * pd->dst.stride + i] = 0; } else { #endif // CONFIG_HIGHBITDEPTH for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH } #endif // !CONFIG_PVQ txfm_param.bd = xd->bd; txfm_param.tx_type = DCT_DCT; txfm_param.eob = p->eobs[block]; txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { av1_highbd_inv_txfm_add_4x4(dqcoeff, dst, pd->dst.stride, &txfm_param); return; } #endif // CONFIG_HIGHBITDEPTH if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, &txfm_param); } else { av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, &txfm_param); } } } void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { encode_block_pass1_args args = { cm, x }; av1_subtract_plane(x, bsize, 0); av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, encode_block_pass1, &args); } void av1_encode_sb(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 }; int plane; mbmi->skip = 1; if (x->skip) return; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { #if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2 const int subsampling_x = xd->plane[plane].subsampling_x; const int subsampling_y = xd->plane[plane].subsampling_y; if (!is_chroma_reference(mi_row, mi_col, bsize, subsampling_x, subsampling_y)) continue; bsize = scale_chroma_bsize(bsize, subsampling_x, subsampling_y); #else (void)mi_row; (void)mi_col; #endif #if CONFIG_VAR_TX // TODO(jingning): Clean this up. const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0]; const TX_SIZE max_tx_size = get_vartx_max_txsize(mbmi, plane_bsize); const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0]; const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0]; int idx, idy; int block = 0; int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; av1_get_entropy_contexts(bsize, 0, pd, ctx.ta[plane], ctx.tl[plane]); #else const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = av1_get_tx_size(plane, xd); av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]); #endif #if !CONFIG_PVQ av1_subtract_plane(x, bsize, plane); #endif arg.ta = ctx.ta[plane]; arg.tl = ctx.tl[plane]; #if CONFIG_VAR_TX const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, pd); int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide); mu_blocks_high = AOMMIN(mi_height, mu_blocks_high); for (idy = 0; idy < mi_height; idy += mu_blocks_high) { for (idx = 0; idx < mi_width; idx += mu_blocks_wide) { int blk_row, blk_col; const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height); const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width); for (blk_row = idy; blk_row < unit_height; blk_row += bh) { for (blk_col = idx; blk_col < unit_width; blk_col += bw) { encode_block_inter(plane, block, blk_row, blk_col, plane_bsize, max_tx_size, &arg); block += step; } } } } #else av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block, &arg); #endif } } #if CONFIG_SUPERTX void av1_encode_sb_supertx(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 }; int plane; mbmi->skip = 1; if (x->skip) return; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; #if CONFIG_VAR_TX const TX_SIZE tx_size = TX_4X4; #else const TX_SIZE tx_size = av1_get_tx_size(plane, xd); #endif av1_subtract_plane(x, bsize, plane); av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]); arg.ta = ctx.ta[plane]; arg.tl = ctx.tl[plane]; av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block, &arg); } } #endif // CONFIG_SUPERTX #if !CONFIG_PVQ void av1_set_txb_context(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { (void)tx_size; struct macroblock_plane *p = &x->plane[plane]; #if !CONFIG_LV_MAP *a = *l = p->eobs[block] > 0; #else // !CONFIG_LV_MAP *a = *l = p->txb_entropy_ctx[block]; #endif // !CONFIG_LV_MAP #if CONFIG_VAR_TX || CONFIG_LV_MAP int i; for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) a[i] = a[0]; for (i = 0; i < tx_size_high_unit[tx_size]; ++i) l[i] = l[0]; #endif } #endif static void encode_block_intra_and_set_context(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg); #if !CONFIG_PVQ struct encode_b_args *const args = arg; MACROBLOCK *x = args->x; ENTROPY_CONTEXT *a = &args->ta[blk_col]; ENTROPY_CONTEXT *l = &args->tl[blk_row]; av1_set_txb_context(x, plane, block, tx_size, a, l); #endif } #if CONFIG_DPCM_INTRA static int get_eob(const tran_low_t *qcoeff, intptr_t n_coeffs, const int16_t *scan) { int eob = -1; for (int i = (int)n_coeffs - 1; i >= 0; i--) { const int rc = scan[i]; if (qcoeff[rc]) { eob = i; break; } } return eob + 1; } static void quantize_scaler(int coeff, int16_t zbin, int16_t round_value, int16_t quant, int16_t quant_shift, int16_t dequant, int log_scale, tran_low_t *const qcoeff, tran_low_t *const dqcoeff) { zbin = ROUND_POWER_OF_TWO(zbin, log_scale); round_value = ROUND_POWER_OF_TWO(round_value, log_scale); const int coeff_sign = (coeff >> 31); const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; if (abs_coeff >= zbin) { int tmp = clamp(abs_coeff + round_value, INT16_MIN, INT16_MAX); tmp = ((((tmp * quant) >> 16) + tmp) * quant_shift) >> (16 - log_scale); *qcoeff = (tmp ^ coeff_sign) - coeff_sign; *dqcoeff = (*qcoeff * dequant) / (1 << log_scale); } } #if CONFIG_HIGHBITDEPTH typedef void (*hbd_dpcm_fwd_tx_func)(const int16_t *input, int stride, TX_TYPE_1D tx_type, tran_low_t *output, int dir); static hbd_dpcm_fwd_tx_func get_hbd_dpcm_fwd_tx_func(int tx_length) { switch (tx_length) { case 4: return av1_hbd_dpcm_ft4_c; case 8: return av1_hbd_dpcm_ft8_c; case 16: return av1_hbd_dpcm_ft16_c; case 32: return av1_hbd_dpcm_ft32_c; // TODO(huisu): add support for TX_64X64. default: assert(0); return NULL; } } #endif // CONFIG_HIGHBITDEPTH typedef void (*dpcm_fwd_tx_func)(const int16_t *input, int stride, TX_TYPE_1D tx_type, tran_low_t *output); static dpcm_fwd_tx_func get_dpcm_fwd_tx_func(int tx_length) { switch (tx_length) { case 4: return av1_dpcm_ft4_c; case 8: return av1_dpcm_ft8_c; case 16: return av1_dpcm_ft16_c; case 32: return av1_dpcm_ft32_c; // TODO(huisu): add support for TX_64X64. default: assert(0); return NULL; } } static void process_block_dpcm_vert(TX_SIZE tx_size, TX_TYPE_1D tx_type_1d, struct macroblockd_plane *const pd, struct macroblock_plane *const p, uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int16_t *src_diff, int diff_stride, tran_low_t *coeff, tran_low_t *qcoeff, tran_low_t *dqcoeff) { const int tx1d_width = tx_size_wide[tx_size]; dpcm_fwd_tx_func forward_tx = get_dpcm_fwd_tx_func(tx1d_width); dpcm_inv_txfm_add_func inverse_tx = av1_get_dpcm_inv_txfm_add_func(tx1d_width); const int tx1d_height = tx_size_high[tx_size]; const int log_scale = av1_get_tx_scale(tx_size); int q_idx = 0; for (int r = 0; r < tx1d_height; ++r) { // Update prediction. if (r > 0) memcpy(dst, dst - dst_stride, tx1d_width * sizeof(dst[0])); // Subtraction. for (int c = 0; c < tx1d_width; ++c) src_diff[c] = src[c] - dst[c]; // Forward transform. forward_tx(src_diff, 1, tx_type_1d, coeff); // Quantization. for (int c = 0; c < tx1d_width; ++c) { quantize_scaler(coeff[c], p->zbin[q_idx], p->round[q_idx], p->quant[q_idx], p->quant_shift[q_idx], pd->dequant[q_idx], log_scale, &qcoeff[c], &dqcoeff[c]); q_idx = 1; } // Inverse transform. inverse_tx(dqcoeff, 1, tx_type_1d, dst); // Move to the next row. coeff += tx1d_width; qcoeff += tx1d_width; dqcoeff += tx1d_width; src_diff += diff_stride; dst += dst_stride; src += src_stride; } } static void process_block_dpcm_horz(TX_SIZE tx_size, TX_TYPE_1D tx_type_1d, struct macroblockd_plane *const pd, struct macroblock_plane *const p, uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int16_t *src_diff, int diff_stride, tran_low_t *coeff, tran_low_t *qcoeff, tran_low_t *dqcoeff) { const int tx1d_height = tx_size_high[tx_size]; dpcm_fwd_tx_func forward_tx = get_dpcm_fwd_tx_func(tx1d_height); dpcm_inv_txfm_add_func inverse_tx = av1_get_dpcm_inv_txfm_add_func(tx1d_height); const int tx1d_width = tx_size_wide[tx_size]; const int log_scale = av1_get_tx_scale(tx_size); int q_idx = 0; for (int c = 0; c < tx1d_width; ++c) { for (int r = 0; r < tx1d_height; ++r) { // Update prediction. if (c > 0) dst[r * dst_stride] = dst[r * dst_stride - 1]; // Subtraction. src_diff[r * diff_stride] = src[r * src_stride] - dst[r * dst_stride]; } // Forward transform. tran_low_t tx_buff[64]; forward_tx(src_diff, diff_stride, tx_type_1d, tx_buff); for (int r = 0; r < tx1d_height; ++r) coeff[r * tx1d_width] = tx_buff[r]; // Quantization. for (int r = 0; r < tx1d_height; ++r) { quantize_scaler(coeff[r * tx1d_width], p->zbin[q_idx], p->round[q_idx], p->quant[q_idx], p->quant_shift[q_idx], pd->dequant[q_idx], log_scale, &qcoeff[r * tx1d_width], &dqcoeff[r * tx1d_width]); q_idx = 1; } // Inverse transform. for (int r = 0; r < tx1d_height; ++r) tx_buff[r] = dqcoeff[r * tx1d_width]; inverse_tx(tx_buff, dst_stride, tx_type_1d, dst); // Move to the next column. ++coeff, ++qcoeff, ++dqcoeff, ++src_diff, ++dst, ++src; } } #if CONFIG_HIGHBITDEPTH static void hbd_process_block_dpcm_vert( TX_SIZE tx_size, TX_TYPE_1D tx_type_1d, int bd, struct macroblockd_plane *const pd, struct macroblock_plane *const p, uint8_t *src8, int src_stride, uint8_t *dst8, int dst_stride, int16_t *src_diff, int diff_stride, tran_low_t *coeff, tran_low_t *qcoeff, tran_low_t *dqcoeff) { const int tx1d_width = tx_size_wide[tx_size]; hbd_dpcm_fwd_tx_func forward_tx = get_hbd_dpcm_fwd_tx_func(tx1d_width); hbd_dpcm_inv_txfm_add_func inverse_tx = av1_get_hbd_dpcm_inv_txfm_add_func(tx1d_width); uint16_t *src = CONVERT_TO_SHORTPTR(src8); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); const int tx1d_height = tx_size_high[tx_size]; const int log_scale = av1_get_tx_scale(tx_size); int q_idx = 0; for (int r = 0; r < tx1d_height; ++r) { // Update prediction. if (r > 0) memcpy(dst, dst - dst_stride, tx1d_width * sizeof(dst[0])); // Subtraction. for (int c = 0; c < tx1d_width; ++c) src_diff[c] = src[c] - dst[c]; // Forward transform. forward_tx(src_diff, 1, tx_type_1d, coeff, 1); // Quantization. for (int c = 0; c < tx1d_width; ++c) { quantize_scaler(coeff[c], p->zbin[q_idx], p->round[q_idx], p->quant[q_idx], p->quant_shift[q_idx], pd->dequant[q_idx], log_scale, &qcoeff[c], &dqcoeff[c]); q_idx = 1; } // Inverse transform. inverse_tx(dqcoeff, 1, tx_type_1d, bd, dst, 1); // Move to the next row. coeff += tx1d_width; qcoeff += tx1d_width; dqcoeff += tx1d_width; src_diff += diff_stride; dst += dst_stride; src += src_stride; } } static void hbd_process_block_dpcm_horz( TX_SIZE tx_size, TX_TYPE_1D tx_type_1d, int bd, struct macroblockd_plane *const pd, struct macroblock_plane *const p, uint8_t *src8, int src_stride, uint8_t *dst8, int dst_stride, int16_t *src_diff, int diff_stride, tran_low_t *coeff, tran_low_t *qcoeff, tran_low_t *dqcoeff) { const int tx1d_height = tx_size_high[tx_size]; hbd_dpcm_fwd_tx_func forward_tx = get_hbd_dpcm_fwd_tx_func(tx1d_height); hbd_dpcm_inv_txfm_add_func inverse_tx = av1_get_hbd_dpcm_inv_txfm_add_func(tx1d_height); uint16_t *src = CONVERT_TO_SHORTPTR(src8); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); const int tx1d_width = tx_size_wide[tx_size]; const int log_scale = av1_get_tx_scale(tx_size); int q_idx = 0; for (int c = 0; c < tx1d_width; ++c) { for (int r = 0; r < tx1d_height; ++r) { // Update prediction. if (c > 0) dst[r * dst_stride] = dst[r * dst_stride - 1]; // Subtraction. src_diff[r * diff_stride] = src[r * src_stride] - dst[r * dst_stride]; } // Forward transform. tran_low_t tx_buff[64]; forward_tx(src_diff, diff_stride, tx_type_1d, tx_buff, 0); for (int r = 0; r < tx1d_height; ++r) coeff[r * tx1d_width] = tx_buff[r]; // Quantization. for (int r = 0; r < tx1d_height; ++r) { quantize_scaler(coeff[r * tx1d_width], p->zbin[q_idx], p->round[q_idx], p->quant[q_idx], p->quant_shift[q_idx], pd->dequant[q_idx], log_scale, &qcoeff[r * tx1d_width], &dqcoeff[r * tx1d_width]); q_idx = 1; } // Inverse transform. for (int r = 0; r < tx1d_height; ++r) tx_buff[r] = dqcoeff[r * tx1d_width]; inverse_tx(tx_buff, dst_stride, tx_type_1d, bd, dst, 0); // Move to the next column. ++coeff, ++qcoeff, ++dqcoeff, ++src_diff, ++dst, ++src; } } #endif // CONFIG_HIGHBITDEPTH void av1_encode_block_intra_dpcm(const AV1_COMMON *cm, MACROBLOCK *x, PREDICTION_MODE mode, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, TX_TYPE tx_type, ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl, int8_t *skip) { MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const int diff_stride = block_size_wide[plane_bsize]; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; const int tx1d_width = tx_size_wide[tx_size]; const int tx1d_height = tx_size_high[tx_size]; const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, &xd->mi[0]->mbmi); tran_low_t *coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; int16_t *src_diff = &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; uint16_t *eob = &p->eobs[block]; *eob = 0; memset(qcoeff, 0, tx1d_height * tx1d_width * sizeof(*qcoeff)); memset(dqcoeff, 0, tx1d_height * tx1d_width * sizeof(*dqcoeff)); if (LIKELY(!x->skip_block)) { TX_TYPE_1D tx_type_1d = DCT_1D; switch (tx_type) { case IDTX: tx_type_1d = IDTX_1D; break; case V_DCT: assert(mode == H_PRED); tx_type_1d = DCT_1D; break; case H_DCT: assert(mode == V_PRED); tx_type_1d = DCT_1D; break; default: assert(0); } switch (mode) { case V_PRED: #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { hbd_process_block_dpcm_vert(tx_size, tx_type_1d, xd->bd, pd, p, src, src_stride, dst, dst_stride, src_diff, diff_stride, coeff, qcoeff, dqcoeff); } else { #endif // CONFIG_HIGHBITDEPTH process_block_dpcm_vert(tx_size, tx_type_1d, pd, p, src, src_stride, dst, dst_stride, src_diff, diff_stride, coeff, qcoeff, dqcoeff); #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH break; case H_PRED: #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { hbd_process_block_dpcm_horz(tx_size, tx_type_1d, xd->bd, pd, p, src, src_stride, dst, dst_stride, src_diff, diff_stride, coeff, qcoeff, dqcoeff); } else { #endif // CONFIG_HIGHBITDEPTH process_block_dpcm_horz(tx_size, tx_type_1d, pd, p, src, src_stride, dst, dst_stride, src_diff, diff_stride, coeff, qcoeff, dqcoeff); #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH break; default: assert(0); } *eob = get_eob(qcoeff, tx1d_height * tx1d_width, scan_order->scan); } ta[blk_col] = tl[blk_row] = *eob > 0; if (*eob) *skip = 0; } #endif // CONFIG_DPCM_INTRA void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; AV1_COMMON *cm = args->cm; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); PLANE_TYPE plane_type = get_plane_type(plane); const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, block, tx_size); uint16_t *eob = &p->eobs[block]; const int dst_stride = pd->dst.stride; uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; av1_predict_intra_block_facade(xd, plane, block, blk_col, blk_row, tx_size); #if CONFIG_DPCM_INTRA || CONFIG_LGT const PREDICTION_MODE mode = get_prediction_mode(xd->mi[0], plane, tx_size, block); #if CONFIG_DPCM_INTRA const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; if (av1_use_dpcm_intra(plane, mode, tx_type, mbmi)) { av1_encode_block_intra_dpcm(cm, x, mode, plane, block, blk_row, blk_col, plane_bsize, tx_size, tx_type, args->ta, args->tl, args->skip); return; } #endif // CONFIG_DPCM_INTRA #endif // CONFIG_DPCM_INTRA || CONFIG_LGT av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); const ENTROPY_CONTEXT *a = &args->ta[blk_col]; const ENTROPY_CONTEXT *l = &args->tl[blk_row]; int ctx = combine_entropy_contexts(*a, *l); if (args->enable_optimize_b) { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, ctx, AV1_XFORM_QUANT_FP); av1_optimize_b(cm, x, plane, blk_row, blk_col, block, plane_bsize, tx_size, a, l); } else { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, ctx, AV1_XFORM_QUANT_B); } #if CONFIG_PVQ // *(args->skip) == mbmi->skip if (!x->pvq_skip[plane]) *(args->skip) = 0; if (x->pvq_skip[plane]) return; #endif // CONFIG_PVQ av1_inverse_transform_block(xd, dqcoeff, #if CONFIG_LGT mode, #endif tx_type, tx_size, dst, dst_stride, *eob); #if !CONFIG_PVQ if (*eob) *(args->skip) = 0; #else // Note : *(args->skip) == mbmi->skip #endif #if CONFIG_CFL if (plane == AOM_PLANE_Y && x->cfl_store_y) { // TODO (ltrudeau) Store sub-8x8 inter blocks when bottom right block is // intra predicted. cfl_store(xd->cfl, dst, dst_stride, blk_row, blk_col, tx_size, plane_bsize); } #endif } void av1_encode_intra_block_plane(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize, int plane, int enable_optimize_b, int mi_row, int mi_col) { const MACROBLOCKD *const xd = &x->e_mbd; ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE] = { 0 }; ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE] = { 0 }; struct encode_b_args arg = { cm, x, NULL, &xd->mi[0]->mbmi.skip, ta, tl, enable_optimize_b }; #if CONFIG_CB4X4 if (!is_chroma_reference(mi_row, mi_col, bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y)) return; #else (void)mi_row; (void)mi_col; #endif if (enable_optimize_b) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = av1_get_tx_size(plane, xd); av1_get_entropy_contexts(bsize, tx_size, pd, ta, tl); } av1_foreach_transformed_block_in_plane( xd, bsize, plane, encode_block_intra_and_set_context, &arg); } #if CONFIG_PVQ PVQ_SKIP_TYPE av1_pvq_encode_helper(MACROBLOCK *x, tran_low_t *const coeff, tran_low_t *ref_coeff, tran_low_t *const dqcoeff, uint16_t *eob, const int16_t *quant, int plane, int tx_size, TX_TYPE tx_type, int *rate, int speed, PVQ_INFO *pvq_info) { const int tx_blk_size = tx_size_wide[tx_size]; daala_enc_ctx *daala_enc = &x->daala_enc; PVQ_SKIP_TYPE ac_dc_coded; int coeff_shift = 3 - av1_get_tx_scale(tx_size); int hbd_downshift = 0; int rounding_mask; int pvq_dc_quant; int use_activity_masking = daala_enc->use_activity_masking; int tell; int has_dc_skip = 1; int i; int off = od_qm_offset(tx_size, plane ? 1 : 0); DECLARE_ALIGNED(16, tran_low_t, coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); DECLARE_ALIGNED(16, tran_low_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); DECLARE_ALIGNED(16, tran_low_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); DECLARE_ALIGNED(16, int32_t, in_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); DECLARE_ALIGNED(16, int32_t, ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); DECLARE_ALIGNED(16, int32_t, out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); hbd_downshift = x->e_mbd.bd - 8; assert(OD_COEFF_SHIFT >= 4); // DC quantizer for PVQ if (use_activity_masking) pvq_dc_quant = OD_MAXI(1, (quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift) * daala_enc->state .pvq_qm_q4[plane][od_qm_get_index(tx_size, 0)] >> 4); else pvq_dc_quant = OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift); *eob = 0; #if !CONFIG_ANS tell = od_ec_enc_tell_frac(&daala_enc->w.ec); #else #error "CONFIG_PVQ currently requires !CONFIG_ANS." #endif // Change coefficient ordering for pvq encoding. od_raster_to_coding_order(coeff_pvq, tx_blk_size, tx_type, coeff, tx_blk_size); od_raster_to_coding_order(ref_coeff_pvq, tx_blk_size, tx_type, ref_coeff, tx_blk_size); // copy int16 inputs to int32 for (i = 0; i < tx_blk_size * tx_blk_size; i++) { ref_int32[i] = AOM_SIGNED_SHL(ref_coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >> hbd_downshift; in_int32[i] = AOM_SIGNED_SHL(coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >> hbd_downshift; } if (abs(in_int32[0] - ref_int32[0]) < pvq_dc_quant * 141 / 256) { /* 0.55 */ out_int32[0] = 0; } else { out_int32[0] = OD_DIV_R0(in_int32[0] - ref_int32[0], pvq_dc_quant); } ac_dc_coded = od_pvq_encode(daala_enc, ref_int32, in_int32, out_int32, OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift), // scale/quantizer OD_MAXI(1, quant[1] << (OD_COEFF_SHIFT - 3) >> hbd_downshift), // scale/quantizer plane, tx_size, OD_PVQ_BETA[use_activity_masking][plane][tx_size], 0, // is_keyframe, daala_enc->state.qm + off, daala_enc->state.qm_inv + off, speed, // speed pvq_info); // Encode residue of DC coeff, if required. if (!has_dc_skip || out_int32[0]) { generic_encode(&daala_enc->w, &daala_enc->state.adapt->model_dc[plane], abs(out_int32[0]) - has_dc_skip, &daala_enc->state.adapt->ex_dc[plane][tx_size][0], 2); } if (out_int32[0]) { aom_write_bit(&daala_enc->w, out_int32[0] < 0); } // need to save quantized residue of DC coeff // so that final pvq bitstream writing can know whether DC is coded. if (pvq_info) pvq_info->dq_dc_residue = out_int32[0]; out_int32[0] = out_int32[0] * pvq_dc_quant; out_int32[0] += ref_int32[0]; // copy int32 result back to int16 assert(OD_COEFF_SHIFT > coeff_shift); rounding_mask = (1 << (OD_COEFF_SHIFT - coeff_shift - 1)) - 1; for (i = 0; i < tx_blk_size * tx_blk_size; i++) { out_int32[i] = AOM_SIGNED_SHL(out_int32[i], hbd_downshift); dqcoeff_pvq[i] = (out_int32[i] + (out_int32[i] < 0) + rounding_mask) >> (OD_COEFF_SHIFT - coeff_shift); } // Back to original coefficient order od_coding_order_to_raster(dqcoeff, tx_blk_size, tx_type, dqcoeff_pvq, tx_blk_size); *eob = tx_blk_size * tx_blk_size; #if !CONFIG_ANS *rate = (od_ec_enc_tell_frac(&daala_enc->w.ec) - tell) << (AV1_PROB_COST_SHIFT - OD_BITRES); #else #error "CONFIG_PVQ currently requires !CONFIG_ANS." #endif assert(*rate >= 0); return ac_dc_coded; } void av1_store_pvq_enc_info(PVQ_INFO *pvq_info, int *qg, int *theta, int *k, od_coeff *y, int nb_bands, const int *off, int *size, int skip_rest, int skip_dir, int bs) { // block size in log_2 -2 int i; const int tx_blk_size = tx_size_wide[bs]; for (i = 0; i < nb_bands; i++) { pvq_info->qg[i] = qg[i]; pvq_info->theta[i] = theta[i]; pvq_info->k[i] = k[i]; pvq_info->off[i] = off[i]; pvq_info->size[i] = size[i]; } memcpy(pvq_info->y, y, tx_blk_size * tx_blk_size * sizeof(od_coeff)); pvq_info->nb_bands = nb_bands; pvq_info->skip_rest = skip_rest; pvq_info->skip_dir = skip_dir; pvq_info->bs = bs; } #endif