/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "./av1_rtcd.h" #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "aom_dsp/bitwriter.h" #include "aom_dsp/quantize.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "av1/common/idct.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/scan.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/encodemb.h" #if CONFIG_LV_MAP #include "av1/encoder/encodetxb.h" #endif #include "av1/encoder/hybrid_fwd_txfm.h" #include "av1/encoder/rd.h" #include "av1/encoder/tokenize.h" #if CONFIG_PVQ #include "av1/encoder/encint.h" #include "av1/common/partition.h" #include "av1/encoder/pvq_encoder.h" #endif #if CONFIG_CFL #include "av1/common/cfl.h" #endif // Check if one needs to use c version subtraction. static int check_subtract_block_size(int w, int h) { return w < 4 || h < 4; } static void subtract_block(const MACROBLOCKD *xd, int rows, int cols, int16_t *diff, ptrdiff_t diff_stride, const uint8_t *src8, ptrdiff_t src_stride, const uint8_t *pred8, ptrdiff_t pred_stride) { #if !CONFIG_HIGHBITDEPTH (void)xd; #endif if (check_subtract_block_size(rows, cols)) { #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride, xd->bd); return; } #endif // CONFIG_HIGHBITDEPTH aom_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride); return; } #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride, xd->bd); return; } #endif // CONFIG_HIGHBITDEPTH aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride); } void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, int blk_col, int blk_row, TX_SIZE tx_size) { MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; const int diff_stride = block_size_wide[plane_bsize]; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; const int tx1d_width = tx_size_wide[tx_size]; const int tx1d_height = tx_size_high[tx_size]; uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; int16_t *src_diff = &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src, src_stride, dst, dst_stride); } void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; const MACROBLOCKD *xd = &x->e_mbd; subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } // These numbers are empirically obtained. static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = { #if CONFIG_EC_ADAPT { 10, 7 }, { 8, 5 }, #else { 10, 6 }, { 8, 5 }, #endif }; #define UPDATE_RD_COST() \ { \ rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); \ rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); \ } static INLINE int64_t get_token_bit_costs(unsigned int token_costs[2][COEFF_CONTEXTS][ENTROPY_TOKENS], int skip_eob, int ctx, int token) { #if CONFIG_NEW_TOKENSET (void)skip_eob; return token_costs[token == ZERO_TOKEN || token == EOB_TOKEN][ctx][token]; #else return token_costs[skip_eob][ctx][token]; #endif } #define USE_GREEDY_OPTIMIZE_B 0 #if USE_GREEDY_OPTIMIZE_B typedef struct av1_token_state { int16_t token; tran_low_t qc; tran_low_t dqc; } av1_token_state; int av1_optimize_b(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size, int ctx) { #if !CONFIG_PVQ MACROBLOCKD *const xd = &mb->e_mbd; struct macroblock_plane *const p = &mb->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const int ref = is_inter_block(&xd->mi[0]->mbmi); av1_token_state tokens[MAX_TX_SQUARE + 1][2]; uint8_t token_cache[MAX_TX_SQUARE]; const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const int eob = p->eobs[block]; const PLANE_TYPE plane_type = pd->plane_type; const int16_t *const dequant_ptr = pd->dequant; const uint8_t *const band_translate = get_band_translate(tx_size); TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi)); const int16_t *const scan = scan_order->scan; const int16_t *const nb = scan_order->neighbors; int dqv; const int shift = av1_get_tx_scale(tx_size); #if CONFIG_AOM_QM int seg_id = xd->mi[0]->mbmi.segment_id; const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!ref][tx_size]; #endif #if CONFIG_NEW_QUANT int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type); const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq]; #elif !CONFIG_AOM_QM const int dq_step[2] = { dequant_ptr[0] >> shift, dequant_ptr[1] >> shift }; #endif // CONFIG_NEW_QUANT int sz = 0; const int64_t rddiv = mb->rddiv; int64_t rd_cost0, rd_cost1; int16_t t0, t1; int i, final_eob; #if CONFIG_HIGHBITDEPTH const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd); #else const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, 8); #endif unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = mb->token_costs[txsize_sqr_map[tx_size]][plane_type][ref]; const int default_eob = tx_size_2d[tx_size]; assert((mb->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0)); assert((!plane_type && !plane) || (plane_type && plane)); assert(eob <= default_eob); int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1; /* CpuSpeedTest uses "--min-q=0 --max-q=0" and expects 100dB psnr * This creates conflict with search for a better EOB position * The line below is to make sure EOB search is disabled at this corner case. */ #if !CONFIG_NEW_QUANT && !CONFIG_AOM_QM if (dq_step[1] <= 4) { rdmult = 1; } #endif int64_t rate0, rate1; for (i = 0; i < eob; i++) { const int rc = scan[i]; int x = qcoeff[rc]; t0 = av1_get_token(x); tokens[i][0].qc = x; tokens[i][0].token = t0; tokens[i][0].dqc = dqcoeff[rc]; token_cache[rc] = av1_pt_energy_class[t0]; } tokens[eob][0].token = EOB_TOKEN; tokens[eob][0].qc = 0; tokens[eob][0].dqc = 0; tokens[eob][1] = tokens[eob][0]; unsigned int(*token_costs_ptr)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = token_costs; final_eob = 0; int64_t eob_cost0, eob_cost1; const int ctx0 = ctx; /* Record the r-d cost */ int64_t accu_rate = 0; int64_t accu_error = 0; rate0 = get_token_bit_costs(*(token_costs_ptr + band_translate[0]), 0, ctx0, EOB_TOKEN); int64_t best_block_rd_cost = RDCOST(rdmult, rddiv, rate0, accu_error); // int64_t best_block_rd_cost_all0 = best_block_rd_cost; int x_prev = 1; for (i = 0; i < eob; i++) { const int rc = scan[i]; int x = qcoeff[rc]; sz = -(x < 0); int band_cur = band_translate[i]; int ctx_cur = (i == 0) ? ctx : get_coef_context(nb, token_cache, i); int token_tree_sel_cur = (x_prev == 0); if (x == 0) { // no need to search when x == 0 rate0 = get_token_bit_costs(*(token_costs_ptr + band_cur), token_tree_sel_cur, ctx_cur, tokens[i][0].token); accu_rate += rate0; x_prev = 0; // accu_error does not change when x==0 } else { /* Computing distortion */ // compute the distortion for the first candidate // and the distortion for quantizing to 0. int dx0 = (-coeff[rc]) * (1 << shift); #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx0 >>= xd->bd - 8; } #endif int64_t d0 = (int64_t)dx0 * dx0; int x_a = x - 2 * sz - 1; int64_t d2, d2_a; int dx; #if CONFIG_AOM_QM int iwt = iqmatrix[rc]; dqv = dequant_ptr[rc != 0]; dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; #else dqv = dequant_ptr[rc != 0]; #endif dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift); #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx >>= xd->bd - 8; } #endif // CONFIG_HIGHBITDEPTH d2 = (int64_t)dx * dx; /* compute the distortion for the second candidate * x_a = x - 2 * sz + 1; */ if (x_a != 0) { #if CONFIG_NEW_QUANT dx = av1_dequant_coeff_nuq(x, dqv, dequant_val[band_translate[i]]) - (coeff[rc] << shift); #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx >>= xd->bd - 8; } #endif // CONFIG_HIGHBITDEPTH #else // CONFIG_NEW_QUANT #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz; } else { dx -= (dqv + sz) ^ sz; } #else dx -= (dqv + sz) ^ sz; #endif // CONFIG_HIGHBITDEPTH #endif // CONFIG_NEW_QUANT d2_a = (int64_t)dx * dx; } else { d2_a = d0; } /* Computing rates and r-d cost */ int best_x, best_eob_x; int64_t base_bits, next_bits0, next_bits1; int64_t next_eob_bits0, next_eob_bits1; // rate cost of x base_bits = av1_get_token_cost(x, &t0, cat6_bits); rate0 = base_bits + get_token_bit_costs(*(token_costs_ptr + band_cur), token_tree_sel_cur, ctx_cur, t0); base_bits = av1_get_token_cost(x_a, &t1, cat6_bits); rate1 = base_bits + get_token_bit_costs(*(token_costs_ptr + band_cur), token_tree_sel_cur, ctx_cur, t1); next_bits0 = 0; next_bits1 = 0; next_eob_bits0 = 0; next_eob_bits1 = 0; if (i < default_eob - 1) { int ctx_next, token_tree_sel_next; int band_next = band_translate[i + 1]; token_cache[rc] = av1_pt_energy_class[t0]; ctx_next = get_coef_context(nb, token_cache, i + 1); token_tree_sel_next = (x == 0); next_bits0 = get_token_bit_costs(*(token_costs_ptr + band_next), token_tree_sel_next, ctx_next, tokens[i + 1][0].token); next_eob_bits0 = get_token_bit_costs(*(token_costs_ptr + band_next), token_tree_sel_next, ctx_next, EOB_TOKEN); token_cache[rc] = av1_pt_energy_class[t1]; ctx_next = get_coef_context(nb, token_cache, i + 1); token_tree_sel_next = (x_a == 0); next_bits1 = get_token_bit_costs(*(token_costs_ptr + band_next), token_tree_sel_next, ctx_next, tokens[i + 1][0].token); if (x_a != 0) { next_eob_bits1 = get_token_bit_costs(*(token_costs_ptr + band_next), token_tree_sel_next, ctx_next, EOB_TOKEN); } } rd_cost0 = RDCOST(rdmult, rddiv, (rate0 + next_bits0), d2); rd_cost1 = RDCOST(rdmult, rddiv, (rate1 + next_bits1), d2_a); best_x = (rd_cost1 < rd_cost0); eob_cost0 = RDCOST(rdmult, rddiv, (accu_rate + rate0 + next_eob_bits0), (accu_error + d2 - d0)); eob_cost1 = eob_cost0; if (x_a != 0) { eob_cost1 = RDCOST(rdmult, rddiv, (accu_rate + rate1 + next_eob_bits1), (accu_error + d2_a - d0)); best_eob_x = (eob_cost1 < eob_cost0); } else { best_eob_x = 0; } int dqc, dqc_a = 0; dqc = dqcoeff[rc]; if (best_x + best_eob_x) { if (x_a != 0) { #if CONFIG_NEW_QUANT dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv, dequant_val[band_translate[i]]); dqc_a = shift ? ROUND_POWER_OF_TWO(dqc_a, shift) : dqc_a; if (sz) dqc_a = -dqc_a; #else // The 32x32 transform coefficient uses half quantization step size. // Account for the rounding difference in the dequantized coefficeint // value when the quantization index is dropped from an even number // to an odd number. #if CONFIG_AOM_QM tran_low_t offset = dqv >> shift; #else tran_low_t offset = dq_step[rc != 0]; #endif if (shift & x_a) offset += (dqv & 0x01); if (sz == 0) dqc_a = dqcoeff[rc] - offset; else dqc_a = dqcoeff[rc] + offset; #endif // CONFIG_NEW_QUANT } else { dqc_a = 0; } // if (x_a != 0) } // record the better quantized value if (best_x) { qcoeff[rc] = x_a; dqcoeff[rc] = dqc_a; accu_rate += rate1; accu_error += d2_a - d0; assert(d2_a <= d0); token_cache[rc] = av1_pt_energy_class[t1]; } else { accu_rate += rate0; accu_error += d2 - d0; assert(d2 <= d0); token_cache[rc] = av1_pt_energy_class[t0]; } x_prev = qcoeff[rc]; // determine whether to move the eob position to i+1 int64_t best_eob_cost_i = eob_cost0; tokens[i][1].token = t0; tokens[i][1].qc = x; tokens[i][1].dqc = dqc; if ((x_a != 0) && (best_eob_x)) { best_eob_cost_i = eob_cost1; tokens[i][1].token = t1; tokens[i][1].qc = x_a; tokens[i][1].dqc = dqc_a; } if (best_eob_cost_i < best_block_rd_cost) { best_block_rd_cost = best_eob_cost_i; final_eob = i + 1; } } // if (x==0) } // for (i) assert(final_eob <= eob); if (final_eob > 0) { assert(tokens[final_eob - 1][1].qc != 0); i = final_eob - 1; int rc = scan[i]; qcoeff[rc] = tokens[i][1].qc; dqcoeff[rc] = tokens[i][1].dqc; } for (i = final_eob; i < eob; i++) { int rc = scan[i]; qcoeff[rc] = 0; dqcoeff[rc] = 0; } mb->plane[plane].eobs[block] = final_eob; return final_eob; #else // !CONFIG_PVQ (void)cm; (void)tx_size; (void)ctx; struct macroblock_plane *const p = &mb->plane[plane]; return p->eobs[block]; #endif // !CONFIG_PVQ } #else // USE_GREEDY_OPTIMIZE_B typedef struct av1_token_state { int64_t error; int rate; int16_t next; int16_t token; tran_low_t qc; tran_low_t dqc; uint8_t best_index; } av1_token_state; int av1_optimize_b(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size, int ctx) { #if !CONFIG_PVQ MACROBLOCKD *const xd = &mb->e_mbd; struct macroblock_plane *const p = &mb->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const int ref = is_inter_block(&xd->mi[0]->mbmi); av1_token_state tokens[MAX_TX_SQUARE + 1][2]; uint8_t token_cache[MAX_TX_SQUARE]; const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const int eob = p->eobs[block]; const PLANE_TYPE plane_type = pd->plane_type; const int default_eob = tx_size_2d[tx_size]; const int16_t *const dequant_ptr = pd->dequant; const uint8_t *const band_translate = get_band_translate(tx_size); TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi)); const int16_t *const scan = scan_order->scan; const int16_t *const nb = scan_order->neighbors; int dqv; const int shift = av1_get_tx_scale(tx_size); #if CONFIG_AOM_QM int seg_id = xd->mi[0]->mbmi.segment_id; const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!ref][tx_size]; #endif #if CONFIG_NEW_QUANT int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type); const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq]; #elif !CONFIG_AOM_QM const int dq_step[2] = { dequant_ptr[0] >> shift, dequant_ptr[1] >> shift }; #endif // CONFIG_NEW_QUANT int next = eob, sz = 0; const int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1; const int64_t rddiv = mb->rddiv; int64_t rd_cost0, rd_cost1; int rate0, rate1; int64_t error0, error1; int16_t t0, t1; int best, band = (eob < default_eob) ? band_translate[eob] : band_translate[eob - 1]; int pt, i, final_eob; #if CONFIG_HIGHBITDEPTH const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd); #else const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, 8); #endif unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = mb->token_costs[txsize_sqr_map[tx_size]][plane_type][ref]; const uint16_t *band_counts = &band_count_table[tx_size][band]; uint16_t band_left = eob - band_cum_count_table[tx_size][band] + 1; int shortcut = 0; int next_shortcut = 0; #if CONFIG_EXT_DELTA_Q const int qindex = cm->seg.enabled ? av1_get_qindex(&cm->seg, xd->mi[0]->mbmi.segment_id, cm->base_qindex) : cm->base_qindex; if (qindex == 0) { assert((qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0)); } #else assert((mb->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0)); #endif token_costs += band; assert((!plane_type && !plane) || (plane_type && plane)); assert(eob <= default_eob); /* Now set up a Viterbi trellis to evaluate alternative roundings. */ /* Initialize the sentinel node of the trellis. */ tokens[eob][0].rate = 0; tokens[eob][0].error = 0; tokens[eob][0].next = default_eob; tokens[eob][0].token = EOB_TOKEN; tokens[eob][0].qc = 0; tokens[eob][1] = tokens[eob][0]; for (i = 0; i < eob; i++) { const int rc = scan[i]; tokens[i][0].rate = av1_get_token_cost(qcoeff[rc], &t0, cat6_bits); tokens[i][0].token = t0; token_cache[rc] = av1_pt_energy_class[t0]; } for (i = eob; i-- > 0;) { int base_bits, dx; int64_t d2; const int rc = scan[i]; int x = qcoeff[rc]; #if CONFIG_AOM_QM int iwt = iqmatrix[rc]; dqv = dequant_ptr[rc != 0]; dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; #else dqv = dequant_ptr[rc != 0]; #endif next_shortcut = shortcut; /* Only add a trellis state for non-zero coefficients. */ if (UNLIKELY(x)) { error0 = tokens[next][0].error; error1 = tokens[next][1].error; /* Evaluate the first possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; if (next_shortcut) { /* Consider both possible successor states. */ if (next < default_eob) { pt = get_coef_context(nb, token_cache, i + 1); rate0 += get_token_bit_costs(*token_costs, 0, pt, tokens[next][0].token); rate1 += get_token_bit_costs(*token_costs, 0, pt, tokens[next][1].token); } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; } else { if (next < default_eob) { pt = get_coef_context(nb, token_cache, i + 1); rate0 += get_token_bit_costs(*token_costs, 0, pt, tokens[next][0].token); } best = 0; } dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift); #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx >>= xd->bd - 8; } #endif // CONFIG_HIGHBITDEPTH d2 = (int64_t)dx * dx; tokens[i][0].rate += (best ? rate1 : rate0); tokens[i][0].error = d2 + (best ? error1 : error0); tokens[i][0].next = next; tokens[i][0].qc = x; tokens[i][0].dqc = dqcoeff[rc]; tokens[i][0].best_index = best; /* Evaluate the second possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; // The threshold of 3 is empirically obtained. if (UNLIKELY(abs(x) > 3)) { shortcut = 0; } else { #if CONFIG_NEW_QUANT shortcut = ((av1_dequant_abscoeff_nuq(abs(x), dqv, dequant_val[band_translate[i]]) > (abs(coeff[rc]) << shift)) && (av1_dequant_abscoeff_nuq(abs(x) - 1, dqv, dequant_val[band_translate[i]]) < (abs(coeff[rc]) << shift))); #else // CONFIG_NEW_QUANT #if CONFIG_AOM_QM if ((abs(x) * dequant_ptr[rc != 0] * iwt > ((abs(coeff[rc]) << shift) << AOM_QM_BITS)) && (abs(x) * dequant_ptr[rc != 0] * iwt < (((abs(coeff[rc]) << shift) + dequant_ptr[rc != 0]) << AOM_QM_BITS))) #else if ((abs(x) * dequant_ptr[rc != 0] > (abs(coeff[rc]) << shift)) && (abs(x) * dequant_ptr[rc != 0] < (abs(coeff[rc]) << shift) + dequant_ptr[rc != 0])) #endif // CONFIG_AOM_QM shortcut = 1; else shortcut = 0; #endif // CONFIG_NEW_QUANT } if (shortcut) { sz = -(x < 0); x -= 2 * sz + 1; } else { tokens[i][1] = tokens[i][0]; next = i; if (UNLIKELY(!(--band_left))) { --band_counts; band_left = *band_counts; --token_costs; } continue; } /* Consider both possible successor states. */ if (!x) { /* If we reduced this coefficient to zero, check to see if * we need to move the EOB back here. */ t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN; t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN; base_bits = 0; } else { base_bits = av1_get_token_cost(x, &t0, cat6_bits); t1 = t0; } if (next_shortcut) { if (LIKELY(next < default_eob)) { if (t0 != EOB_TOKEN) { token_cache[rc] = av1_pt_energy_class[t0]; pt = get_coef_context(nb, token_cache, i + 1); rate0 += get_token_bit_costs(*token_costs, !x, pt, tokens[next][0].token); } if (t1 != EOB_TOKEN) { token_cache[rc] = av1_pt_energy_class[t1]; pt = get_coef_context(nb, token_cache, i + 1); rate1 += get_token_bit_costs(*token_costs, !x, pt, tokens[next][1].token); } } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; } else { // The two states in next stage are identical. if (next < default_eob && t0 != EOB_TOKEN) { token_cache[rc] = av1_pt_energy_class[t0]; pt = get_coef_context(nb, token_cache, i + 1); rate0 += get_token_bit_costs(*token_costs, !x, pt, tokens[next][0].token); } best = 0; } #if CONFIG_NEW_QUANT dx = av1_dequant_coeff_nuq(x, dqv, dequant_val[band_translate[i]]) - (coeff[rc] << shift); #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx >>= xd->bd - 8; } #endif // CONFIG_HIGHBITDEPTH #else // CONFIG_NEW_QUANT #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz; } else { dx -= (dqv + sz) ^ sz; } #else dx -= (dqv + sz) ^ sz; #endif // CONFIG_HIGHBITDEPTH #endif // CONFIG_NEW_QUANT d2 = (int64_t)dx * dx; tokens[i][1].rate = base_bits + (best ? rate1 : rate0); tokens[i][1].error = d2 + (best ? error1 : error0); tokens[i][1].next = next; tokens[i][1].token = best ? t1 : t0; tokens[i][1].qc = x; if (x) { #if CONFIG_NEW_QUANT tokens[i][1].dqc = av1_dequant_abscoeff_nuq( abs(x), dqv, dequant_val[band_translate[i]]); tokens[i][1].dqc = shift ? ROUND_POWER_OF_TWO(tokens[i][1].dqc, shift) : tokens[i][1].dqc; if (sz) tokens[i][1].dqc = -tokens[i][1].dqc; #else // The 32x32 transform coefficient uses half quantization step size. // Account for the rounding difference in the dequantized coefficeint // value when the quantization index is dropped from an even number // to an odd number. #if CONFIG_AOM_QM tran_low_t offset = dqv >> shift; #else tran_low_t offset = dq_step[rc != 0]; #endif if (shift & x) offset += (dqv & 0x01); if (sz == 0) tokens[i][1].dqc = dqcoeff[rc] - offset; else tokens[i][1].dqc = dqcoeff[rc] + offset; #endif // CONFIG_NEW_QUANT } else { tokens[i][1].dqc = 0; } tokens[i][1].best_index = best; /* Finally, make this the new head of the trellis. */ next = i; } else { /* There's no choice to make for a zero coefficient, so we don't * add a new trellis node, but we do need to update the costs. */ t0 = tokens[next][0].token; t1 = tokens[next][1].token; pt = get_coef_context(nb, token_cache, i + 1); /* Update the cost of each path if we're past the EOB token. */ if (t0 != EOB_TOKEN) { tokens[next][0].rate += get_token_bit_costs(*token_costs, 1, pt, t0); tokens[next][0].token = ZERO_TOKEN; } if (t1 != EOB_TOKEN) { tokens[next][1].rate += get_token_bit_costs(*token_costs, 1, pt, t1); tokens[next][1].token = ZERO_TOKEN; } tokens[i][0].best_index = tokens[i][1].best_index = 0; shortcut = (tokens[next][0].rate != tokens[next][1].rate); /* Don't update next, because we didn't add a new node. */ } if (UNLIKELY(!(--band_left))) { --band_counts; band_left = *band_counts; --token_costs; } } /* Now pick the best path through the whole trellis. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; error0 = tokens[next][0].error; error1 = tokens[next][1].error; t0 = tokens[next][0].token; t1 = tokens[next][1].token; rate0 += get_token_bit_costs(*token_costs, 0, ctx, t0); rate1 += get_token_bit_costs(*token_costs, 0, ctx, t1); UPDATE_RD_COST(); best = rd_cost1 < rd_cost0; final_eob = -1; for (i = next; i < eob; i = next) { const int x = tokens[i][best].qc; const int rc = scan[i]; if (x) final_eob = i; qcoeff[rc] = x; dqcoeff[rc] = tokens[i][best].dqc; next = tokens[i][best].next; best = tokens[i][best].best_index; } final_eob++; mb->plane[plane].eobs[block] = final_eob; assert(final_eob <= default_eob); return final_eob; #else // !CONFIG_PVQ (void)cm; (void)tx_size; (void)ctx; struct macroblock_plane *const p = &mb->plane[plane]; return p->eobs[block]; #endif // !CONFIG_PVQ } #endif // USE_GREEDY_OPTIMIZE_B #if !CONFIG_PVQ #if CONFIG_HIGHBITDEPTH typedef enum QUANT_FUNC { QUANT_FUNC_LOWBD = 0, QUANT_FUNC_HIGHBD = 1, QUANT_FUNC_TYPES = 2 } QUANT_FUNC; static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = { #if !CONFIG_NEW_QUANT { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade }, { av1_quantize_b_facade, av1_highbd_quantize_b_facade }, { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade }, #else // !CONFIG_NEW_QUANT { av1_quantize_fp_nuq_facade, av1_highbd_quantize_fp_nuq_facade }, { av1_quantize_b_nuq_facade, av1_highbd_quantize_b_nuq_facade }, { av1_quantize_dc_nuq_facade, av1_highbd_quantize_dc_nuq_facade }, #endif // !CONFIG_NEW_QUANT { NULL, NULL } }; #else typedef enum QUANT_FUNC { QUANT_FUNC_LOWBD = 0, QUANT_FUNC_TYPES = 1 } QUANT_FUNC; static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES] [QUANT_FUNC_TYPES] = { #if !CONFIG_NEW_QUANT { av1_quantize_fp_facade }, { av1_quantize_b_facade }, { av1_quantize_dc_facade }, #else // !CONFIG_NEW_QUANT { av1_quantize_fp_nuq_facade }, { av1_quantize_b_nuq_facade }, { av1_quantize_dc_nuq_facade }, #endif // !CONFIG_NEW_QUANT { NULL } }; #endif // CONFIG_HIGHBITDEPTH #endif // CONFIG_PVQ void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, int ctx, AV1_XFORM_QUANT xform_quant_idx) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; #if !(CONFIG_PVQ || CONFIG_DAALA_DIST) const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; #else struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; #endif PLANE_TYPE plane_type = get_plane_type(plane); TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); const int is_inter = is_inter_block(mbmi); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter); tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = block_size_wide[plane_bsize]; #if CONFIG_AOM_QM int seg_id = mbmi->segment_id; const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][!is_inter][tx_size]; const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!is_inter][tx_size]; #endif FWD_TXFM_PARAM fwd_txfm_param; #if CONFIG_PVQ || CONFIG_DAALA_DIST uint8_t *dst; int16_t *pred; const int dst_stride = pd->dst.stride; int tx_blk_size; int i, j; #endif #if !CONFIG_PVQ const int tx2d_size = tx_size_2d[tx_size]; QUANT_PARAM qparam; const int16_t *src_diff; src_diff = &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; qparam.log_scale = av1_get_tx_scale(tx_size); #if CONFIG_NEW_QUANT qparam.tx_size = tx_size; qparam.dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type); #endif // CONFIG_NEW_QUANT #if CONFIG_AOM_QM qparam.qmatrix = qmatrix; qparam.iqmatrix = iqmatrix; #endif // CONFIG_AOM_QM #else tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block); int skip = 1; PVQ_INFO *pvq_info = NULL; uint8_t *src; int16_t *src_int16; const int src_stride = p->src.stride; (void)ctx; (void)scan_order; (void)qcoeff; if (x->pvq_coded) { assert(block < MAX_PVQ_BLOCKS_IN_SB); pvq_info = &x->pvq[block][plane]; } src = &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; src_int16 = &p->src_int16[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; // transform block size in pixels tx_blk_size = tx_size_wide[tx_size]; #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) src_int16[diff_stride * j + i] = CONVERT_TO_SHORTPTR(src)[src_stride * j + i]; } else { #endif // CONFIG_HIGHBITDEPTH for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) src_int16[diff_stride * j + i] = src[src_stride * j + i]; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH #endif #if CONFIG_PVQ || CONFIG_DAALA_DIST dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; pred = &pd->pred[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; // transform block size in pixels tx_blk_size = tx_size_wide[tx_size]; // copy uint8 orig and predicted block to int16 buffer // in order to use existing VP10 transform functions #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) pred[diff_stride * j + i] = CONVERT_TO_SHORTPTR(dst)[dst_stride * j + i]; } else { #endif // CONFIG_HIGHBITDEPTH for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) pred[diff_stride * j + i] = dst[dst_stride * j + i]; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH #endif (void)ctx; fwd_txfm_param.tx_type = tx_type; fwd_txfm_param.tx_size = tx_size; fwd_txfm_param.lossless = xd->lossless[mbmi->segment_id]; #if !CONFIG_PVQ #if CONFIG_HIGHBITDEPTH fwd_txfm_param.bd = xd->bd; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { av1_highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) { if (LIKELY(!x->skip_block)) { quant_func_list[xform_quant_idx][QUANT_FUNC_HIGHBD]( coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam); } else { av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob); } } #if CONFIG_LV_MAP p->txb_entropy_ctx[block] = (uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob); #endif // CONFIG_LV_MAP return; } #endif // CONFIG_HIGHBITDEPTH av1_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) { if (LIKELY(!x->skip_block)) { quant_func_list[xform_quant_idx][QUANT_FUNC_LOWBD]( coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam); } else { av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob); } } #if CONFIG_LV_MAP p->txb_entropy_ctx[block] = (uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob); #endif // CONFIG_LV_MAP #else // #if !CONFIG_PVQ (void)xform_quant_idx; #if CONFIG_HIGHBITDEPTH fwd_txfm_param.bd = xd->bd; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { av1_highbd_fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param); av1_highbd_fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param); } else { #endif av1_fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param); av1_fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param); #if CONFIG_HIGHBITDEPTH } #endif // PVQ for inter mode block if (!x->skip_block) { PVQ_SKIP_TYPE ac_dc_coded = av1_pvq_encode_helper(x, coeff, // target original vector ref_coeff, // reference vector dqcoeff, // de-quantized vector eob, // End of Block marker pd->dequant, // aom's quantizers plane, // image plane tx_size, // block size in log_2 - 2 tx_type, &x->rate, // rate measured x->pvq_speed, pvq_info); // PVQ info for a block skip = ac_dc_coded == PVQ_SKIP; } x->pvq_skip[plane] = skip; if (!skip) mbmi->skip = 0; #endif // #if !CONFIG_PVQ } static void encode_block(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; AV1_COMMON *cm = args->cm; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; int ctx; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint8_t *dst; #if !CONFIG_PVQ ENTROPY_CONTEXT *a, *l; #endif #if CONFIG_VAR_TX int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; #endif dst = &pd->dst .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; #if !CONFIG_PVQ a = &args->ta[blk_col]; l = &args->tl[blk_row]; #if CONFIG_VAR_TX ctx = get_entropy_context(tx_size, a, l); #else ctx = combine_entropy_contexts(*a, *l); #endif #else ctx = 0; #endif // CONFIG_PVQ #if CONFIG_VAR_TX // Assert not magic number (uninitialized). assert(x->blk_skip[plane][blk_row * bw + blk_col] != 234); if (x->blk_skip[plane][blk_row * bw + blk_col] == 0) { #else { #endif av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, ctx, AV1_XFORM_QUANT_FP); } #if CONFIG_VAR_TX else { p->eobs[block] = 0; } #endif #if !CONFIG_PVQ if (p->eobs[block] && !xd->lossless[xd->mi[0]->mbmi.segment_id]) av1_optimize_b(cm, x, plane, block, tx_size, ctx); av1_set_txb_context(x, plane, block, tx_size, a, l); if (p->eobs[block]) *(args->skip) = 0; if (p->eobs[block] == 0) return; #else (void)ctx; if (!x->pvq_skip[plane]) *(args->skip) = 0; if (x->pvq_skip[plane]) return; #endif TX_TYPE tx_type = get_tx_type(pd->plane_type, xd, block, tx_size); av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst, pd->dst.stride, p->eobs[block]); } #if CONFIG_VAR_TX static void encode_block_inter(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int tx_row = blk_row >> (1 - pd->subsampling_y); const int tx_col = blk_col >> (1 - pd->subsampling_x); TX_SIZE plane_tx_size; const int max_blocks_high = max_block_high(xd, plane_bsize, plane); const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; plane_tx_size = plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0] : mbmi->inter_tx_size[tx_row][tx_col]; if (tx_size == plane_tx_size) { encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg); } else { const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; // This is the square transform block partition entry point. int bsl = tx_size_wide_unit[sub_txs]; int i; assert(bsl > 0); assert(tx_size < TX_SIZES_ALL); for (i = 0; i < 4; ++i) { const int offsetr = blk_row + ((i >> 1) * bsl); const int offsetc = blk_col + ((i & 0x01) * bsl); int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs]; if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs, arg); block += step; } } } #endif typedef struct encode_block_pass1_args { AV1_COMMON *cm; MACROBLOCK *x; } encode_block_pass1_args; static void encode_block_pass1(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { encode_block_pass1_args *args = (encode_block_pass1_args *)arg; AV1_COMMON *cm = args->cm; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint8_t *dst; int ctx = 0; dst = &pd->dst .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, ctx, AV1_XFORM_QUANT_B); #if !CONFIG_PVQ if (p->eobs[block] > 0) { #else if (!x->pvq_skip[plane]) { { int tx_blk_size; int i, j; // transform block size in pixels tx_blk_size = tx_size_wide[tx_size]; // Since av1 does not have separate function which does inverse transform // but av1_inv_txfm_add_*x*() also does addition of predicted image to // inverse transformed image, // pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) CONVERT_TO_SHORTPTR(dst)[j * pd->dst.stride + i] = 0; } else { #endif // CONFIG_HIGHBITDEPTH for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH } #endif // !CONFIG_PVQ #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { av1_highbd_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block], xd->bd); } else { av1_highbd_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block], xd->bd); } return; } #endif // CONFIG_HIGHBITDEPTH if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); } else { av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); } } } void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { encode_block_pass1_args args = { cm, x }; av1_subtract_plane(x, bsize, 0); av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, encode_block_pass1, &args); } void av1_encode_sb(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize, const int mi_row, const int mi_col) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 }; int plane; mbmi->skip = 1; if (x->skip) return; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { #if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2 const int subsampling_x = xd->plane[plane].subsampling_x; const int subsampling_y = xd->plane[plane].subsampling_y; if (!is_chroma_reference(mi_row, mi_col, bsize, subsampling_x, subsampling_y)) continue; bsize = scale_chroma_bsize(bsize, subsampling_x, subsampling_y); #else (void)mi_row; (void)mi_col; #endif #if CONFIG_VAR_TX // TODO(jingning): Clean this up. const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0]; const TX_SIZE max_tx_size = get_vartx_max_txsize(mbmi, plane_bsize); const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0]; const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0]; int idx, idy; int block = 0; int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; av1_get_entropy_contexts(bsize, 0, pd, ctx.ta[plane], ctx.tl[plane]); #else const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = get_tx_size(plane, xd); av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]); #endif #if !CONFIG_PVQ av1_subtract_plane(x, bsize, plane); #endif arg.ta = ctx.ta[plane]; arg.tl = ctx.tl[plane]; #if CONFIG_VAR_TX for (idy = 0; idy < mi_height; idy += bh) { for (idx = 0; idx < mi_width; idx += bw) { encode_block_inter(plane, block, idy, idx, plane_bsize, max_tx_size, &arg); block += step; } } #else av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block, &arg); #endif } } #if CONFIG_SUPERTX void av1_encode_sb_supertx(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 }; int plane; mbmi->skip = 1; if (x->skip) return; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; #if CONFIG_VAR_TX const TX_SIZE tx_size = TX_4X4; #else const TX_SIZE tx_size = get_tx_size(plane, xd); #endif av1_subtract_plane(x, bsize, plane); av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]); arg.ta = ctx.ta[plane]; arg.tl = ctx.tl[plane]; av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block, &arg); } } #endif // CONFIG_SUPERTX #if !CONFIG_PVQ void av1_set_txb_context(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { (void)tx_size; struct macroblock_plane *p = &x->plane[plane]; #if !CONFIG_LV_MAP *a = *l = p->eobs[block] > 0; #else // !CONFIG_LV_MAP *a = *l = p->txb_entropy_ctx[block]; #endif // !CONFIG_LV_MAP #if CONFIG_VAR_TX || CONFIG_LV_MAP int i; for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) a[i] = a[0]; for (i = 0; i < tx_size_high_unit[tx_size]; ++i) l[i] = l[0]; #endif } #endif static void encode_block_intra_and_set_context(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg); #if !CONFIG_PVQ struct encode_b_args *const args = arg; MACROBLOCK *x = args->x; ENTROPY_CONTEXT *a = &args->ta[blk_col]; ENTROPY_CONTEXT *l = &args->tl[blk_row]; av1_set_txb_context(x, plane, block, tx_size, a, l); #endif } void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; AV1_COMMON *cm = args->cm; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); PLANE_TYPE plane_type = get_plane_type(plane); const TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); uint16_t *eob = &p->eobs[block]; const int dst_stride = pd->dst.stride; uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; av1_predict_intra_block_facade(xd, plane, block, blk_col, blk_row, tx_size); av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); const ENTROPY_CONTEXT *a = &args->ta[blk_col]; const ENTROPY_CONTEXT *l = &args->tl[blk_row]; int ctx = combine_entropy_contexts(*a, *l); if (args->enable_optimize_b) { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, ctx, AV1_XFORM_QUANT_FP); if (p->eobs[block]) { av1_optimize_b(cm, x, plane, block, tx_size, ctx); } } else { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, ctx, AV1_XFORM_QUANT_B); } #if CONFIG_PVQ // *(args->skip) == mbmi->skip if (!x->pvq_skip[plane]) *(args->skip) = 0; if (x->pvq_skip[plane]) return; #endif // CONFIG_PVQ av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst, dst_stride, *eob); #if !CONFIG_PVQ if (*eob) *(args->skip) = 0; #else // Note : *(args->skip) == mbmi->skip #endif #if CONFIG_CFL if (plane == AOM_PLANE_Y && x->cfl_store_y) { cfl_store(xd->cfl, dst, dst_stride, blk_row, blk_col, tx_size); } #endif } void av1_encode_intra_block_plane(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize, int plane, int enable_optimize_b, const int mi_row, const int mi_col) { const MACROBLOCKD *const xd = &x->e_mbd; ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE] = { 0 }; ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE] = { 0 }; struct encode_b_args arg = { cm, x, NULL, &xd->mi[0]->mbmi.skip, ta, tl, enable_optimize_b }; #if CONFIG_CB4X4 if (!is_chroma_reference(mi_row, mi_col, bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y)) return; #else (void)mi_row; (void)mi_col; #endif if (enable_optimize_b) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = get_tx_size(plane, xd); av1_get_entropy_contexts(bsize, tx_size, pd, ta, tl); } av1_foreach_transformed_block_in_plane( xd, bsize, plane, encode_block_intra_and_set_context, &arg); } #if CONFIG_PVQ PVQ_SKIP_TYPE av1_pvq_encode_helper(MACROBLOCK *x, tran_low_t *const coeff, tran_low_t *ref_coeff, tran_low_t *const dqcoeff, uint16_t *eob, const int16_t *quant, int plane, int tx_size, TX_TYPE tx_type, int *rate, int speed, PVQ_INFO *pvq_info) { const int tx_blk_size = tx_size_wide[tx_size]; daala_enc_ctx *daala_enc = &x->daala_enc; PVQ_SKIP_TYPE ac_dc_coded; int coeff_shift = 3 - av1_get_tx_scale(tx_size); int hbd_downshift = 0; int rounding_mask; int pvq_dc_quant; int use_activity_masking = daala_enc->use_activity_masking; int tell; int has_dc_skip = 1; int i; int off = od_qm_offset(tx_size, plane ? 1 : 0); DECLARE_ALIGNED(16, tran_low_t, coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); DECLARE_ALIGNED(16, tran_low_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); DECLARE_ALIGNED(16, tran_low_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); DECLARE_ALIGNED(16, int32_t, in_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); DECLARE_ALIGNED(16, int32_t, ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); DECLARE_ALIGNED(16, int32_t, out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); #if CONFIG_HIGHBITDEPTH hbd_downshift = x->e_mbd.bd - 8; #endif assert(OD_COEFF_SHIFT >= 4); // DC quantizer for PVQ if (use_activity_masking) pvq_dc_quant = OD_MAXI(1, (quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift) * daala_enc->state .pvq_qm_q4[plane][od_qm_get_index(tx_size, 0)] >> 4); else pvq_dc_quant = OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift); *eob = 0; #if CONFIG_DAALA_EC tell = od_ec_enc_tell_frac(&daala_enc->w.ec); #else #error "CONFIG_PVQ currently requires CONFIG_DAALA_EC." #endif // Change coefficient ordering for pvq encoding. od_raster_to_coding_order(coeff_pvq, tx_blk_size, tx_type, coeff, tx_blk_size); od_raster_to_coding_order(ref_coeff_pvq, tx_blk_size, tx_type, ref_coeff, tx_blk_size); // copy int16 inputs to int32 for (i = 0; i < tx_blk_size * tx_blk_size; i++) { ref_int32[i] = AOM_SIGNED_SHL(ref_coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >> hbd_downshift; in_int32[i] = AOM_SIGNED_SHL(coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >> hbd_downshift; } if (abs(in_int32[0] - ref_int32[0]) < pvq_dc_quant * 141 / 256) { /* 0.55 */ out_int32[0] = 0; } else { out_int32[0] = OD_DIV_R0(in_int32[0] - ref_int32[0], pvq_dc_quant); } ac_dc_coded = od_pvq_encode(daala_enc, ref_int32, in_int32, out_int32, OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift), // scale/quantizer OD_MAXI(1, quant[1] << (OD_COEFF_SHIFT - 3) >> hbd_downshift), // scale/quantizer plane, tx_size, OD_PVQ_BETA[use_activity_masking][plane][tx_size], 0, // is_keyframe, daala_enc->state.qm + off, daala_enc->state.qm_inv + off, speed, // speed pvq_info); // Encode residue of DC coeff, if required. if (!has_dc_skip || out_int32[0]) { generic_encode(&daala_enc->w, &daala_enc->state.adapt->model_dc[plane], abs(out_int32[0]) - has_dc_skip, &daala_enc->state.adapt->ex_dc[plane][tx_size][0], 2); } if (out_int32[0]) { aom_write_bit(&daala_enc->w, out_int32[0] < 0); } // need to save quantized residue of DC coeff // so that final pvq bitstream writing can know whether DC is coded. if (pvq_info) pvq_info->dq_dc_residue = out_int32[0]; out_int32[0] = out_int32[0] * pvq_dc_quant; out_int32[0] += ref_int32[0]; // copy int32 result back to int16 assert(OD_COEFF_SHIFT > coeff_shift); rounding_mask = (1 << (OD_COEFF_SHIFT - coeff_shift - 1)) - 1; for (i = 0; i < tx_blk_size * tx_blk_size; i++) { out_int32[i] = AOM_SIGNED_SHL(out_int32[i], hbd_downshift); dqcoeff_pvq[i] = (out_int32[i] + (out_int32[i] < 0) + rounding_mask) >> (OD_COEFF_SHIFT - coeff_shift); } // Back to original coefficient order od_coding_order_to_raster(dqcoeff, tx_blk_size, tx_type, dqcoeff_pvq, tx_blk_size); *eob = tx_blk_size * tx_blk_size; #if CONFIG_DAALA_EC *rate = (od_ec_enc_tell_frac(&daala_enc->w.ec) - tell) << (AV1_PROB_COST_SHIFT - OD_BITRES); #else #error "CONFIG_PVQ currently requires CONFIG_DAALA_EC." #endif assert(*rate >= 0); return ac_dc_coded; } void av1_store_pvq_enc_info(PVQ_INFO *pvq_info, int *qg, int *theta, int *k, od_coeff *y, int nb_bands, const int *off, int *size, int skip_rest, int skip_dir, int bs) { // block size in log_2 -2 int i; const int tx_blk_size = tx_size_wide[bs]; for (i = 0; i < nb_bands; i++) { pvq_info->qg[i] = qg[i]; pvq_info->theta[i] = theta[i]; pvq_info->k[i] = k[i]; pvq_info->off[i] = off[i]; pvq_info->size[i] = size[i]; } memcpy(pvq_info->y, y, tx_blk_size * tx_blk_size * sizeof(od_coeff)); pvq_info->nb_bands = nb_bands; pvq_info->skip_rest = skip_rest; pvq_info->skip_dir = skip_dir; pvq_info->bs = bs; } #endif