/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "./av1_rtcd.h" #include "./aom_dsp_rtcd.h" #include "./aom_config.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/binary_codes_writer.h" #include "aom_ports/mem.h" #include "aom_ports/aom_timer.h" #include "aom_ports/system_state.h" #include "av1/common/common.h" #include "av1/common/entropy.h" #include "av1/common/entropymode.h" #include "av1/common/idct.h" #include "av1/common/mv.h" #include "av1/common/mvref_common.h" #include "av1/common/pred_common.h" #include "av1/common/quant_common.h" #include "av1/common/reconintra.h" #include "av1/common/reconinter.h" #include "av1/common/seg_common.h" #include "av1/common/tile_common.h" #include "av1/encoder/aq_complexity.h" #include "av1/encoder/aq_cyclicrefresh.h" #include "av1/encoder/aq_variance.h" #if CONFIG_SUPERTX #include "av1/encoder/cost.h" #endif #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #include "av1/common/warped_motion.h" #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_GLOBAL_MOTION #include "av1/encoder/global_motion.h" #endif // CONFIG_GLOBAL_MOTION #include "av1/encoder/encodeframe.h" #include "av1/encoder/encodemb.h" #include "av1/encoder/encodemv.h" #if CONFIG_LV_MAP #include "av1/encoder/encodetxb.h" #endif #include "av1/encoder/ethread.h" #include "av1/encoder/extend.h" #include "av1/encoder/rd.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/segmentation.h" #include "av1/encoder/tokenize.h" #if CONFIG_PVQ #include "av1/common/pvq.h" #include "av1/encoder/pvq_encoder.h" #endif #if CONFIG_HIGHBITDEPTH #define IF_HBD(...) __VA_ARGS__ #else #define IF_HBD(...) #endif // CONFIG_HIGHBITDEPTH static void encode_superblock(const AV1_COMP *const cpi, ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run, int mi_row, int mi_col, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int *rate); #if CONFIG_SUPERTX static int check_intra_b(PICK_MODE_CONTEXT *ctx); static int check_intra_sb(const AV1_COMP *cpi, const TileInfo *const tile, int mi_row, int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree); static void predict_superblock(const AV1_COMP *const cpi, ThreadData *td, #if CONFIG_EXT_INTER int mi_row_ori, int mi_col_ori, #endif // CONFIG_EXT_INTER int mi_row_pred, int mi_col_pred, BLOCK_SIZE bsize_pred, int b_sub8x8, int block); static int check_supertx_sb(BLOCK_SIZE bsize, TX_SIZE supertx_size, PC_TREE *pc_tree); static void predict_sb_complex(const AV1_COMP *const cpi, ThreadData *td, const TileInfo *const tile, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori, RUN_TYPE dry_run, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, uint8_t *dst_buf[3], int dst_stride[3], PC_TREE *pc_tree); static void update_state_sb_supertx(const AV1_COMP *const cpi, ThreadData *td, const TileInfo *const tile, int mi_row, int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run, PC_TREE *pc_tree); static void rd_supertx_sb(const AV1_COMP *const cpi, ThreadData *td, const TileInfo *const tile, int mi_row, int mi_col, BLOCK_SIZE bsize, int *tmp_rate, int64_t *tmp_dist, TX_TYPE *best_tx, PC_TREE *pc_tree); #endif // CONFIG_SUPERTX // This is used as a reference when computing the source variance for the // purposes of activity masking. // Eventually this should be replaced by custom no-reference routines, // which will be faster. static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, #if CONFIG_EXT_PARTITION 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 #endif // CONFIG_EXT_PARTITION }; #if CONFIG_HIGHBITDEPTH static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, #if CONFIG_EXT_PARTITION 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 #endif // CONFIG_EXT_PARTITION }; static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = { 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, #if CONFIG_EXT_PARTITION 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4 #endif // CONFIG_EXT_PARTITION }; static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = { 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, #if CONFIG_EXT_PARTITION 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16 #endif // CONFIG_EXT_PARTITION }; #endif // CONFIG_HIGHBITDEPTH unsigned int av1_get_sby_perpixel_variance(const AV1_COMP *cpi, const struct buf_2d *ref, BLOCK_SIZE bs) { unsigned int sse; const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse); return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); } #if CONFIG_HIGHBITDEPTH unsigned int av1_high_get_sby_perpixel_variance(const AV1_COMP *cpi, const struct buf_2d *ref, BLOCK_SIZE bs, int bd) { unsigned int var, sse; switch (bd) { case 10: var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), 0, &sse); break; case 12: var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), 0, &sse); break; case 8: default: var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), 0, &sse); break; } return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); } #endif // CONFIG_HIGHBITDEPTH static unsigned int get_sby_perpixel_diff_variance(const AV1_COMP *const cpi, const struct buf_2d *ref, int mi_row, int mi_col, BLOCK_SIZE bs) { unsigned int sse, var; uint8_t *last_y; const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME); assert(last != NULL); last_y = &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE]; var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse); return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); } static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col) { unsigned int var = get_sby_perpixel_diff_variance( cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64); if (var < 8) return BLOCK_64X64; else if (var < 128) return BLOCK_32X32; else if (var < 2048) return BLOCK_16X16; else return BLOCK_8X8; } // Lighter version of set_offsets that only sets the mode info // pointers. static void set_mode_info_offsets(const AV1_COMP *const cpi, MACROBLOCK *const x, MACROBLOCKD *const xd, int mi_row, int mi_col) { const AV1_COMMON *const cm = &cpi->common; const int idx_str = xd->mi_stride * mi_row + mi_col; xd->mi = cm->mi_grid_visible + idx_str; xd->mi[0] = cm->mi + idx_str; x->mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); } static void set_offsets_without_segment_id(const AV1_COMP *const cpi, const TileInfo *const tile, MACROBLOCK *const x, int mi_row, int mi_col, BLOCK_SIZE bsize) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; set_skip_context(xd, mi_row, mi_col); set_mode_info_offsets(cpi, x, xd, mi_row, mi_col); #if CONFIG_VAR_TX xd->above_txfm_context = cm->above_txfm_context + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); xd->max_tx_size = max_txsize_lookup[bsize]; #endif // Set up destination pointers. av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, mi_col); // Set up limit values for MV components. // Mv beyond the range do not produce new/different prediction block. x->mv_limits.row_min = -(((mi_row + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND); x->mv_limits.col_min = -(((mi_col + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND); x->mv_limits.row_max = (cm->mi_rows - mi_row) * MI_SIZE + AOM_INTERP_EXTEND; x->mv_limits.col_max = (cm->mi_cols - mi_col) * MI_SIZE + AOM_INTERP_EXTEND; set_plane_n4(xd, mi_width, mi_height); // Set up distance of MB to edge of frame in 1/8th pel units. assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, #if CONFIG_DEPENDENT_HORZTILES cm->dependent_horz_tiles, #endif // CONFIG_DEPENDENT_HORZTILES cm->mi_rows, cm->mi_cols); // Set up source buffers. av1_setup_src_planes(x, cpi->source, mi_row, mi_col); // R/D setup. x->rddiv = cpi->rd.RDDIV; x->rdmult = cpi->rd.RDMULT; // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs() xd->tile = *tile; } static void set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile, MACROBLOCK *const x, int mi_row, int mi_col, BLOCK_SIZE bsize) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi; const struct segmentation *const seg = &cm->seg; set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); mbmi = &xd->mi[0]->mbmi; // Setup segment ID. if (seg->enabled) { if (!cpi->vaq_refresh) { const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mbmi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); } av1_init_plane_quantizers(cpi, x, mbmi->segment_id); } else { mbmi->segment_id = 0; } #if CONFIG_SUPERTX mbmi->segment_id_supertx = MAX_SEGMENTS; #endif // CONFIG_SUPERTX } #if CONFIG_SUPERTX static void set_offsets_supertx(const AV1_COMP *const cpi, ThreadData *td, const TileInfo *const tile, int mi_row, int mi_col, BLOCK_SIZE bsize) { MACROBLOCK *const x = &td->mb; const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; #if CONFIG_DEPENDENT_HORZTILES set_mode_info_offsets(cpi, x, xd, mi_row, mi_col, cm->dependent_horz_tiles); #else set_mode_info_offsets(cpi, x, xd, mi_row, mi_col); #endif // Set up distance of MB to edge of frame in 1/8th pel units. assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, #if CONFIG_DEPENDENT_HORZTILES cm->dependent_horz_tiles, #endif // CONFIG_DEPENDENT_HORZTILES cm->mi_rows, cm->mi_cols); } static void set_offsets_extend(const AV1_COMP *const cpi, ThreadData *td, const TileInfo *const tile, int mi_row_pred, int mi_col_pred, int mi_row_ori, int mi_col_ori, BLOCK_SIZE bsize_pred) { // Used in supertx // (mi_row_ori, mi_col_ori, bsize_ori): region for mv // (mi_row_pred, mi_col_pred, bsize_pred): region to predict MACROBLOCK *const x = &td->mb; const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; const int mi_width = mi_size_wide[bsize_pred]; const int mi_height = mi_size_high[bsize_pred]; #if CONFIG_DEPENDENT_HORZTILES set_mode_info_offsets(cpi, x, xd, mi_row_ori, mi_col_ori, cm->dependent_horz_tiles); #else set_mode_info_offsets(cpi, x, xd, mi_row_ori, mi_col_ori); #endif // Set up limit values for MV components. // Mv beyond the range do not produce new/different prediction block. x->mv_limits.row_min = -(((mi_row_pred + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND); x->mv_limits.col_min = -(((mi_col_pred + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND); x->mv_limits.row_max = (cm->mi_rows - mi_row_pred) * MI_SIZE + AOM_INTERP_EXTEND; x->mv_limits.col_max = (cm->mi_cols - mi_col_pred) * MI_SIZE + AOM_INTERP_EXTEND; // Set up distance of MB to edge of frame in 1/8th pel units. #if !CONFIG_CB4X4 assert(!(mi_col_pred & (mi_width - mi_size_wide[BLOCK_8X8])) && !(mi_row_pred & (mi_height - mi_size_high[BLOCK_8X8]))); #endif set_mi_row_col(xd, tile, mi_row_pred, mi_height, mi_col_pred, mi_width, #if CONFIG_DEPENDENT_HORZTILES cm->dependent_horz_tiles, #endif // CONFIG_DEPENDENT_HORZTILES cm->mi_rows, cm->mi_cols); xd->up_available = (mi_row_ori > tile->mi_row_start); xd->left_available = (mi_col_ori > tile->mi_col_start); // R/D setup. x->rddiv = cpi->rd.RDDIV; x->rdmult = cpi->rd.RDMULT; } static void set_segment_id_supertx(const AV1_COMP *const cpi, MACROBLOCK *const x, const int mi_row, const int mi_col, const BLOCK_SIZE bsize) { const AV1_COMMON *cm = &cpi->common; const struct segmentation *seg = &cm->seg; const int miw = AOMMIN(mi_size_wide[bsize], cm->mi_cols - mi_col); const int mih = AOMMIN(mi_size_high[bsize], cm->mi_rows - mi_row); const int mi_offset = mi_row * cm->mi_stride + mi_col; MODE_INFO **const mip = cm->mi_grid_visible + mi_offset; int r, c; int seg_id_supertx = MAX_SEGMENTS; if (!seg->enabled) { seg_id_supertx = 0; } else { // Find the minimum segment_id for (r = 0; r < mih; r++) for (c = 0; c < miw; c++) seg_id_supertx = AOMMIN(mip[r * cm->mi_stride + c]->mbmi.segment_id, seg_id_supertx); assert(0 <= seg_id_supertx && seg_id_supertx < MAX_SEGMENTS); // Initialize plane quantisers av1_init_plane_quantizers(cpi, x, seg_id_supertx); } // Assign the the segment_id back to segment_id_supertx for (r = 0; r < mih; r++) for (c = 0; c < miw; c++) mip[r * cm->mi_stride + c]->mbmi.segment_id_supertx = seg_id_supertx; } #endif // CONFIG_SUPERTX static void set_block_size(AV1_COMP *const cpi, MACROBLOCK *const x, MACROBLOCKD *const xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) { const int mi_width = AOMMAX(mi_size_wide[bsize], mi_size_wide[BLOCK_8X8]); const int mi_height = AOMMAX(mi_size_high[bsize], mi_size_high[BLOCK_8X8]); for (int r = 0; r < mi_height; ++r) { for (int c = 0; c < mi_width; ++c) { set_mode_info_offsets(cpi, x, xd, mi_row + r, mi_col + c); xd->mi[0]->mbmi.sb_type = bsize; } } } } static void set_vt_partitioning(AV1_COMP *cpi, MACROBLOCK *const x, MACROBLOCKD *const xd, VAR_TREE *vt, int mi_row, int mi_col, const int64_t *const threshold, const BLOCK_SIZE *const bsize_min) { AV1_COMMON *const cm = &cpi->common; const int hbw = mi_size_wide[vt->bsize] / 2; const int hbh = mi_size_high[vt->bsize] / 2; const int has_cols = mi_col + hbw < cm->mi_cols; const int has_rows = mi_row + hbh < cm->mi_rows; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; assert(vt->bsize >= BLOCK_8X8); assert(hbh == hbw); if (vt->bsize == BLOCK_8X8 && cm->frame_type != KEY_FRAME) { set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_8X8); return; } if (vt->force_split || (!has_cols && !has_rows)) goto split; // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if // variance is below threshold, otherwise split will be selected. // No check for vert/horiz split as too few samples for variance. if (vt->bsize == bsize_min[0]) { if (has_cols && has_rows && vt->variances.none.variance < threshold[0]) { set_block_size(cpi, x, xd, mi_row, mi_col, vt->bsize); return; } else { BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_SPLIT); set_block_size(cpi, x, xd, mi_row, mi_col, subsize); if (vt->bsize > BLOCK_8X8) { set_block_size(cpi, x, xd, mi_row, mi_col + hbw, subsize); set_block_size(cpi, x, xd, mi_row + hbh, mi_col, subsize); set_block_size(cpi, x, xd, mi_row + hbh, mi_col + hbw, subsize); } return; } } else if (vt->bsize > bsize_min[0]) { // For key frame: take split for bsize above 32X32 or very high variance. if (cm->frame_type == KEY_FRAME && (vt->bsize > BLOCK_32X32 || vt->variances.none.variance > (threshold[0] << 4))) { goto split; } // If variance is low, take the bsize (no split). if (has_cols && has_rows && vt->variances.none.variance < threshold[0]) { set_block_size(cpi, x, xd, mi_row, mi_col, vt->bsize); return; } // Check vertical split. if (has_rows) { BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_VERT); if (vt->variances.vert[0].variance < threshold[0] && vt->variances.vert[1].variance < threshold[0] && get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) { set_block_size(cpi, x, xd, mi_row, mi_col, subsize); set_block_size(cpi, x, xd, mi_row, mi_col + hbw, subsize); return; } } // Check horizontal split. if (has_cols) { BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_HORZ); if (vt->variances.horz[0].variance < threshold[0] && vt->variances.horz[1].variance < threshold[0] && get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) { set_block_size(cpi, x, xd, mi_row, mi_col, subsize); set_block_size(cpi, x, xd, mi_row + hbh, mi_col, subsize); return; } } } split : { set_vt_partitioning(cpi, x, xd, vt->split[0], mi_row, mi_col, threshold + 1, bsize_min + 1); set_vt_partitioning(cpi, x, xd, vt->split[1], mi_row, mi_col + hbw, threshold + 1, bsize_min + 1); set_vt_partitioning(cpi, x, xd, vt->split[2], mi_row + hbh, mi_col, threshold + 1, bsize_min + 1); set_vt_partitioning(cpi, x, xd, vt->split[3], mi_row + hbh, mi_col + hbw, threshold + 1, bsize_min + 1); return; } } // Set the variance split thresholds for following the block sizes: // 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16, // 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is // currently only used on key frame. static void set_vbp_thresholds(AV1_COMP *cpi, int64_t thresholds[], int q) { AV1_COMMON *const cm = &cpi->common; const int is_key_frame = (cm->frame_type == KEY_FRAME); const int threshold_multiplier = is_key_frame ? 20 : 1; const int64_t threshold_base = (int64_t)(threshold_multiplier * cpi->y_dequant[q][1]); if (is_key_frame) { thresholds[1] = threshold_base; thresholds[2] = threshold_base >> 2; thresholds[3] = threshold_base >> 2; thresholds[4] = threshold_base << 2; } else { thresholds[2] = threshold_base; if (cm->width <= 352 && cm->height <= 288) { thresholds[1] = threshold_base >> 2; thresholds[3] = threshold_base << 3; } else { thresholds[1] = threshold_base; thresholds[2] = (5 * threshold_base) >> 2; if (cm->width >= 1920 && cm->height >= 1080) thresholds[2] = (7 * threshold_base) >> 2; thresholds[3] = threshold_base << cpi->oxcf.speed; } } thresholds[0] = INT64_MIN; } void av1_set_variance_partition_thresholds(AV1_COMP *cpi, int q) { AV1_COMMON *const cm = &cpi->common; SPEED_FEATURES *const sf = &cpi->sf; const int is_key_frame = (cm->frame_type == KEY_FRAME); if (sf->partition_search_type != VAR_BASED_PARTITION && sf->partition_search_type != REFERENCE_PARTITION) { return; } else { set_vbp_thresholds(cpi, cpi->vbp_thresholds, q); // The thresholds below are not changed locally. if (is_key_frame) { cpi->vbp_threshold_sad = 0; cpi->vbp_bsize_min = BLOCK_8X8; } else { if (cm->width <= 352 && cm->height <= 288) cpi->vbp_threshold_sad = 100; else cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000 ? (cpi->y_dequant[q][1] << 1) : 1000; cpi->vbp_bsize_min = BLOCK_16X16; } cpi->vbp_threshold_minmax = 15 + (q >> 3); } } // Compute the minmax over the 8x8 subblocks. static int compute_minmax_8x8(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, #if CONFIG_HIGHBITDEPTH int highbd, #endif int pixels_wide, int pixels_high) { int k; int minmax_max = 0; int minmax_min = 255; // Loop over the 4 8x8 subblocks. for (k = 0; k < 4; k++) { const int x8_idx = ((k & 1) << 3); const int y8_idx = ((k >> 1) << 3); int min = 0; int max = 0; if (x8_idx < pixels_wide && y8_idx < pixels_high) { const int src_offset = y8_idx * src_stride + x8_idx; const int ref_offset = y8_idx * ref_stride + x8_idx; #if CONFIG_HIGHBITDEPTH if (highbd) { aom_highbd_minmax_8x8(src + src_offset, src_stride, ref + ref_offset, ref_stride, &min, &max); } else { aom_minmax_8x8(src + src_offset, src_stride, ref + ref_offset, ref_stride, &min, &max); } #else aom_minmax_8x8(src + src_offset, src_stride, ref + ref_offset, ref_stride, &min, &max); #endif if ((max - min) > minmax_max) minmax_max = (max - min); if ((max - min) < minmax_min) minmax_min = (max - min); } } return (minmax_max - minmax_min); } #if CONFIG_HIGHBITDEPTH static INLINE int avg_4x4(const uint8_t *const src, const int stride, const int highbd) { if (highbd) { return aom_highbd_avg_4x4(src, stride); } else { return aom_avg_4x4(src, stride); } } #else static INLINE int avg_4x4(const uint8_t *const src, const int stride) { return aom_avg_4x4(src, stride); } #endif #if CONFIG_HIGHBITDEPTH static INLINE int avg_8x8(const uint8_t *const src, const int stride, const int highbd) { if (highbd) { return aom_highbd_avg_8x8(src, stride); } else { return aom_avg_8x8(src, stride); } } #else static INLINE int avg_8x8(const uint8_t *const src, const int stride) { return aom_avg_8x8(src, stride); } #endif static void init_variance_tree(VAR_TREE *const vt, #if CONFIG_HIGHBITDEPTH const int highbd, #endif BLOCK_SIZE bsize, BLOCK_SIZE leaf_size, const int width, const int height, const uint8_t *const src, const int src_stride, const uint8_t *const ref, const int ref_stride) { assert(bsize >= leaf_size); vt->bsize = bsize; vt->force_split = 0; vt->src = src; vt->src_stride = src_stride; vt->ref = ref; vt->ref_stride = ref_stride; vt->width = width; vt->height = height; #if CONFIG_HIGHBITDEPTH vt->highbd = highbd; #endif // CONFIG_HIGHBITDEPTH if (bsize > leaf_size) { const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT); const int px = block_size_wide[subsize]; init_variance_tree(vt->split[0], #if CONFIG_HIGHBITDEPTH highbd, #endif // CONFIG_HIGHBITDEPTH subsize, leaf_size, AOMMIN(px, width), AOMMIN(px, height), src, src_stride, ref, ref_stride); init_variance_tree(vt->split[1], #if CONFIG_HIGHBITDEPTH highbd, #endif // CONFIG_HIGHBITDEPTH subsize, leaf_size, width - px, AOMMIN(px, height), src + px, src_stride, ref + px, ref_stride); init_variance_tree(vt->split[2], #if CONFIG_HIGHBITDEPTH highbd, #endif // CONFIG_HIGHBITDEPTH subsize, leaf_size, AOMMIN(px, width), height - px, src + px * src_stride, src_stride, ref + px * ref_stride, ref_stride); init_variance_tree(vt->split[3], #if CONFIG_HIGHBITDEPTH highbd, #endif // CONFIG_HIGHBITDEPTH subsize, leaf_size, width - px, height - px, src + px * src_stride + px, src_stride, ref + px * ref_stride + px, ref_stride); } } // Fill the variance tree based on averaging pixel values (sub-sampling), at // the leaf node size. static void fill_variance_tree(VAR_TREE *const vt, const BLOCK_SIZE leaf_size) { if (vt->bsize > leaf_size) { fill_variance_tree(vt->split[0], leaf_size); fill_variance_tree(vt->split[1], leaf_size); fill_variance_tree(vt->split[2], leaf_size); fill_variance_tree(vt->split[3], leaf_size); fill_variance_node(vt); } else if (vt->width <= 0 || vt->height <= 0) { fill_variance(0, 0, 0, &vt->variances.none); } else { unsigned int sse = 0; int sum = 0; int src_avg; int ref_avg; assert(leaf_size == BLOCK_4X4 || leaf_size == BLOCK_8X8); if (leaf_size == BLOCK_4X4) { src_avg = avg_4x4(vt->src, vt->src_stride IF_HBD(, vt->highbd)); ref_avg = avg_4x4(vt->ref, vt->ref_stride IF_HBD(, vt->highbd)); } else { src_avg = avg_8x8(vt->src, vt->src_stride IF_HBD(, vt->highbd)); ref_avg = avg_8x8(vt->ref, vt->ref_stride IF_HBD(, vt->highbd)); } sum = src_avg - ref_avg; sse = sum * sum; fill_variance(sse, sum, 0, &vt->variances.none); } } static void refine_variance_tree(VAR_TREE *const vt, const int64_t threshold) { if (vt->bsize >= BLOCK_8X8) { if (vt->bsize == BLOCK_16X16) { if (vt->variances.none.variance <= threshold) return; else vt->force_split = 0; } refine_variance_tree(vt->split[0], threshold); refine_variance_tree(vt->split[1], threshold); refine_variance_tree(vt->split[2], threshold); refine_variance_tree(vt->split[3], threshold); if (vt->bsize <= BLOCK_16X16) fill_variance_node(vt); } else if (vt->width <= 0 || vt->height <= 0) { fill_variance(0, 0, 0, &vt->variances.none); } else { const int src_avg = avg_4x4(vt->src, vt->src_stride IF_HBD(, vt->highbd)); const int ref_avg = avg_4x4(vt->ref, vt->ref_stride IF_HBD(, vt->highbd)); const int sum = src_avg - ref_avg; const unsigned int sse = sum * sum; assert(vt->bsize == BLOCK_4X4); fill_variance(sse, sum, 0, &vt->variances.none); } } static int check_split_key_frame(VAR_TREE *const vt, const int64_t threshold) { if (vt->bsize == BLOCK_32X32) { vt->force_split = vt->variances.none.variance > threshold; } else { vt->force_split |= check_split_key_frame(vt->split[0], threshold); vt->force_split |= check_split_key_frame(vt->split[1], threshold); vt->force_split |= check_split_key_frame(vt->split[2], threshold); vt->force_split |= check_split_key_frame(vt->split[3], threshold); } return vt->force_split; } static int check_split(AV1_COMP *const cpi, VAR_TREE *const vt, const int segment_id, const int64_t *const thresholds) { if (vt->bsize == BLOCK_16X16) { vt->force_split = vt->variances.none.variance > thresholds[0]; if (!vt->force_split && vt->variances.none.variance > thresholds[-1] && !cyclic_refresh_segment_id_boosted(segment_id)) { // We have some nominal amount of 16x16 variance (based on average), // compute the minmax over the 8x8 sub-blocks, and if above threshold, // force split to 8x8 block for this 16x16 block. int minmax = compute_minmax_8x8(vt->src, vt->src_stride, vt->ref, vt->ref_stride, #if CONFIG_HIGHBITDEPTH vt->highbd, #endif vt->width, vt->height); vt->force_split = minmax > cpi->vbp_threshold_minmax; } } else { vt->force_split |= check_split(cpi, vt->split[0], segment_id, thresholds + 1); vt->force_split |= check_split(cpi, vt->split[1], segment_id, thresholds + 1); vt->force_split |= check_split(cpi, vt->split[2], segment_id, thresholds + 1); vt->force_split |= check_split(cpi, vt->split[3], segment_id, thresholds + 1); if (vt->bsize == BLOCK_32X32 && !vt->force_split) { vt->force_split = vt->variances.none.variance > thresholds[0]; } } return vt->force_split; } // This function chooses partitioning based on the variance between source and // reconstructed last (or golden), where variance is computed for down-sampled // inputs. static void choose_partitioning(AV1_COMP *const cpi, ThreadData *const td, const TileInfo *const tile, MACROBLOCK *const x, const int mi_row, const int mi_col) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; VAR_TREE *const vt = td->var_root[cm->mib_size_log2 - MIN_MIB_SIZE_LOG2]; #if CONFIG_DUAL_FILTER int i; #endif const uint8_t *src; const uint8_t *ref; int src_stride; int ref_stride; int pixels_wide = MI_SIZE * mi_size_wide[cm->sb_size]; int pixels_high = MI_SIZE * mi_size_high[cm->sb_size]; int64_t thresholds[5] = { cpi->vbp_thresholds[0], cpi->vbp_thresholds[1], cpi->vbp_thresholds[2], cpi->vbp_thresholds[3], cpi->vbp_thresholds[4], }; BLOCK_SIZE bsize_min[5] = { BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, cpi->vbp_bsize_min, BLOCK_8X8 }; const int start_level = cm->sb_size == BLOCK_64X64 ? 1 : 0; const int64_t *const thre = thresholds + start_level; const BLOCK_SIZE *const bmin = bsize_min + start_level; const int is_key_frame = (cm->frame_type == KEY_FRAME); const int low_res = (cm->width <= 352 && cm->height <= 288); int segment_id = CR_SEGMENT_ID_BASE; if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) { const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map; segment_id = get_segment_id(cm, map, cm->sb_size, mi_row, mi_col); if (cyclic_refresh_segment_id_boosted(segment_id)) { int q = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex); set_vbp_thresholds(cpi, thresholds, q); } } set_offsets(cpi, tile, x, mi_row, mi_col, cm->sb_size); if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3); if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3); src = x->plane[0].src.buf; src_stride = x->plane[0].src.stride; if (!is_key_frame) { MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); const YV12_BUFFER_CONFIG *yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME); unsigned int y_sad, y_sad_g; const int hbs = cm->mib_size / 2; const int split_vert = mi_col + hbs >= cm->mi_cols; const int split_horz = mi_row + hbs >= cm->mi_rows; BLOCK_SIZE bsize; if (split_vert && split_horz) bsize = get_subsize(cm->sb_size, PARTITION_SPLIT); else if (split_vert) bsize = get_subsize(cm->sb_size, PARTITION_VERT); else if (split_horz) bsize = get_subsize(cm->sb_size, PARTITION_HORZ); else bsize = cm->sb_size; assert(yv12 != NULL); if (yv12_g && yv12_g != yv12) { av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, &cm->frame_refs[GOLDEN_FRAME - 1].sf); y_sad_g = cpi->fn_ptr[bsize].sdf( x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride); } else { y_sad_g = UINT_MAX; } av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, &cm->frame_refs[LAST_FRAME - 1].sf); mbmi->ref_frame[0] = LAST_FRAME; mbmi->ref_frame[1] = NONE_FRAME; mbmi->sb_type = cm->sb_size; mbmi->mv[0].as_int = 0; #if CONFIG_DUAL_FILTER for (i = 0; i < 4; ++i) mbmi->interp_filter[i] = BILINEAR; #else mbmi->interp_filter = BILINEAR; #endif y_sad = av1_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col); if (y_sad_g < y_sad) { av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, &cm->frame_refs[GOLDEN_FRAME - 1].sf); mbmi->ref_frame[0] = GOLDEN_FRAME; mbmi->mv[0].as_int = 0; y_sad = y_sad_g; } else { x->pred_mv[LAST_FRAME] = mbmi->mv[0].as_mv; } av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, cm->sb_size); ref = xd->plane[0].dst.buf; ref_stride = xd->plane[0].dst.stride; // If the y_sad is very small, take the largest partition and exit. // Don't check on boosted segment for now, as largest is suppressed there. if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) { if (!split_vert && !split_horz) { set_block_size(cpi, x, xd, mi_row, mi_col, cm->sb_size); return; } } } else { ref = AV1_VAR_OFFS; ref_stride = 0; #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { switch (xd->bd) { case 10: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10); break; case 12: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12); break; case 8: default: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8); break; } } #endif // CONFIG_HIGHBITDEPTH } init_variance_tree( vt, #if CONFIG_HIGHBITDEPTH xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, #endif // CONFIG_HIGHBITDEPTH cm->sb_size, (is_key_frame || low_res) ? BLOCK_4X4 : BLOCK_8X8, pixels_wide, pixels_high, src, src_stride, ref, ref_stride); // Fill in the entire tree of variances and compute splits. if (is_key_frame) { fill_variance_tree(vt, BLOCK_4X4); check_split_key_frame(vt, thre[1]); } else { fill_variance_tree(vt, BLOCK_8X8); check_split(cpi, vt, segment_id, thre); if (low_res) { refine_variance_tree(vt, thre[1] << 1); } } vt->force_split |= mi_col + cm->mib_size > cm->mi_cols || mi_row + cm->mib_size > cm->mi_rows; // Now go through the entire structure, splitting every block size until // we get to one that's got a variance lower than our threshold. set_vt_partitioning(cpi, x, xd, vt, mi_row, mi_col, thre, bmin); } #if CONFIG_DUAL_FILTER static void reset_intmv_filter_type(const AV1_COMMON *const cm, MACROBLOCKD *xd, MB_MODE_INFO *mbmi) { int dir; for (dir = 0; dir < 2; ++dir) { if (!has_subpel_mv_component(xd->mi[0], xd, dir) && (mbmi->ref_frame[1] == NONE_FRAME || !has_subpel_mv_component(xd->mi[0], xd, dir + 2))) mbmi->interp_filter[dir] = (cm->interp_filter == SWITCHABLE) ? EIGHTTAP_REGULAR : cm->interp_filter; mbmi->interp_filter[dir + 2] = mbmi->interp_filter[dir]; } } static void update_filter_type_count(FRAME_COUNTS *counts, const MACROBLOCKD *xd, const MB_MODE_INFO *mbmi) { int dir; for (dir = 0; dir < 2; ++dir) { if (has_subpel_mv_component(xd->mi[0], xd, dir) || (mbmi->ref_frame[1] > INTRA_FRAME && has_subpel_mv_component(xd->mi[0], xd, dir + 2))) { const int ctx = av1_get_pred_context_switchable_interp(xd, dir); ++counts->switchable_interp[ctx][mbmi->interp_filter[dir]]; } } } #endif #if CONFIG_GLOBAL_MOTION static void update_global_motion_used(PREDICTION_MODE mode, BLOCK_SIZE bsize, const MB_MODE_INFO *mbmi, RD_COUNTS *rdc) { if (mode == ZEROMV #if CONFIG_EXT_INTER || mode == ZERO_ZEROMV #endif ) { const int num_4x4s = num_4x4_blocks_wide_lookup[bsize] * num_4x4_blocks_high_lookup[bsize]; int ref; for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { rdc->global_motion_used[mbmi->ref_frame[ref]] += num_4x4s; } } } #endif // CONFIG_GLOBAL_MOTION static void reset_tx_size(MACROBLOCKD *xd, MB_MODE_INFO *mbmi, const TX_MODE tx_mode) { if (xd->lossless[mbmi->segment_id]) { mbmi->tx_size = TX_4X4; } else if (tx_mode != TX_MODE_SELECT) { mbmi->tx_size = tx_size_from_tx_mode(mbmi->sb_type, tx_mode, is_inter_block(mbmi)); } } #if CONFIG_REF_MV static void set_ref_and_pred_mvs(MACROBLOCK *const x, int_mv *const mi_pred_mv, int8_t rf_type) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const int bw = xd->n8_w << MI_SIZE_LOG2; const int bh = xd->n8_h << MI_SIZE_LOG2; int ref_mv_idx = mbmi->ref_mv_idx; MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; CANDIDATE_MV *const curr_ref_mv_stack = mbmi_ext->ref_mv_stack[rf_type]; #if CONFIG_EXT_INTER if (has_second_ref(mbmi)) { // Special case: NEAR_NEWMV and NEW_NEARMV modes use 1 + mbmi->ref_mv_idx // (like NEARMV) instead if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) ref_mv_idx += 1; if (compound_ref0_mode(mbmi->mode) == NEWMV) { int_mv this_mv = curr_ref_mv_stack[ref_mv_idx].this_mv; clamp_mv_ref(&this_mv.as_mv, bw, bh, xd); mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0] = this_mv; mbmi->pred_mv[0] = this_mv; mi_pred_mv[0] = this_mv; } if (compound_ref1_mode(mbmi->mode) == NEWMV) { int_mv this_mv = curr_ref_mv_stack[ref_mv_idx].comp_mv; clamp_mv_ref(&this_mv.as_mv, bw, bh, xd); mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0] = this_mv; mbmi->pred_mv[1] = this_mv; mi_pred_mv[1] = this_mv; } } else { #endif // CONFIG_EXT_INTER if (mbmi->mode == NEWMV) { int i; for (i = 0; i < 1 + has_second_ref(mbmi); ++i) { int_mv this_mv = (i == 0) ? curr_ref_mv_stack[ref_mv_idx].this_mv : curr_ref_mv_stack[ref_mv_idx].comp_mv; clamp_mv_ref(&this_mv.as_mv, bw, bh, xd); mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0] = this_mv; mbmi->pred_mv[i] = this_mv; mi_pred_mv[i] = this_mv; } } #if CONFIG_EXT_INTER } #endif // CONFIG_EXT_INTER } #endif // CONFIG_REF_MV static void update_state(const AV1_COMP *const cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) { int i, x_idx, y; const AV1_COMMON *const cm = &cpi->common; RD_COUNTS *const rdc = &td->rd_counts; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; MODE_INFO *mi = &ctx->mic; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; MODE_INFO *mi_addr = xd->mi[0]; const struct segmentation *const seg = &cm->seg; const int bw = mi_size_wide[mi->mbmi.sb_type]; const int bh = mi_size_high[mi->mbmi.sb_type]; const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col; int w, h; const int mis = cm->mi_stride; const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; const int unify_bsize = CONFIG_CB4X4; #if CONFIG_REF_MV int8_t rf_type; #endif #if !CONFIG_SUPERTX assert(mi->mbmi.sb_type == bsize); #endif *mi_addr = *mi; *x->mbmi_ext = ctx->mbmi_ext; #if CONFIG_DUAL_FILTER reset_intmv_filter_type(cm, xd, mbmi); #endif #if CONFIG_REF_MV rf_type = av1_ref_frame_type(mbmi->ref_frame); if (x->mbmi_ext->ref_mv_count[rf_type] > 1 && (mbmi->sb_type >= BLOCK_8X8 || unify_bsize)) { set_ref_and_pred_mvs(x, mi->mbmi.pred_mv, rf_type); } #endif // CONFIG_REF_MV // If segmentation in use if (seg->enabled) { // For in frame complexity AQ copy the segment id from the segment map. if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mi_addr->mbmi.segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); reset_tx_size(xd, &mi_addr->mbmi, cm->tx_mode); } // Else for cyclic refresh mode update the segment map, set the segment id // and then update the quantizer. if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { av1_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col, bsize, ctx->rate, ctx->dist, x->skip); reset_tx_size(xd, &mi_addr->mbmi, cm->tx_mode); } } for (i = 0; i < MAX_MB_PLANE; ++i) { p[i].coeff = ctx->coeff[i]; p[i].qcoeff = ctx->qcoeff[i]; pd[i].dqcoeff = ctx->dqcoeff[i]; #if CONFIG_PVQ pd[i].pvq_ref_coeff = ctx->pvq_ref_coeff[i]; #endif p[i].eobs = ctx->eobs[i]; #if CONFIG_LV_MAP p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; #endif // CONFIG_LV_MAP } #if CONFIG_PALETTE for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; #endif // CONFIG_PALETTE // Restore the coding context of the MB to that that was in place // when the mode was picked for it for (y = 0; y < mi_height; y++) for (x_idx = 0; x_idx < mi_width; x_idx++) if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { xd->mi[x_idx + y * mis] = mi_addr; } #if CONFIG_DELTA_Q && !CONFIG_EXT_DELTA_Q if (cpi->oxcf.aq_mode > NO_AQ && cpi->oxcf.aq_mode < DELTA_AQ) av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id); #else if (cpi->oxcf.aq_mode) av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id); #endif if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8 && !unify_bsize) { mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; } x->skip = ctx->skip; #if CONFIG_VAR_TX for (i = 0; i < 1; ++i) memcpy(x->blk_skip[i], ctx->blk_skip[i], sizeof(uint8_t) * ctx->num_4x4_blk); #endif if (dry_run) return; #if CONFIG_INTERNAL_STATS { unsigned int *const mode_chosen_counts = (unsigned int *)cpi->mode_chosen_counts; // Cast const away. if (frame_is_intra_only(cm)) { static const int kf_mode_index[] = { THR_DC /*DC_PRED*/, THR_V_PRED /*V_PRED*/, THR_H_PRED /*H_PRED*/, THR_D45_PRED /*D45_PRED*/, THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/, THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/, THR_D63_PRED /*D63_PRED*/, #if CONFIG_ALT_INTRA THR_SMOOTH, /*SMOOTH_PRED*/ #endif // CONFIG_ALT_INTRA THR_TM /*TM_PRED*/, }; ++mode_chosen_counts[kf_mode_index[mbmi->mode]]; } else { // Note how often each mode chosen as best ++mode_chosen_counts[ctx->best_mode_index]; } } #endif if (!frame_is_intra_only(cm)) { if (is_inter_block(mbmi)) { av1_update_mv_count(td); #if CONFIG_GLOBAL_MOTION if (bsize >= BLOCK_8X8) { // TODO(sarahparker): global motion stats need to be handled per-tile // to be compatible with tile-based threading. update_global_motion_used(mbmi->mode, bsize, mbmi, rdc); } else { const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int j = idy * 2 + idx; update_global_motion_used(mi->bmi[j].as_mode, bsize, mbmi, rdc); } } } #endif // CONFIG_GLOBAL_MOTION if (cm->interp_filter == SWITCHABLE #if CONFIG_WARPED_MOTION && mbmi->motion_mode != WARPED_CAUSAL #endif // CONFIG_WARPED_MOTION #if CONFIG_GLOBAL_MOTION && !is_nontrans_global_motion(xd) #endif // CONFIG_GLOBAL_MOTION ) { #if CONFIG_DUAL_FILTER update_filter_type_count(td->counts, xd, mbmi); #else const int switchable_ctx = av1_get_pred_context_switchable_interp(xd); ++td->counts->switchable_interp[switchable_ctx][mbmi->interp_filter]; #endif } } rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; } for (h = 0; h < y_mis; ++h) { MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols; for (w = 0; w < x_mis; ++w) { MV_REF *const mv = frame_mv + w; mv->ref_frame[0] = mi->mbmi.ref_frame[0]; mv->ref_frame[1] = mi->mbmi.ref_frame[1]; mv->mv[0].as_int = mi->mbmi.mv[0].as_int; mv->mv[1].as_int = mi->mbmi.mv[1].as_int; } } } #if CONFIG_SUPERTX static void update_state_supertx(const AV1_COMP *const cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) { int y, x_idx; #if CONFIG_VAR_TX int i; #endif const AV1_COMMON *const cm = &cpi->common; RD_COUNTS *const rdc = &td->rd_counts; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *mi = &ctx->mic; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; MODE_INFO *mi_addr = xd->mi[0]; const struct segmentation *const seg = &cm->seg; const int mis = cm->mi_stride; const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; const int x_mis = AOMMIN(mi_width, cm->mi_cols - mi_col); const int y_mis = AOMMIN(mi_height, cm->mi_rows - mi_row); const int unify_bsize = CONFIG_CB4X4; MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col; int w, h; #if CONFIG_REF_MV int8_t rf_type; #endif *mi_addr = *mi; *x->mbmi_ext = ctx->mbmi_ext; assert(is_inter_block(mbmi)); assert(mbmi->tx_size == ctx->mic.mbmi.tx_size); #if CONFIG_DUAL_FILTER reset_intmv_filter_type(cm, xd, mbmi); #endif #if CONFIG_REF_MV rf_type = av1_ref_frame_type(mbmi->ref_frame); if (x->mbmi_ext->ref_mv_count[rf_type] > 1 && (mbmi->sb_type >= BLOCK_8X8 || unify_bsize)) { set_ref_and_pred_mvs(x, mi->mbmi.pred_mv, rf_type); } #endif // CONFIG_REF_MV // If segmentation in use if (seg->enabled) { if (cpi->vaq_refresh) { const int energy = bsize <= BLOCK_16X16 ? x->mb_energy : av1_block_energy(cpi, x, bsize); mi_addr->mbmi.segment_id = av1_vaq_segment_id(energy); } else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { // For cyclic refresh mode, now update the segment map // and set the segment id. av1_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col, bsize, ctx->rate, ctx->dist, 1); } else { // Otherwise just set the segment id based on the current segment map const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mi_addr->mbmi.segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); } mi_addr->mbmi.segment_id_supertx = MAX_SEGMENTS; } // Restore the coding context of the MB to that that was in place // when the mode was picked for it for (y = 0; y < mi_height; y++) for (x_idx = 0; x_idx < mi_width; x_idx++) if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { xd->mi[x_idx + y * mis] = mi_addr; } #if !CONFIG_CB4X4 if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) { mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; } #endif x->skip = ctx->skip; #if CONFIG_VAR_TX for (i = 0; i < 1; ++i) memcpy(x->blk_skip[i], ctx->blk_skip[i], sizeof(uint8_t) * ctx->num_4x4_blk); if (!is_inter_block(mbmi) || mbmi->skip) mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size); #endif // CONFIG_VAR_TX #if CONFIG_VAR_TX { const TX_SIZE mtx = mbmi->tx_size; const int num_4x4_blocks_wide = tx_size_wide_unit[mtx] >> 1; const int num_4x4_blocks_high = tx_size_high_unit[mtx] >> 1; int idy, idx; mbmi->inter_tx_size[0][0] = mtx; for (idy = 0; idy < num_4x4_blocks_high; ++idy) for (idx = 0; idx < num_4x4_blocks_wide; ++idx) mbmi->inter_tx_size[idy][idx] = mtx; } #endif // CONFIG_VAR_TX // Turn motion variation off for supertx mbmi->motion_mode = SIMPLE_TRANSLATION; if (dry_run) return; if (!frame_is_intra_only(cm)) { av1_update_mv_count(td); #if CONFIG_GLOBAL_MOTION if (is_inter_block(mbmi)) { if (bsize >= BLOCK_8X8) { // TODO(sarahparker): global motion stats need to be handled per-tile // to be compatible with tile-based threading. update_global_motion_used(mbmi->mode, bsize, mbmi, rdc); } else { const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int j = idy * 2 + idx; update_global_motion_used(mi->bmi[j].as_mode, bsize, mbmi, rdc); } } } } #endif // CONFIG_GLOBAL_MOTION if (cm->interp_filter == SWITCHABLE #if CONFIG_GLOBAL_MOTION && !is_nontrans_global_motion(xd) #endif // CONFIG_GLOBAL_MOTION ) { #if CONFIG_DUAL_FILTER update_filter_type_count(td->counts, xd, mbmi); #else const int pred_ctx = av1_get_pred_context_switchable_interp(xd); ++td->counts->switchable_interp[pred_ctx][mbmi->interp_filter]; #endif } rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; } for (h = 0; h < y_mis; ++h) { MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols; for (w = 0; w < x_mis; ++w) { MV_REF *const mv = frame_mv + w; mv->ref_frame[0] = mi->mbmi.ref_frame[0]; mv->ref_frame[1] = mi->mbmi.ref_frame[1]; mv->mv[0].as_int = mi->mbmi.mv[0].as_int; mv->mv[1].as_int = mi->mbmi.mv[1].as_int; } } } static void update_state_sb_supertx(const AV1_COMP *const cpi, ThreadData *td, const TileInfo *const tile, int mi_row, int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run, PC_TREE *pc_tree) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; int hbs = mi_size_wide[bsize] / 2; #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; #endif PARTITION_TYPE partition = pc_tree->partitioning; BLOCK_SIZE subsize = get_subsize(bsize, partition); int i; #if CONFIG_EXT_PARTITION_TYPES BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); #endif PICK_MODE_CONTEXT *pmc = NULL; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; if (bsize == BLOCK_16X16 && cpi->vaq_refresh) x->mb_energy = av1_block_energy(cpi, x, bsize); switch (partition) { case PARTITION_NONE: set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize); update_state_supertx(cpi, td, &pc_tree->none, mi_row, mi_col, subsize, dry_run); break; case PARTITION_VERT: set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize); update_state_supertx(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, dry_run); if (mi_col + hbs < cm->mi_cols && (bsize > BLOCK_8X8 || unify_bsize)) { set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize); update_state_supertx(cpi, td, &pc_tree->vertical[1], mi_row, mi_col + hbs, subsize, dry_run); } pmc = &pc_tree->vertical_supertx; break; case PARTITION_HORZ: set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize); update_state_supertx(cpi, td, &pc_tree->horizontal[0], mi_row, mi_col, subsize, dry_run); if (mi_row + hbs < cm->mi_rows && (bsize > BLOCK_8X8 || unify_bsize)) { set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize); update_state_supertx(cpi, td, &pc_tree->horizontal[1], mi_row + hbs, mi_col, subsize, dry_run); } pmc = &pc_tree->horizontal_supertx; break; case PARTITION_SPLIT: if (bsize == BLOCK_8X8 && !unify_bsize) { set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize); update_state_supertx(cpi, td, pc_tree->leaf_split[0], mi_row, mi_col, subsize, dry_run); } else { set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize); update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, subsize, dry_run, pc_tree->split[0]); set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize); update_state_sb_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize, dry_run, pc_tree->split[1]); set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize); update_state_sb_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize, dry_run, pc_tree->split[2]); set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, subsize); update_state_sb_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, subsize, dry_run, pc_tree->split[3]); } pmc = &pc_tree->split_supertx; break; #if CONFIG_EXT_PARTITION_TYPES case PARTITION_HORZ_A: set_offsets_supertx(cpi, td, tile, mi_row, mi_col, bsize2); update_state_supertx(cpi, td, &pc_tree->horizontala[0], mi_row, mi_col, bsize2, dry_run); set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, bsize2); update_state_supertx(cpi, td, &pc_tree->horizontala[1], mi_row, mi_col + hbs, bsize2, dry_run); set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize); update_state_supertx(cpi, td, &pc_tree->horizontala[2], mi_row + hbs, mi_col, subsize, dry_run); pmc = &pc_tree->horizontala_supertx; break; case PARTITION_HORZ_B: set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize); update_state_supertx(cpi, td, &pc_tree->horizontalb[0], mi_row, mi_col, subsize, dry_run); set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, bsize2); update_state_supertx(cpi, td, &pc_tree->horizontalb[1], mi_row + hbs, mi_col, bsize2, dry_run); set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, bsize2); update_state_supertx(cpi, td, &pc_tree->horizontalb[2], mi_row + hbs, mi_col + hbs, bsize2, dry_run); pmc = &pc_tree->horizontalb_supertx; break; case PARTITION_VERT_A: set_offsets_supertx(cpi, td, tile, mi_row, mi_col, bsize2); update_state_supertx(cpi, td, &pc_tree->verticala[0], mi_row, mi_col, bsize2, dry_run); set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, bsize2); update_state_supertx(cpi, td, &pc_tree->verticala[1], mi_row + hbs, mi_col, bsize2, dry_run); set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize); update_state_supertx(cpi, td, &pc_tree->verticala[2], mi_row, mi_col + hbs, subsize, dry_run); pmc = &pc_tree->verticala_supertx; break; case PARTITION_VERT_B: set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize); update_state_supertx(cpi, td, &pc_tree->verticalb[0], mi_row, mi_col, subsize, dry_run); set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, bsize2); update_state_supertx(cpi, td, &pc_tree->verticalb[1], mi_row, mi_col + hbs, bsize2, dry_run); set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, bsize2); update_state_supertx(cpi, td, &pc_tree->verticalb[2], mi_row + hbs, mi_col + hbs, bsize2, dry_run); pmc = &pc_tree->verticalb_supertx; break; #endif // CONFIG_EXT_PARTITION_TYPES default: assert(0); } for (i = 0; i < MAX_MB_PLANE; ++i) { if (pmc != NULL) { p[i].coeff = pmc->coeff[i]; p[i].qcoeff = pmc->qcoeff[i]; pd[i].dqcoeff = pmc->dqcoeff[i]; p[i].eobs = pmc->eobs[i]; } else { // These should never be used p[i].coeff = NULL; p[i].qcoeff = NULL; pd[i].dqcoeff = NULL; p[i].eobs = NULL; } } } static void update_supertx_param(ThreadData *td, PICK_MODE_CONTEXT *ctx, int best_tx, TX_SIZE supertx_size) { MACROBLOCK *const x = &td->mb; #if CONFIG_VAR_TX int i; for (i = 0; i < 1; ++i) memcpy(ctx->blk_skip[i], x->blk_skip[i], sizeof(uint8_t) * ctx->num_4x4_blk); ctx->mic.mbmi.min_tx_size = get_min_tx_size(supertx_size); #endif // CONFIG_VAR_TX ctx->mic.mbmi.tx_size = supertx_size; ctx->skip = x->skip; ctx->mic.mbmi.tx_type = best_tx; } static void update_supertx_param_sb(const AV1_COMP *const cpi, ThreadData *td, int mi_row, int mi_col, BLOCK_SIZE bsize, int best_tx, TX_SIZE supertx_size, PC_TREE *pc_tree) { const AV1_COMMON *const cm = &cpi->common; const int hbs = mi_size_wide[bsize] / 2; PARTITION_TYPE partition = pc_tree->partitioning; BLOCK_SIZE subsize = get_subsize(bsize, partition); #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; #endif #if CONFIG_EXT_PARTITION_TYPES int i; #endif if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; switch (partition) { case PARTITION_NONE: update_supertx_param(td, &pc_tree->none, best_tx, supertx_size); break; case PARTITION_VERT: update_supertx_param(td, &pc_tree->vertical[0], best_tx, supertx_size); if (mi_col + hbs < cm->mi_cols && (bsize > BLOCK_8X8 || unify_bsize)) update_supertx_param(td, &pc_tree->vertical[1], best_tx, supertx_size); break; case PARTITION_HORZ: update_supertx_param(td, &pc_tree->horizontal[0], best_tx, supertx_size); if (mi_row + hbs < cm->mi_rows && (bsize > BLOCK_8X8 || unify_bsize)) update_supertx_param(td, &pc_tree->horizontal[1], best_tx, supertx_size); break; case PARTITION_SPLIT: if (bsize == BLOCK_8X8 && !unify_bsize) { update_supertx_param(td, pc_tree->leaf_split[0], best_tx, supertx_size); } else { update_supertx_param_sb(cpi, td, mi_row, mi_col, subsize, best_tx, supertx_size, pc_tree->split[0]); update_supertx_param_sb(cpi, td, mi_row, mi_col + hbs, subsize, best_tx, supertx_size, pc_tree->split[1]); update_supertx_param_sb(cpi, td, mi_row + hbs, mi_col, subsize, best_tx, supertx_size, pc_tree->split[2]); update_supertx_param_sb(cpi, td, mi_row + hbs, mi_col + hbs, subsize, best_tx, supertx_size, pc_tree->split[3]); } break; #if CONFIG_EXT_PARTITION_TYPES case PARTITION_HORZ_A: for (i = 0; i < 3; i++) update_supertx_param(td, &pc_tree->horizontala[i], best_tx, supertx_size); break; case PARTITION_HORZ_B: for (i = 0; i < 3; i++) update_supertx_param(td, &pc_tree->horizontalb[i], best_tx, supertx_size); break; case PARTITION_VERT_A: for (i = 0; i < 3; i++) update_supertx_param(td, &pc_tree->verticala[i], best_tx, supertx_size); break; case PARTITION_VERT_B: for (i = 0; i < 3; i++) update_supertx_param(td, &pc_tree->verticalb[i], best_tx, supertx_size); break; #endif // CONFIG_EXT_PARTITION_TYPES default: assert(0); } } #endif // CONFIG_SUPERTX #if CONFIG_MOTION_VAR && CONFIG_NCOBMC static void set_mode_info_b(const AV1_COMP *const cpi, const TileInfo *const tile, ThreadData *td, int mi_row, int mi_col, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { MACROBLOCK *const x = &td->mb; set_offsets(cpi, tile, x, mi_row, mi_col, bsize); update_state(cpi, td, ctx, mi_row, mi_col, bsize, 1); } static void set_mode_info_sb(const AV1_COMP *const cpi, ThreadData *td, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) { const AV1_COMMON *const cm = &cpi->common; const int hbs = mi_size_wide[bsize] / 2; const PARTITION_TYPE partition = pc_tree->partitioning; BLOCK_SIZE subsize = get_subsize(bsize, partition); #if CONFIG_EXT_PARTITION_TYPES const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); #endif #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; assert(bsize >= BLOCK_8X8); #endif if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; switch (partition) { case PARTITION_NONE: set_mode_info_b(cpi, tile, td, mi_row, mi_col, subsize, &pc_tree->none); break; case PARTITION_VERT: set_mode_info_b(cpi, tile, td, mi_row, mi_col, subsize, &pc_tree->vertical[0]); if (mi_col + hbs < cm->mi_cols && (bsize > BLOCK_8X8 || unify_bsize)) { set_mode_info_b(cpi, tile, td, mi_row, mi_col + hbs, subsize, &pc_tree->vertical[1]); } break; case PARTITION_HORZ: set_mode_info_b(cpi, tile, td, mi_row, mi_col, subsize, &pc_tree->horizontal[0]); if (mi_row + hbs < cm->mi_rows && (bsize > BLOCK_8X8 || unify_bsize)) { set_mode_info_b(cpi, tile, td, mi_row + hbs, mi_col, subsize, &pc_tree->horizontal[1]); } break; case PARTITION_SPLIT: if (bsize == BLOCK_8X8 && !unify_bsize) { set_mode_info_b(cpi, tile, td, mi_row, mi_col, subsize, pc_tree->leaf_split[0]); } else { set_mode_info_sb(cpi, td, tile, tp, mi_row, mi_col, subsize, pc_tree->split[0]); set_mode_info_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, subsize, pc_tree->split[1]); set_mode_info_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, subsize, pc_tree->split[2]); set_mode_info_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, subsize, pc_tree->split[3]); } break; #if CONFIG_EXT_PARTITION_TYPES case PARTITION_HORZ_A: set_mode_info_b(cpi, tile, td, mi_row, mi_col, bsize2, &pc_tree->horizontala[0]); set_mode_info_b(cpi, tile, td, mi_row, mi_col + hbs, bsize2, &pc_tree->horizontala[1]); set_mode_info_b(cpi, tile, td, mi_row + hbs, mi_col, subsize, &pc_tree->horizontala[2]); break; case PARTITION_HORZ_B: set_mode_info_b(cpi, tile, td, mi_row, mi_col, subsize, &pc_tree->horizontalb[0]); set_mode_info_b(cpi, tile, td, mi_row + hbs, mi_col, bsize2, &pc_tree->horizontalb[1]); set_mode_info_b(cpi, tile, td, mi_row + hbs, mi_col + hbs, bsize2, &pc_tree->horizontalb[2]); break; case PARTITION_VERT_A: set_mode_info_b(cpi, tile, td, mi_row, mi_col, bsize2, &pc_tree->verticala[0]); set_mode_info_b(cpi, tile, td, mi_row + hbs, mi_col, bsize2, &pc_tree->verticala[1]); set_mode_info_b(cpi, tile, td, mi_row, mi_col + hbs, subsize, &pc_tree->verticala[2]); break; case PARTITION_VERT_B: set_mode_info_b(cpi, tile, td, mi_row, mi_col, subsize, &pc_tree->verticalb[0]); set_mode_info_b(cpi, tile, td, mi_row, mi_col + hbs, bsize2, &pc_tree->verticalb[1]); set_mode_info_b(cpi, tile, td, mi_row + hbs, mi_col + hbs, bsize2, &pc_tree->verticalb[2]); break; #endif // CONFIG_EXT_PARTITION_TYPES default: assert(0 && "Invalid partition type."); break; } } #endif void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col) { uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer }; const int widths[3] = { src->y_crop_width, src->uv_crop_width, src->uv_crop_width }; const int heights[3] = { src->y_crop_height, src->uv_crop_height, src->uv_crop_height }; const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride }; int i; // Set current frame pointer. x->e_mbd.cur_buf = src; for (i = 0; i < MAX_MB_PLANE; i++) setup_pred_plane(&x->plane[i].src, x->e_mbd.mi[0]->mbmi.sb_type, buffers[i], widths[i], heights[i], strides[i], mi_row, mi_col, NULL, x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y); } static int set_segment_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, int8_t segment_id) { int segment_qindex; const AV1_COMMON *const cm = &cpi->common; av1_init_plane_quantizers(cpi, x, segment_id); aom_clear_system_state(); segment_qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex); return av1_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q); } static void rd_pick_sb_modes(const AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *const x, int mi_row, int mi_col, RD_STATS *rd_cost, #if CONFIG_SUPERTX int *totalrate_nocoef, #endif #if CONFIG_EXT_PARTITION_TYPES PARTITION_TYPE partition, #endif BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd) { const AV1_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; const AQ_MODE aq_mode = cpi->oxcf.aq_mode; int i, orig_rdmult; const int unify_bsize = CONFIG_CB4X4; aom_clear_system_state(); #if CONFIG_PVQ x->pvq_speed = 1; x->pvq_coded = 0; #endif #if CONFIG_CFL // Don't store luma during RDO (we will store the best mode later). x->cfl_store_y = 0; #endif set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); mbmi = &xd->mi[0]->mbmi; mbmi->sb_type = bsize; #if CONFIG_RD_DEBUG mbmi->mi_row = mi_row; mbmi->mi_col = mi_col; #endif #if CONFIG_SUPERTX // We set tx_size here as skip blocks would otherwise not set it. // tx_size needs to be set at this point as supertx_enable in // write_modes_sb is computed based on this, and if the garbage in memory // just happens to be the supertx_size, then the packer will code this // block as a supertx block, even if rdopt did not pick it as such. mbmi->tx_size = max_txsize_lookup[bsize]; #endif #if CONFIG_EXT_PARTITION_TYPES mbmi->partition = partition; #endif for (i = 0; i < MAX_MB_PLANE; ++i) { p[i].coeff = ctx->coeff[i]; p[i].qcoeff = ctx->qcoeff[i]; pd[i].dqcoeff = ctx->dqcoeff[i]; #if CONFIG_PVQ pd[i].pvq_ref_coeff = ctx->pvq_ref_coeff[i]; #endif p[i].eobs = ctx->eobs[i]; #if CONFIG_LV_MAP p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; #endif } #if CONFIG_PALETTE for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; #endif // CONFIG_PALETTE ctx->skippable = 0; ctx->pred_pixel_ready = 0; // Set to zero to make sure we do not use the previous encoded frame stats mbmi->skip = 0; #if CONFIG_CB4X4 x->skip_chroma_rd = !is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); #endif #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { x->source_variance = av1_high_get_sby_perpixel_variance( cpi, &x->plane[0].src, bsize, xd->bd); } else { x->source_variance = av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); } #else x->source_variance = av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); #endif // CONFIG_HIGHBITDEPTH // Save rdmult before it might be changed, so it can be restored later. orig_rdmult = x->rdmult; if (aq_mode == VARIANCE_AQ) { if (cpi->vaq_refresh) { const int energy = bsize <= BLOCK_16X16 ? x->mb_energy : av1_block_energy(cpi, x, bsize); mbmi->segment_id = av1_vaq_segment_id(energy); // Re-initialise quantiser av1_init_plane_quantizers(cpi, x, mbmi->segment_id); } x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); } else if (aq_mode == COMPLEXITY_AQ) { x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); } else if (aq_mode == CYCLIC_REFRESH_AQ) { // If segment is boosted, use rdmult for that segment. if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); } // Find best coding mode & reconstruct the MB so it is available // as a predictor for MBs that follow in the SB if (frame_is_intra_only(cm)) { av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd); #if CONFIG_SUPERTX *totalrate_nocoef = 0; #endif // CONFIG_SUPERTX } else { if (bsize >= BLOCK_8X8 || unify_bsize) { if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col, rd_cost, bsize, ctx, best_rd); #if CONFIG_SUPERTX *totalrate_nocoef = rd_cost->rate; #endif // CONFIG_SUPERTX } else { av1_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost, #if CONFIG_SUPERTX totalrate_nocoef, #endif // CONFIG_SUPERTX bsize, ctx, best_rd); #if CONFIG_SUPERTX assert(*totalrate_nocoef >= 0); #endif // CONFIG_SUPERTX } } else { if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { // The decoder rejects sub8x8 partitions when SEG_LVL_SKIP is set. rd_cost->rate = INT_MAX; } else { av1_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col, rd_cost, #if CONFIG_SUPERTX totalrate_nocoef, #endif // CONFIG_SUPERTX bsize, ctx, best_rd); #if CONFIG_SUPERTX assert(*totalrate_nocoef >= 0); #endif // CONFIG_SUPERTX } } } // Examine the resulting rate and for AQ mode 2 make a segment choice. if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) && (bsize >= BLOCK_16X16) && (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame || (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) { av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); } x->rdmult = orig_rdmult; // TODO(jingning) The rate-distortion optimization flow needs to be // refactored to provide proper exit/return handle. if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX; ctx->rate = rd_cost->rate; ctx->dist = rd_cost->dist; } #if CONFIG_REF_MV static void update_inter_mode_stats(FRAME_COUNTS *counts, PREDICTION_MODE mode, int16_t mode_context) { int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; if (mode == NEWMV) { ++counts->newmv_mode[mode_ctx][0]; return; } else { ++counts->newmv_mode[mode_ctx][1]; if (mode_context & (1 << ALL_ZERO_FLAG_OFFSET)) { return; } mode_ctx = (mode_context >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK; if (mode == ZEROMV) { ++counts->zeromv_mode[mode_ctx][0]; return; } else { ++counts->zeromv_mode[mode_ctx][1]; mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; if (mode_context & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6; if (mode_context & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7; if (mode_context & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8; ++counts->refmv_mode[mode_ctx][mode != NEARESTMV]; } } } #endif static void update_stats(const AV1_COMMON *const cm, ThreadData *td, int mi_row, int mi_col #if CONFIG_SUPERTX , int supertx_enabled #endif ) { #if CONFIG_DELTA_Q MACROBLOCK *x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; #else const MACROBLOCK *x = &td->mb; const MACROBLOCKD *const xd = &x->e_mbd; #endif const MODE_INFO *const mi = xd->mi[0]; const MB_MODE_INFO *const mbmi = &mi->mbmi; const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; const BLOCK_SIZE bsize = mbmi->sb_type; const int unify_bsize = CONFIG_CB4X4; #if CONFIG_DELTA_Q // delta quant applies to both intra and inter const int super_block_upper_left = ((mi_row & 7) == 0) && ((mi_col & 7) == 0); if (cm->delta_q_present_flag && (bsize != BLOCK_64X64 || !mbmi->skip) && super_block_upper_left) { const int dq = (mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res; const int absdq = abs(dq); int i; for (i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) { td->counts->delta_q[i][1]++; } if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++; xd->prev_qindex = mbmi->current_q_index; #if CONFIG_EXT_DELTA_Q if (cm->delta_lf_present_flag) { const int dlf = (mbmi->current_delta_lf_from_base - xd->prev_delta_lf_from_base) / cm->delta_lf_res; const int absdlf = abs(dlf); for (i = 0; i < AOMMIN(absdlf, DELTA_LF_SMALL); ++i) { td->counts->delta_lf[i][1]++; } if (absdlf < DELTA_LF_SMALL) td->counts->delta_lf[absdlf][0]++; xd->prev_delta_lf_from_base = mbmi->current_delta_lf_from_base; } #endif } #else (void)mi_row; (void)mi_col; #endif if (!frame_is_intra_only(cm)) { FRAME_COUNTS *const counts = td->counts; const int inter_block = is_inter_block(mbmi); const int seg_ref_active = segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); if (!seg_ref_active) { #if CONFIG_SUPERTX if (!supertx_enabled) #endif counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++; // If the segment reference feature is enabled we have only a single // reference frame allowed for the segment so exclude it from // the reference frame counts used to work out probabilities. if (inter_block) { const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; #if CONFIG_EXT_REFS const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; #endif // CONFIG_EXT_REFS if (cm->reference_mode == REFERENCE_MODE_SELECT) { #if !SUB8X8_COMP_REF if (mbmi->sb_type >= BLOCK_8X8) counts->comp_inter[av1_get_reference_mode_context(cm, xd)] [has_second_ref(mbmi)]++; #else counts->comp_inter[av1_get_reference_mode_context(cm, xd)] [has_second_ref(mbmi)]++; #endif } if (has_second_ref(mbmi)) { #if CONFIG_EXT_REFS const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME); counts->comp_ref[av1_get_pred_context_comp_ref_p(cm, xd)][0][bit]++; if (!bit) { counts->comp_ref[av1_get_pred_context_comp_ref_p1(cm, xd)][1] [ref0 == LAST_FRAME]++; } else { counts->comp_ref[av1_get_pred_context_comp_ref_p2(cm, xd)][2] [ref0 == GOLDEN_FRAME]++; } counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(cm, xd)][0] [ref1 == ALTREF_FRAME]++; #else counts->comp_ref[av1_get_pred_context_comp_ref_p(cm, xd)][0] [ref0 == GOLDEN_FRAME]++; #endif // CONFIG_EXT_REFS } else { #if CONFIG_EXT_REFS const int bit = (ref0 == ALTREF_FRAME || ref0 == BWDREF_FRAME); counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++; if (bit) { counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1] [ref0 != BWDREF_FRAME]++; } else { const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME); counts ->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++; if (!bit1) { counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3] [ref0 != LAST_FRAME]++; } else { counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4] [ref0 != LAST3_FRAME]++; } } #else counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0] [ref0 != LAST_FRAME]++; if (ref0 != LAST_FRAME) { counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1] [ref0 != GOLDEN_FRAME]++; } #endif // CONFIG_EXT_REFS } #if CONFIG_EXT_INTER if (cm->reference_mode != COMPOUND_REFERENCE && #if CONFIG_SUPERTX !supertx_enabled && #endif is_interintra_allowed(mbmi)) { const int bsize_group = size_group_lookup[bsize]; if (mbmi->ref_frame[1] == INTRA_FRAME) { counts->interintra[bsize_group][1]++; counts->interintra_mode[bsize_group][mbmi->interintra_mode]++; if (is_interintra_wedge_used(bsize)) counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; } else { counts->interintra[bsize_group][0]++; } } #endif // CONFIG_EXT_INTER #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION const MOTION_MODE motion_allowed = motion_mode_allowed( #if CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION 0, xd->global_motion, #endif // CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION mi); #if CONFIG_SUPERTX if (!supertx_enabled) #endif // CONFIG_SUPERTX #if CONFIG_EXT_INTER if (mbmi->ref_frame[1] != INTRA_FRAME) #endif // CONFIG_EXT_INTER #if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION { if (motion_allowed == WARPED_CAUSAL) counts->motion_mode[mbmi->sb_type][mbmi->motion_mode]++; else if (motion_allowed == OBMC_CAUSAL) counts->obmc[mbmi->sb_type][mbmi->motion_mode == OBMC_CAUSAL]++; } #else if (motion_allowed > SIMPLE_TRANSLATION) counts->motion_mode[mbmi->sb_type][mbmi->motion_mode]++; #endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION #endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION #if CONFIG_EXT_INTER if (cm->reference_mode != SINGLE_REFERENCE && is_inter_compound_mode(mbmi->mode) #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION && mbmi->motion_mode == SIMPLE_TRANSLATION #endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION ) { counts->compound_interinter[bsize][mbmi->interinter_compound_type]++; } #endif // CONFIG_EXT_INTER } } if (inter_block && !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { int16_t mode_ctx; #if !CONFIG_REF_MV mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]]; #endif if (bsize >= BLOCK_8X8 || unify_bsize) { const PREDICTION_MODE mode = mbmi->mode; #if CONFIG_REF_MV #if CONFIG_EXT_INTER if (has_second_ref(mbmi)) { mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]]; ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)]; } else { #endif // CONFIG_EXT_INTER mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame, bsize, -1); update_inter_mode_stats(counts, mode, mode_ctx); #if CONFIG_EXT_INTER } #endif // CONFIG_EXT_INTER #if CONFIG_EXT_INTER if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) { #else if (mbmi->mode == NEWMV) { #endif uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); int idx; for (idx = 0; idx < 2; ++idx) { if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx]; if (mbmi->ref_mv_idx == idx) break; } } } #if CONFIG_EXT_INTER if (have_nearmv_in_inter_mode(mbmi->mode)) { #else if (mbmi->mode == NEARMV) { #endif uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); int idx; for (idx = 1; idx < 3; ++idx) { if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1]; if (mbmi->ref_mv_idx == idx - 1) break; } } } #else #if CONFIG_EXT_INTER if (is_inter_compound_mode(mode)) ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)]; else #endif // CONFIG_EXT_INTER ++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)]; #endif } else { const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int j = idy * 2 + idx; const PREDICTION_MODE b_mode = mi->bmi[j].as_mode; #if CONFIG_REF_MV #if CONFIG_EXT_INTER if (has_second_ref(mbmi)) { mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]]; ++counts->inter_compound_mode[mode_ctx] [INTER_COMPOUND_OFFSET(b_mode)]; } else { #endif // CONFIG_EXT_INTER mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame, bsize, j); update_inter_mode_stats(counts, b_mode, mode_ctx); #if CONFIG_EXT_INTER } #endif // CONFIG_EXT_INTER #else #if CONFIG_EXT_INTER if (is_inter_compound_mode(b_mode)) ++counts->inter_compound_mode[mode_ctx] [INTER_COMPOUND_OFFSET(b_mode)]; else #endif // CONFIG_EXT_INTER ++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)]; #endif } } } } } } typedef struct { ENTROPY_CONTEXT a[2 * MAX_MIB_SIZE * MAX_MB_PLANE]; ENTROPY_CONTEXT l[2 * MAX_MIB_SIZE * MAX_MB_PLANE]; PARTITION_CONTEXT sa[MAX_MIB_SIZE]; PARTITION_CONTEXT sl[MAX_MIB_SIZE]; #if CONFIG_VAR_TX TXFM_CONTEXT *p_ta; TXFM_CONTEXT *p_tl; TXFM_CONTEXT ta[MAX_MIB_SIZE]; TXFM_CONTEXT tl[MAX_MIB_SIZE]; #endif } RD_SEARCH_MACROBLOCK_CONTEXT; static void restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row, int mi_col, #if CONFIG_PVQ od_rollback_buffer *rdo_buf, #endif BLOCK_SIZE bsize) { MACROBLOCKD *xd = &x->e_mbd; int p; const int num_4x4_blocks_wide = block_size_wide[bsize] >> tx_size_wide_log2[0]; const int num_4x4_blocks_high = block_size_high[bsize] >> tx_size_high_log2[0]; int mi_width = mi_size_wide[bsize]; int mi_height = mi_size_high[bsize]; for (p = 0; p < MAX_MB_PLANE; p++) { memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x), ctx->a + num_4x4_blocks_wide * p, (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> xd->plane[p].subsampling_x); memcpy(xd->left_context[p] + ((mi_row & MAX_MIB_MASK) * 2 >> xd->plane[p].subsampling_y), ctx->l + num_4x4_blocks_high * p, (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> xd->plane[p].subsampling_y); } memcpy(xd->above_seg_context + mi_col, ctx->sa, sizeof(*xd->above_seg_context) * mi_width); memcpy(xd->left_seg_context + (mi_row & MAX_MIB_MASK), ctx->sl, sizeof(xd->left_seg_context[0]) * mi_height); #if CONFIG_VAR_TX xd->above_txfm_context = ctx->p_ta; xd->left_txfm_context = ctx->p_tl; memcpy(xd->above_txfm_context, ctx->ta, sizeof(*xd->above_txfm_context) * mi_width); memcpy(xd->left_txfm_context, ctx->tl, sizeof(*xd->left_txfm_context) * mi_height); #endif #if CONFIG_PVQ od_encode_rollback(&x->daala_enc, rdo_buf); #endif } static void save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row, int mi_col, #if CONFIG_PVQ od_rollback_buffer *rdo_buf, #endif BLOCK_SIZE bsize) { const MACROBLOCKD *xd = &x->e_mbd; int p; const int num_4x4_blocks_wide = block_size_wide[bsize] >> tx_size_wide_log2[0]; const int num_4x4_blocks_high = block_size_high[bsize] >> tx_size_high_log2[0]; int mi_width = mi_size_wide[bsize]; int mi_height = mi_size_high[bsize]; // buffer the above/left context information of the block in search. for (p = 0; p < MAX_MB_PLANE; ++p) { memcpy(ctx->a + num_4x4_blocks_wide * p, xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x), (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> xd->plane[p].subsampling_x); memcpy(ctx->l + num_4x4_blocks_high * p, xd->left_context[p] + ((mi_row & MAX_MIB_MASK) * 2 >> xd->plane[p].subsampling_y), (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> xd->plane[p].subsampling_y); } memcpy(ctx->sa, xd->above_seg_context + mi_col, sizeof(*xd->above_seg_context) * mi_width); memcpy(ctx->sl, xd->left_seg_context + (mi_row & MAX_MIB_MASK), sizeof(xd->left_seg_context[0]) * mi_height); #if CONFIG_VAR_TX memcpy(ctx->ta, xd->above_txfm_context, sizeof(*xd->above_txfm_context) * mi_width); memcpy(ctx->tl, xd->left_txfm_context, sizeof(*xd->left_txfm_context) * mi_height); ctx->p_ta = xd->above_txfm_context; ctx->p_tl = xd->left_txfm_context; #endif #if CONFIG_PVQ od_encode_checkpoint(&x->daala_enc, rdo_buf); #endif } static void encode_b(const AV1_COMP *const cpi, const TileInfo *const tile, ThreadData *td, TOKENEXTRA **tp, int mi_row, int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, #if CONFIG_EXT_PARTITION_TYPES PARTITION_TYPE partition, #endif PICK_MODE_CONTEXT *ctx, int *rate) { MACROBLOCK *const x = &td->mb; #if (CONFIG_MOTION_VAR && CONFIG_NCOBMC) | CONFIG_EXT_DELTA_Q MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi; #if CONFIG_MOTION_VAR && CONFIG_NCOBMC int check_ncobmc; #endif #endif set_offsets(cpi, tile, x, mi_row, mi_col, bsize); #if CONFIG_EXT_PARTITION_TYPES x->e_mbd.mi[0]->mbmi.partition = partition; #endif update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run); #if CONFIG_MOTION_VAR && CONFIG_NCOBMC mbmi = &xd->mi[0]->mbmi; const MOTION_MODE motion_allowed = motion_mode_allowed( #if CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION 0, xd->global_motion, #endif // CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION xd->mi[0]); check_ncobmc = is_inter_block(mbmi) && motion_allowed >= OBMC_CAUSAL; if (!dry_run && check_ncobmc) { av1_check_ncobmc_rd(cpi, x, mi_row, mi_col); av1_setup_dst_planes(x->e_mbd.plane, bsize, get_frame_new_buffer(&cpi->common), mi_row, mi_col); } #endif encode_superblock(cpi, td, tp, dry_run, mi_row, mi_col, bsize, ctx, rate); if (!dry_run) { #if CONFIG_EXT_DELTA_Q mbmi = &xd->mi[0]->mbmi; if (bsize == BLOCK_64X64 && mbmi->skip == 1 && is_inter_block(mbmi) && cpi->common.delta_lf_present_flag) { mbmi->current_delta_lf_from_base = xd->prev_delta_lf_from_base; } #endif #if CONFIG_SUPERTX update_stats(&cpi->common, td, mi_row, mi_col, 0); #else update_stats(&cpi->common, td, mi_row, mi_col); #endif } } static void encode_sb(const AV1_COMP *const cpi, ThreadData *td, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, PC_TREE *pc_tree, int *rate) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int hbs = mi_size_wide[bsize] / 2; const int is_partition_root = bsize >= BLOCK_8X8; const int ctx = is_partition_root ? partition_plane_context(xd, mi_row, mi_col, #if CONFIG_UNPOISON_PARTITION_CTX mi_row + hbs < cm->mi_rows, mi_col + hbs < cm->mi_cols, #endif bsize) : -1; const PARTITION_TYPE partition = pc_tree->partitioning; const BLOCK_SIZE subsize = get_subsize(bsize, partition); #if CONFIG_EXT_PARTITION_TYPES const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); #endif #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; assert(bsize >= BLOCK_8X8); #endif if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; if (!dry_run && ctx >= 0) td->counts->partition[ctx][partition]++; #if CONFIG_SUPERTX if (!frame_is_intra_only(cm) && bsize <= MAX_SUPERTX_BLOCK_SIZE && partition != PARTITION_NONE && !xd->lossless[0]) { int supertx_enabled; TX_SIZE supertx_size = max_txsize_lookup[bsize]; supertx_enabled = check_supertx_sb(bsize, supertx_size, pc_tree); if (supertx_enabled) { const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; int x_idx, y_idx, i; uint8_t *dst_buf[3]; int dst_stride[3]; set_skip_context(xd, mi_row, mi_col); set_mode_info_offsets(cpi, x, xd, mi_row, mi_col); update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, bsize, dry_run, pc_tree); av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, mi_col); for (i = 0; i < MAX_MB_PLANE; i++) { dst_buf[i] = xd->plane[i].dst.buf; dst_stride[i] = xd->plane[i].dst.stride; } predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row, mi_col, dry_run, bsize, bsize, dst_buf, dst_stride, pc_tree); set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); set_segment_id_supertx(cpi, x, mi_row, mi_col, bsize); if (!x->skip) { int this_rate = 0; av1_encode_sb_supertx((AV1_COMMON *)cm, x, bsize); av1_tokenize_sb_supertx(cpi, td, tp, dry_run, bsize, rate); if (rate) *rate += this_rate; } else { xd->mi[0]->mbmi.skip = 1; if (!dry_run) td->counts->skip[av1_get_skip_context(xd)][1]++; reset_skip_context(xd, bsize); } if (!dry_run) { for (y_idx = 0; y_idx < mi_height; y_idx++) for (x_idx = 0; x_idx < mi_width; x_idx++) { if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y_idx) { xd->mi[x_idx + y_idx * cm->mi_stride]->mbmi.skip = xd->mi[0]->mbmi.skip; } } td->counts->supertx[partition_supertx_context_lookup[partition]] [supertx_size][1]++; td->counts->supertx_size[supertx_size]++; #if CONFIG_EXT_TX if (get_ext_tx_types(supertx_size, bsize, 1, cm->reduced_tx_set_used) > 1 && !xd->mi[0]->mbmi.skip) { const int eset = get_ext_tx_set(supertx_size, bsize, 1, cm->reduced_tx_set_used); if (eset > 0) { ++td->counts ->inter_ext_tx[eset][supertx_size][xd->mi[0]->mbmi.tx_type]; } } #else if (supertx_size < TX_32X32 && !xd->mi[0]->mbmi.skip) { ++td->counts->inter_ext_tx[supertx_size][xd->mi[0]->mbmi.tx_type]; } #endif // CONFIG_EXT_TX } #if CONFIG_EXT_PARTITION_TYPES update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); #else if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) update_partition_context(xd, mi_row, mi_col, subsize, bsize); #endif #if CONFIG_VAR_TX set_txfm_ctxs(supertx_size, mi_width, mi_height, xd->mi[0]->mbmi.skip, xd); #endif // CONFIG_VAR_TX return; } else { if (!dry_run) { td->counts->supertx[partition_supertx_context_lookup[partition]] [supertx_size][0]++; } } } #endif // CONFIG_SUPERTX switch (partition) { case PARTITION_NONE: encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, #if CONFIG_EXT_PARTITION_TYPES partition, #endif &pc_tree->none, rate); break; case PARTITION_VERT: encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, #if CONFIG_EXT_PARTITION_TYPES partition, #endif &pc_tree->vertical[0], rate); if (mi_col + hbs < cm->mi_cols && (bsize > BLOCK_8X8 || unify_bsize)) { encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, subsize, #if CONFIG_EXT_PARTITION_TYPES partition, #endif &pc_tree->vertical[1], rate); } break; case PARTITION_HORZ: encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, #if CONFIG_EXT_PARTITION_TYPES partition, #endif &pc_tree->horizontal[0], rate); if (mi_row + hbs < cm->mi_rows && (bsize > BLOCK_8X8 || unify_bsize)) { encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, subsize, #if CONFIG_EXT_PARTITION_TYPES partition, #endif &pc_tree->horizontal[1], rate); } break; case PARTITION_SPLIT: if (bsize == BLOCK_8X8 && !unify_bsize) { encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, #if CONFIG_EXT_PARTITION_TYPES partition, #endif pc_tree->leaf_split[0], rate); } else { encode_sb(cpi, td, tile, tp, mi_row, mi_col, dry_run, subsize, pc_tree->split[0], rate); encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, dry_run, subsize, pc_tree->split[1], rate); encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, dry_run, subsize, pc_tree->split[2], rate); encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, dry_run, subsize, pc_tree->split[3], rate); } break; #if CONFIG_EXT_PARTITION_TYPES case PARTITION_HORZ_A: encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, bsize2, partition, &pc_tree->horizontala[0], rate); encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, partition, &pc_tree->horizontala[1], rate); encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, subsize, partition, &pc_tree->horizontala[2], rate); break; case PARTITION_HORZ_B: encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, partition, &pc_tree->horizontalb[0], rate); encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, partition, &pc_tree->horizontalb[1], rate); encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col + hbs, dry_run, bsize2, partition, &pc_tree->horizontalb[2], rate); break; case PARTITION_VERT_A: encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, bsize2, partition, &pc_tree->verticala[0], rate); encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, partition, &pc_tree->verticala[1], rate); encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, subsize, partition, &pc_tree->verticala[2], rate); break; case PARTITION_VERT_B: encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, partition, &pc_tree->verticalb[0], rate); encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, partition, &pc_tree->verticalb[1], rate); encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col + hbs, dry_run, bsize2, partition, &pc_tree->verticalb[2], rate); break; #endif // CONFIG_EXT_PARTITION_TYPES default: assert(0 && "Invalid partition type."); break; } #if CONFIG_EXT_PARTITION_TYPES update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); #else if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) update_partition_context(xd, mi_row, mi_col, subsize, bsize); #endif // CONFIG_EXT_PARTITION_TYPES } // Check to see if the given partition size is allowed for a specified number // of mi block rows and columns remaining in the image. // If not then return the largest allowed partition size static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left, int cols_left, int *bh, int *bw) { if (rows_left <= 0 || cols_left <= 0) { return AOMMIN(bsize, BLOCK_8X8); } else { for (; bsize > 0; bsize -= 3) { *bh = mi_size_high[bsize]; *bw = mi_size_wide[bsize]; if ((*bh <= rows_left) && (*bw <= cols_left)) { break; } } } return bsize; } static void set_partial_sb_partition(const AV1_COMMON *const cm, MODE_INFO *mi, int bh_in, int bw_in, int mi_rows_remaining, int mi_cols_remaining, BLOCK_SIZE bsize, MODE_INFO **mib) { int bh = bh_in; int r, c; for (r = 0; r < cm->mib_size; r += bh) { int bw = bw_in; for (c = 0; c < cm->mib_size; c += bw) { const int index = r * cm->mi_stride + c; mib[index] = mi + index; mib[index]->mbmi.sb_type = find_partition_size( bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw); } } } // This function attempts to set all mode info entries in a given superblock // to the same block partition size. // However, at the bottom and right borders of the image the requested size // may not be allowed in which case this code attempts to choose the largest // allowable partition. static void set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile, MODE_INFO **mib, int mi_row, int mi_col, BLOCK_SIZE bsize) { AV1_COMMON *const cm = &cpi->common; const int mi_rows_remaining = tile->mi_row_end - mi_row; const int mi_cols_remaining = tile->mi_col_end - mi_col; int block_row, block_col; MODE_INFO *const mi_upper_left = cm->mi + mi_row * cm->mi_stride + mi_col; int bh = mi_size_high[bsize]; int bw = mi_size_wide[bsize]; assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0)); // Apply the requested partition size to the SB if it is all "in image" if ((mi_cols_remaining >= cm->mib_size) && (mi_rows_remaining >= cm->mib_size)) { for (block_row = 0; block_row < cm->mib_size; block_row += bh) { for (block_col = 0; block_col < cm->mib_size; block_col += bw) { int index = block_row * cm->mi_stride + block_col; mib[index] = mi_upper_left + index; mib[index]->mbmi.sb_type = bsize; } } } else { // Else this is a partial SB. set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining, mi_cols_remaining, bsize, mib); } } static void rd_use_partition(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, MODE_INFO **mib, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate, int64_t *dist, #if CONFIG_SUPERTX int *rate_nocoef, #endif int do_recon, PC_TREE *pc_tree) { AV1_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int bs = mi_size_wide[bsize]; const int hbs = bs / 2; int i; const int pl = (bsize >= BLOCK_8X8) ? partition_plane_context(xd, mi_row, mi_col, #if CONFIG_UNPOISON_PARTITION_CTX mi_row + hbs < cm->mi_rows, mi_col + hbs < cm->mi_cols, #endif bsize) : 0; const PARTITION_TYPE partition = (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) : PARTITION_NONE; const BLOCK_SIZE subsize = get_subsize(bsize, partition); RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; RD_STATS last_part_rdc, none_rdc, chosen_rdc; BLOCK_SIZE sub_subsize = BLOCK_4X4; int splits_below = 0; BLOCK_SIZE bs_type = mib[0]->mbmi.sb_type; int do_partition_search = 1; PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; const int unify_bsize = CONFIG_CB4X4; #if CONFIG_SUPERTX int last_part_rate_nocoef = INT_MAX; int none_rate_nocoef = INT_MAX; int chosen_rate_nocoef = INT_MAX; #endif #if CONFIG_PVQ od_rollback_buffer pre_rdo_buf; #endif if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; assert(num_4x4_blocks_wide_lookup[bsize] == num_4x4_blocks_high_lookup[bsize]); av1_invalid_rd_stats(&last_part_rdc); av1_invalid_rd_stats(&none_rdc); av1_invalid_rd_stats(&chosen_rdc); pc_tree->partitioning = partition; #if CONFIG_VAR_TX xd->above_txfm_context = cm->above_txfm_context + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); #endif #if !CONFIG_PVQ save_context(x, &x_ctx, mi_row, mi_col, bsize); #else save_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); #endif if (bsize == BLOCK_16X16 && cpi->vaq_refresh) { set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); x->mb_energy = av1_block_energy(cpi, x, bsize); } if (do_partition_search && cpi->sf.partition_search_type == SEARCH_PARTITION && cpi->sf.adjust_partitioning_from_last_frame) { // Check if any of the sub blocks are further split. if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) { sub_subsize = get_subsize(subsize, PARTITION_SPLIT); splits_below = 1; for (i = 0; i < 4; i++) { int jj = i >> 1, ii = i & 0x01; MODE_INFO *this_mi = mib[jj * hbs * cm->mi_stride + ii * hbs]; if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) { splits_below = 0; } } } // If partition is not none try none unless each of the 4 splits are split // even further.. if (partition != PARTITION_NONE && !splits_below && mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) { pc_tree->partitioning = PARTITION_NONE; rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, #if CONFIG_SUPERTX &none_rate_nocoef, #endif #if CONFIG_EXT_PARTITION_TYPES PARTITION_NONE, #endif bsize, ctx_none, INT64_MAX); if (none_rdc.rate < INT_MAX) { none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; none_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist); #if CONFIG_SUPERTX none_rate_nocoef += cpi->partition_cost[pl][PARTITION_NONE]; #endif } #if !CONFIG_PVQ restore_context(x, &x_ctx, mi_row, mi_col, bsize); #else restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); #endif mib[0]->mbmi.sb_type = bs_type; pc_tree->partitioning = partition; } } switch (partition) { case PARTITION_NONE: rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, #if CONFIG_SUPERTX &last_part_rate_nocoef, #endif #if CONFIG_EXT_PARTITION_TYPES PARTITION_NONE, #endif bsize, ctx_none, INT64_MAX); break; case PARTITION_HORZ: rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, #if CONFIG_SUPERTX &last_part_rate_nocoef, #endif #if CONFIG_EXT_PARTITION_TYPES PARTITION_HORZ, #endif subsize, &pc_tree->horizontal[0], INT64_MAX); if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && mi_row + hbs < cm->mi_rows) { RD_STATS tmp_rdc; #if CONFIG_SUPERTX int rt_nocoef = 0; #endif PICK_MODE_CONTEXT *ctx_h = &pc_tree->horizontal[0]; av1_init_rd_stats(&tmp_rdc); update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1); encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize, ctx_h, NULL); rd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc, #if CONFIG_SUPERTX &rt_nocoef, #endif #if CONFIG_EXT_PARTITION_TYPES PARTITION_HORZ, #endif subsize, &pc_tree->horizontal[1], INT64_MAX); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { av1_invalid_rd_stats(&last_part_rdc); #if CONFIG_SUPERTX last_part_rate_nocoef = INT_MAX; #endif break; } last_part_rdc.rate += tmp_rdc.rate; last_part_rdc.dist += tmp_rdc.dist; last_part_rdc.rdcost += tmp_rdc.rdcost; #if CONFIG_SUPERTX last_part_rate_nocoef += rt_nocoef; #endif } break; case PARTITION_VERT: rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, #if CONFIG_SUPERTX &last_part_rate_nocoef, #endif #if CONFIG_EXT_PARTITION_TYPES PARTITION_VERT, #endif subsize, &pc_tree->vertical[0], INT64_MAX); if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && mi_col + hbs < cm->mi_cols) { RD_STATS tmp_rdc; #if CONFIG_SUPERTX int rt_nocoef = 0; #endif PICK_MODE_CONTEXT *ctx_v = &pc_tree->vertical[0]; av1_init_rd_stats(&tmp_rdc); update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1); encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize, ctx_v, NULL); rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc, #if CONFIG_SUPERTX &rt_nocoef, #endif #if CONFIG_EXT_PARTITION_TYPES PARTITION_VERT, #endif subsize, &pc_tree->vertical[bsize > BLOCK_8X8], INT64_MAX); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { av1_invalid_rd_stats(&last_part_rdc); #if CONFIG_SUPERTX last_part_rate_nocoef = INT_MAX; #endif break; } last_part_rdc.rate += tmp_rdc.rate; last_part_rdc.dist += tmp_rdc.dist; last_part_rdc.rdcost += tmp_rdc.rdcost; #if CONFIG_SUPERTX last_part_rate_nocoef += rt_nocoef; #endif } break; case PARTITION_SPLIT: if (bsize == BLOCK_8X8 && !unify_bsize) { rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, #if CONFIG_SUPERTX &last_part_rate_nocoef, #endif #if CONFIG_EXT_PARTITION_TYPES PARTITION_SPLIT, #endif subsize, pc_tree->leaf_split[0], INT64_MAX); break; } last_part_rdc.rate = 0; last_part_rdc.dist = 0; last_part_rdc.rdcost = 0; #if CONFIG_SUPERTX last_part_rate_nocoef = 0; #endif for (i = 0; i < 4; i++) { int x_idx = (i & 1) * hbs; int y_idx = (i >> 1) * hbs; int jj = i >> 1, ii = i & 0x01; RD_STATS tmp_rdc; #if CONFIG_SUPERTX int rt_nocoef; #endif if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) continue; av1_init_rd_stats(&tmp_rdc); rd_use_partition(cpi, td, tile_data, mib + jj * hbs * cm->mi_stride + ii * hbs, tp, mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate, &tmp_rdc.dist, #if CONFIG_SUPERTX &rt_nocoef, #endif i != 3, pc_tree->split[i]); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { av1_invalid_rd_stats(&last_part_rdc); #if CONFIG_SUPERTX last_part_rate_nocoef = INT_MAX; #endif break; } last_part_rdc.rate += tmp_rdc.rate; last_part_rdc.dist += tmp_rdc.dist; #if CONFIG_SUPERTX last_part_rate_nocoef += rt_nocoef; #endif } break; #if CONFIG_EXT_PARTITION_TYPES case PARTITION_VERT_A: case PARTITION_VERT_B: case PARTITION_HORZ_A: case PARTITION_HORZ_B: assert(0 && "Cannot handle extended partiton types"); #endif // CONFIG_EXT_PARTITION_TYPES default: assert(0); break; } if (last_part_rdc.rate < INT_MAX) { last_part_rdc.rate += cpi->partition_cost[pl][partition]; last_part_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist); #if CONFIG_SUPERTX last_part_rate_nocoef += cpi->partition_cost[pl][partition]; #endif } if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame && cpi->sf.partition_search_type == SEARCH_PARTITION && partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && (mi_row + bs < cm->mi_rows || mi_row + hbs == cm->mi_rows) && (mi_col + bs < cm->mi_cols || mi_col + hbs == cm->mi_cols)) { BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT); chosen_rdc.rate = 0; chosen_rdc.dist = 0; #if CONFIG_SUPERTX chosen_rate_nocoef = 0; #endif #if !CONFIG_PVQ restore_context(x, &x_ctx, mi_row, mi_col, bsize); #else restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); #endif pc_tree->partitioning = PARTITION_SPLIT; // Split partition. for (i = 0; i < 4; i++) { int x_idx = (i & 1) * hbs; int y_idx = (i >> 1) * hbs; RD_STATS tmp_rdc; #if CONFIG_SUPERTX int rt_nocoef = 0; #endif #if CONFIG_PVQ od_rollback_buffer buf; #endif if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) continue; #if !CONFIG_PVQ save_context(x, &x_ctx, mi_row, mi_col, bsize); #else save_context(x, &x_ctx, mi_row, mi_col, &buf, bsize); #endif pc_tree->split[i]->partitioning = PARTITION_NONE; rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &tmp_rdc, #if CONFIG_SUPERTX &rt_nocoef, #endif #if CONFIG_EXT_PARTITION_TYPES PARTITION_SPLIT, #endif split_subsize, &pc_tree->split[i]->none, INT64_MAX); #if !CONFIG_PVQ restore_context(x, &x_ctx, mi_row, mi_col, bsize); #else restore_context(x, &x_ctx, mi_row, mi_col, &buf, bsize); #endif if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { av1_invalid_rd_stats(&chosen_rdc); #if CONFIG_SUPERTX chosen_rate_nocoef = INT_MAX; #endif break; } chosen_rdc.rate += tmp_rdc.rate; chosen_rdc.dist += tmp_rdc.dist; #if CONFIG_SUPERTX chosen_rate_nocoef += rt_nocoef; #endif if (i != 3) encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL); chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; #if CONFIG_SUPERTX chosen_rate_nocoef += cpi->partition_cost[pl][PARTITION_SPLIT]; #endif } if (chosen_rdc.rate < INT_MAX) { chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT]; chosen_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist); #if CONFIG_SUPERTX chosen_rate_nocoef += cpi->partition_cost[pl][PARTITION_NONE]; #endif } } // If last_part is better set the partitioning to that. if (last_part_rdc.rdcost < chosen_rdc.rdcost) { mib[0]->mbmi.sb_type = bsize; if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; chosen_rdc = last_part_rdc; #if CONFIG_SUPERTX chosen_rate_nocoef = last_part_rate_nocoef; #endif } // If none was better set the partitioning to that. if (none_rdc.rdcost < chosen_rdc.rdcost) { if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; chosen_rdc = none_rdc; #if CONFIG_SUPERTX chosen_rate_nocoef = none_rate_nocoef; #endif } #if !CONFIG_PVQ restore_context(x, &x_ctx, mi_row, mi_col, bsize); #else restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); #endif // We must have chosen a partitioning and encoding or we'll fail later on. // No other opportunities for success. if (bsize == cm->sb_size) assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX); if (do_recon) { if (bsize == cm->sb_size) { // NOTE: To get estimate for rate due to the tokens, use: // int rate_coeffs = 0; // encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS, // bsize, pc_tree, &rate_coeffs); encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, pc_tree, NULL); } else { encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, pc_tree, NULL); } } *rate = chosen_rdc.rate; *dist = chosen_rdc.dist; #if CONFIG_SUPERTX *rate_nocoef = chosen_rate_nocoef; #endif } /* clang-format off */ static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = { #if CONFIG_CB4X4 BLOCK_2X2, BLOCK_2X2, BLOCK_2X2, // 2x2, 2x4, 4x2 #endif BLOCK_4X4, // 4x4 BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, // 4x8, 8x4, 8x8 BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 8x16, 16x8, 16x16 BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 16x32, 32x16, 32x32 BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 32x64, 64x32, 64x64 #if CONFIG_EXT_PARTITION BLOCK_16X16, BLOCK_16X16, BLOCK_16X16 // 64x128, 128x64, 128x128 #endif // CONFIG_EXT_PARTITION }; static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = { #if CONFIG_CB4X4 BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, // 2x2, 2x4, 4x2 #endif BLOCK_8X8, // 4x4 BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 4x8, 8x4, 8x8 BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, // 8x16, 16x8, 16x16 BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, // 16x32, 32x16, 32x32 BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST, // 32x64, 64x32, 64x64 #if CONFIG_EXT_PARTITION BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST // 64x128, 128x64, 128x128 #endif // CONFIG_EXT_PARTITION }; // Next square block size less or equal than current block size. static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = { #if CONFIG_CB4X4 BLOCK_2X2, BLOCK_2X2, BLOCK_2X2, // 2x2, 2x4, 4x2 #endif BLOCK_4X4, // 4x4 BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x8, 8x4, 8x8 BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 8x16, 16x8, 16x16 BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, // 16x32, 32x16, 32x32 BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, // 32x64, 64x32, 64x64 #if CONFIG_EXT_PARTITION BLOCK_64X64, BLOCK_64X64, BLOCK_128X128 // 64x128, 128x64, 128x128 #endif // CONFIG_EXT_PARTITION }; /* clang-format on */ // Look at all the mode_info entries for blocks that are part of this // partition and find the min and max values for sb_type. // At the moment this is designed to work on a superblock but could be // adjusted to use a size parameter. // // The min and max are assumed to have been initialized prior to calling this // function so repeat calls can accumulate a min and max of more than one // superblock. static void get_sb_partition_size_range(const AV1_COMMON *const cm, MACROBLOCKD *xd, MODE_INFO **mib, BLOCK_SIZE *min_block_size, BLOCK_SIZE *max_block_size) { int i, j; int index = 0; // Check the sb_type for each block that belongs to this region. for (i = 0; i < cm->mib_size; ++i) { for (j = 0; j < cm->mib_size; ++j) { MODE_INFO *mi = mib[index + j]; BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : BLOCK_4X4; *min_block_size = AOMMIN(*min_block_size, sb_type); *max_block_size = AOMMAX(*max_block_size, sb_type); } index += xd->mi_stride; } } // Look at neighboring blocks and set a min and max partition size based on // what they chose. static void rd_auto_partition_range(AV1_COMP *cpi, const TileInfo *const tile, MACROBLOCKD *const xd, int mi_row, int mi_col, BLOCK_SIZE *min_block_size, BLOCK_SIZE *max_block_size) { AV1_COMMON *const cm = &cpi->common; MODE_INFO **mi = xd->mi; const int left_in_image = xd->left_available && mi[-1]; const int above_in_image = xd->up_available && mi[-xd->mi_stride]; const int mi_rows_remaining = tile->mi_row_end - mi_row; const int mi_cols_remaining = tile->mi_col_end - mi_col; int bh, bw; BLOCK_SIZE min_size = BLOCK_4X4; BLOCK_SIZE max_size = BLOCK_LARGEST; // Trap case where we do not have a prediction. if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) { // Default "min to max" and "max to min" min_size = BLOCK_LARGEST; max_size = BLOCK_4X4; // NOTE: each call to get_sb_partition_size_range() uses the previous // passed in values for min and max as a starting point. // Find the min and max partition used in previous frame at this location if (cm->frame_type != KEY_FRAME) { MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col]; get_sb_partition_size_range(cm, xd, prev_mi, &min_size, &max_size); } // Find the min and max partition sizes used in the left superblock if (left_in_image) { MODE_INFO **left_sb_mi = &mi[-cm->mib_size]; get_sb_partition_size_range(cm, xd, left_sb_mi, &min_size, &max_size); } // Find the min and max partition sizes used in the above suprblock. if (above_in_image) { MODE_INFO **above_sb_mi = &mi[-xd->mi_stride * cm->mib_size]; get_sb_partition_size_range(cm, xd, above_sb_mi, &min_size, &max_size); } // Adjust observed min and max for "relaxed" auto partition case. if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) { min_size = min_partition_size[min_size]; max_size = max_partition_size[max_size]; } } // Check border cases where max and min from neighbors may not be legal. max_size = find_partition_size(max_size, mi_rows_remaining, mi_cols_remaining, &bh, &bw); min_size = AOMMIN(min_size, max_size); // Test for blocks at the edge of the active image. // This may be the actual edge of the image or where there are formatting // bars. if (av1_active_edge_sb(cpi, mi_row, mi_col)) { min_size = BLOCK_4X4; } else { min_size = AOMMIN(cpi->sf.rd_auto_partition_min_limit, min_size); } // When use_square_partition_only is true, make sure at least one square // partition is allowed by selecting the next smaller square size as // *min_block_size. if (cpi->sf.use_square_partition_only) { min_size = AOMMIN(min_size, next_square_size[max_size]); } *min_block_size = AOMMIN(min_size, cm->sb_size); *max_block_size = AOMMIN(max_size, cm->sb_size); } // TODO(jingning) refactor functions setting partition search range static void set_partition_range(const AV1_COMMON *const cm, const MACROBLOCKD *const xd, int mi_row, int mi_col, BLOCK_SIZE bsize, BLOCK_SIZE *const min_bs, BLOCK_SIZE *const max_bs) { const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; int idx, idy; const int idx_str = cm->mi_stride * mi_row + mi_col; MODE_INFO **const prev_mi = &cm->prev_mi_grid_visible[idx_str]; BLOCK_SIZE min_size = BLOCK_64X64; // default values BLOCK_SIZE max_size = BLOCK_4X4; if (prev_mi) { for (idy = 0; idy < mi_height; ++idy) { for (idx = 0; idx < mi_width; ++idx) { const MODE_INFO *const mi = prev_mi[idy * cm->mi_stride + idx]; const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize; min_size = AOMMIN(min_size, bs); max_size = AOMMAX(max_size, bs); } } } if (xd->left_available) { for (idy = 0; idy < mi_height; ++idy) { const MODE_INFO *const mi = xd->mi[idy * cm->mi_stride - 1]; const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize; min_size = AOMMIN(min_size, bs); max_size = AOMMAX(max_size, bs); } } if (xd->up_available) { for (idx = 0; idx < mi_width; ++idx) { const MODE_INFO *const mi = xd->mi[idx - cm->mi_stride]; const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize; min_size = AOMMIN(min_size, bs); max_size = AOMMAX(max_size, bs); } } if (min_size == max_size) { min_size = min_partition_size[min_size]; max_size = max_partition_size[max_size]; } *min_bs = AOMMIN(min_size, cm->sb_size); *max_bs = AOMMIN(max_size, cm->sb_size); } static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv)); } static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv)); } #if CONFIG_FP_MB_STATS const int qindex_skip_threshold_lookup[BLOCK_SIZES] = { 0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120, #if CONFIG_EXT_PARTITION // TODO(debargha): What are the correct numbers here? 130, 130, 150 #endif // CONFIG_EXT_PARTITION }; const int qindex_split_threshold_lookup[BLOCK_SIZES] = { 0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120, #if CONFIG_EXT_PARTITION // TODO(debargha): What are the correct numbers here? 160, 160, 240 #endif // CONFIG_EXT_PARTITION }; const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6, #if CONFIG_EXT_PARTITION // TODO(debargha): What are the correct numbers here? 8, 8, 10 #endif // CONFIG_EXT_PARTITION }; typedef enum { MV_ZERO = 0, MV_LEFT = 1, MV_UP = 2, MV_RIGHT = 3, MV_DOWN = 4, MV_INVALID } MOTION_DIRECTION; static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) { if (fp_byte & FPMB_MOTION_ZERO_MASK) { return MV_ZERO; } else if (fp_byte & FPMB_MOTION_LEFT_MASK) { return MV_LEFT; } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) { return MV_RIGHT; } else if (fp_byte & FPMB_MOTION_UP_MASK) { return MV_UP; } else { return MV_DOWN; } } static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv, MOTION_DIRECTION that_mv) { if (this_mv == that_mv) { return 0; } else { return abs(this_mv - that_mv) == 2 ? 2 : 1; } } #endif #if CONFIG_EXT_PARTITION_TYPES static void rd_test_partition3( const AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TOKENEXTRA **tp, PC_TREE *pc_tree, RD_STATS *best_rdc, PICK_MODE_CONTEXT ctxs[3], PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, PARTITION_TYPE partition, #if CONFIG_SUPERTX int64_t best_rd, int *best_rate_nocoef, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, #endif int mi_row0, int mi_col0, BLOCK_SIZE subsize0, int mi_row1, int mi_col1, BLOCK_SIZE subsize1, int mi_row2, int mi_col2, BLOCK_SIZE subsize2) { MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; RD_STATS this_rdc, sum_rdc; #if CONFIG_SUPERTX const AV1_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; int this_rate_nocoef, sum_rate_nocoef; int abort_flag; const int supertx_allowed = !frame_is_intra_only(cm) && bsize <= MAX_SUPERTX_BLOCK_SIZE && !xd->lossless[0]; #endif if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); rd_pick_sb_modes(cpi, tile_data, x, mi_row0, mi_col0, &sum_rdc, #if CONFIG_SUPERTX &sum_rate_nocoef, #endif #if CONFIG_EXT_PARTITION_TYPES partition, #endif subsize0, &ctxs[0], best_rdc->rdcost); #if CONFIG_SUPERTX abort_flag = sum_rdc.rdcost >= best_rd; #endif #if CONFIG_SUPERTX if (sum_rdc.rdcost < INT64_MAX) { #else if (sum_rdc.rdcost < best_rdc->rdcost) { #endif PICK_MODE_CONTEXT *ctx_0 = &ctxs[0]; update_state(cpi, td, ctx_0, mi_row0, mi_col0, subsize0, 1); encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row0, mi_col0, subsize0, ctx_0, NULL); if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_0); #if CONFIG_SUPERTX rd_pick_sb_modes(cpi, tile_data, x, mi_row1, mi_col1, &this_rdc, &this_rate_nocoef, #if CONFIG_EXT_PARTITION_TYPES partition, #endif subsize1, &ctxs[1], INT64_MAX - sum_rdc.rdcost); #else rd_pick_sb_modes(cpi, tile_data, x, mi_row1, mi_col1, &this_rdc, #if CONFIG_EXT_PARTITION_TYPES partition, #endif subsize1, &ctxs[1], best_rdc->rdcost - sum_rdc.rdcost); #endif // CONFIG_SUPERTX if (this_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; #if CONFIG_SUPERTX sum_rate_nocoef = INT_MAX; #endif } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; #if CONFIG_SUPERTX sum_rate_nocoef += this_rate_nocoef; #endif } #if CONFIG_SUPERTX if (sum_rdc.rdcost < INT64_MAX) { #else if (sum_rdc.rdcost < best_rdc->rdcost) { #endif PICK_MODE_CONTEXT *ctx_1 = &ctxs[1]; update_state(cpi, td, ctx_1, mi_row1, mi_col1, subsize1, 1); encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row1, mi_col1, subsize1, ctx_1, NULL); if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_1); #if CONFIG_SUPERTX rd_pick_sb_modes(cpi, tile_data, x, mi_row2, mi_col2, &this_rdc, &this_rate_nocoef, #if CONFIG_EXT_PARTITION_TYPES partition, #endif subsize2, &ctxs[2], INT64_MAX - sum_rdc.rdcost); #else rd_pick_sb_modes(cpi, tile_data, x, mi_row2, mi_col2, &this_rdc, #if CONFIG_EXT_PARTITION_TYPES partition, #endif subsize2, &ctxs[2], best_rdc->rdcost - sum_rdc.rdcost); #endif // CONFIG_SUPERTX if (this_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; #if CONFIG_SUPERTX sum_rate_nocoef = INT_MAX; #endif } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; #if CONFIG_SUPERTX sum_rate_nocoef += this_rate_nocoef; #endif } #if CONFIG_SUPERTX if (supertx_allowed && !abort_flag && sum_rdc.rdcost < INT64_MAX) { TX_SIZE supertx_size = max_txsize_lookup[bsize]; const PARTITION_TYPE best_partition = pc_tree->partitioning; pc_tree->partitioning = partition; sum_rdc.rate += av1_cost_bit( cm->fc->supertx_prob[partition_supertx_context_lookup[partition]] [supertx_size], 0); sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) { TX_TYPE best_tx = DCT_DCT; RD_STATS tmp_rdc = { sum_rate_nocoef, 0, 0 }; restore_context(x, x_ctx, mi_row, mi_col, bsize); rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, &tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree); tmp_rdc.rate += av1_cost_bit( cm->fc->supertx_prob[partition_supertx_context_lookup[partition]] [supertx_size], 1); tmp_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist); if (tmp_rdc.rdcost < sum_rdc.rdcost) { sum_rdc = tmp_rdc; update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx, supertx_size, pc_tree); } } pc_tree->partitioning = best_partition; } #endif // CONFIG_SUPERTX if (sum_rdc.rdcost < best_rdc->rdcost) { int pl = partition_plane_context(xd, mi_row, mi_col, #if CONFIG_UNPOISON_PARTITION_CTX has_rows, has_cols, #endif bsize); sum_rdc.rate += cpi->partition_cost[pl][partition]; sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); #if CONFIG_SUPERTX sum_rate_nocoef += cpi->partition_cost[pl][partition]; #endif if (sum_rdc.rdcost < best_rdc->rdcost) { #if CONFIG_SUPERTX *best_rate_nocoef = sum_rate_nocoef; assert(*best_rate_nocoef >= 0); #endif *best_rdc = sum_rdc; pc_tree->partitioning = partition; } } } } } #endif // CONFIG_EXT_PARTITION_TYPES // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are // unlikely to be selected depending on previous rate-distortion optimization // results, for encoding speed-up. static void rd_pick_partition(const AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, RD_STATS *rd_cost, #if CONFIG_SUPERTX int *rate_nocoef, #endif int64_t best_rd, PC_TREE *pc_tree) { const AV1_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int mi_step = mi_size_wide[bsize] / 2; RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; const TOKENEXTRA *const tp_orig = *tp; PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; #if CONFIG_UNPOISON_PARTITION_CTX const int hbs = mi_size_wide[bsize] / 2; const int has_rows = mi_row + hbs < cm->mi_rows; const int has_cols = mi_col + hbs < cm->mi_cols; #else int tmp_partition_cost[PARTITION_TYPES]; #endif BLOCK_SIZE subsize; RD_STATS this_rdc, sum_rdc, best_rdc; const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8); int do_square_split = bsize_at_least_8x8; #if CONFIG_CB4X4 const int unify_bsize = 1; const int pl = bsize_at_least_8x8 ? partition_plane_context(xd, mi_row, mi_col, #if CONFIG_UNPOISON_PARTITION_CTX has_rows, has_cols, #endif bsize) : 0; #else const int unify_bsize = 0; const int pl = partition_plane_context(xd, mi_row, mi_col, #if CONFIG_UNPOISON_PARTITION_CTX has_rows, has_cols, #endif bsize); #endif // CONFIG_CB4X4 const int *partition_cost = cpi->partition_cost[pl]; #if CONFIG_SUPERTX int this_rate_nocoef, sum_rate_nocoef = 0, best_rate_nocoef = INT_MAX; int abort_flag; const int supertx_allowed = !frame_is_intra_only(cm) && bsize <= MAX_SUPERTX_BLOCK_SIZE && !xd->lossless[0]; #endif // CONFIG_SUPERTX int do_rectangular_split = 1; #if CONFIG_EXT_PARTITION_TYPES BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); #endif // Override skipping rectangular partition operations for edge blocks const int force_horz_split = (mi_row + mi_step >= cm->mi_rows); const int force_vert_split = (mi_col + mi_step >= cm->mi_cols); const int xss = x->e_mbd.plane[1].subsampling_x; const int yss = x->e_mbd.plane[1].subsampling_y; BLOCK_SIZE min_size = x->min_partition_size; BLOCK_SIZE max_size = x->max_partition_size; #if CONFIG_FP_MB_STATS unsigned int src_diff_var = UINT_MAX; int none_complexity = 0; #endif int partition_none_allowed = !force_horz_split && !force_vert_split; int partition_horz_allowed = !force_vert_split && yss <= xss && bsize_at_least_8x8; int partition_vert_allowed = !force_horz_split && xss <= yss && bsize_at_least_8x8; #if CONFIG_PVQ od_rollback_buffer pre_rdo_buf; #endif (void)*tp_orig; #if !CONFIG_UNPOISON_PARTITION_CTX if (force_horz_split || force_vert_split) { tmp_partition_cost[PARTITION_NONE] = INT_MAX; if (!force_vert_split) { // force_horz_split only tmp_partition_cost[PARTITION_VERT] = INT_MAX; tmp_partition_cost[PARTITION_HORZ] = av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_HORZ], 0); tmp_partition_cost[PARTITION_SPLIT] = av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_HORZ], 1); } else if (!force_horz_split) { // force_vert_split only tmp_partition_cost[PARTITION_HORZ] = INT_MAX; tmp_partition_cost[PARTITION_VERT] = av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_VERT], 0); tmp_partition_cost[PARTITION_SPLIT] = av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_VERT], 1); } else { // force_ horz_split && force_vert_split horz_split tmp_partition_cost[PARTITION_HORZ] = INT_MAX; tmp_partition_cost[PARTITION_VERT] = INT_MAX; tmp_partition_cost[PARTITION_SPLIT] = 0; } partition_cost = tmp_partition_cost; } #endif #if CONFIG_VAR_TX #ifndef NDEBUG // Nothing should rely on the default value of this array (which is just // leftover from encoding the previous block. Setting it to magic number // when debugging. memset(x->blk_skip[0], 234, sizeof(x->blk_skip[0])); #endif // NDEBUG #endif // CONFIG_VAR_TX assert(mi_size_wide[bsize] == mi_size_high[bsize]); av1_init_rd_stats(&this_rdc); av1_init_rd_stats(&sum_rdc); av1_invalid_rd_stats(&best_rdc); best_rdc.rdcost = best_rd; set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); if (bsize == BLOCK_16X16 && cpi->vaq_refresh) x->mb_energy = av1_block_energy(cpi, x, bsize); if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) { const int cb_partition_search_ctrl = ((pc_tree->index == 0 || pc_tree->index == 3) + get_chessboard_index(cm->current_video_frame)) & 0x1; if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size) set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size); } // Determine partition types in search according to the speed features. // The threshold set here has to be of square block size. if (cpi->sf.auto_min_max_partition_size) { const int no_partition_allowed = (bsize <= max_size && bsize >= min_size); // Note: Further partitioning is NOT allowed when bsize == min_size already. const int partition_allowed = (bsize <= max_size && bsize > min_size); partition_none_allowed &= no_partition_allowed; partition_horz_allowed &= partition_allowed || force_horz_split; partition_vert_allowed &= partition_allowed || force_vert_split; do_square_split &= bsize > min_size; } if (cpi->sf.use_square_partition_only) { partition_horz_allowed &= force_horz_split; partition_vert_allowed &= force_vert_split; } #if CONFIG_VAR_TX xd->above_txfm_context = cm->above_txfm_context + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); #endif #if !CONFIG_PVQ save_context(x, &x_ctx, mi_row, mi_col, bsize); #else save_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); #endif #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row, mi_col, bsize); } #endif #if CONFIG_FP_MB_STATS // Decide whether we shall split directly and skip searching NONE by using // the first pass block statistics if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_square_split && partition_none_allowed && src_diff_var > 4 && cm->base_qindex < qindex_split_threshold_lookup[bsize]) { int mb_row = mi_row >> 1; int mb_col = mi_col >> 1; int mb_row_end = AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); int mb_col_end = AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); int r, c; // compute a complexity measure, basically measure inconsistency of motion // vectors obtained from the first pass in the current block for (r = mb_row; r < mb_row_end; r++) { for (c = mb_col; c < mb_col_end; c++) { const int mb_index = r * cm->mb_cols + c; MOTION_DIRECTION this_mv; MOTION_DIRECTION right_mv; MOTION_DIRECTION bottom_mv; this_mv = get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]); // to its right if (c != mb_col_end - 1) { right_mv = get_motion_direction_fp( cpi->twopass.this_frame_mb_stats[mb_index + 1]); none_complexity += get_motion_inconsistency(this_mv, right_mv); } // to its bottom if (r != mb_row_end - 1) { bottom_mv = get_motion_direction_fp( cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]); none_complexity += get_motion_inconsistency(this_mv, bottom_mv); } // do not count its left and top neighbors to avoid double counting } } if (none_complexity > complexity_16x16_blocks_threshold[bsize]) { partition_none_allowed = 0; } } #endif // PARTITION_NONE if (partition_none_allowed) { rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, #if CONFIG_SUPERTX &this_rate_nocoef, #endif #if CONFIG_EXT_PARTITION_TYPES PARTITION_NONE, #endif bsize, ctx_none, best_rdc.rdcost); if (this_rdc.rate != INT_MAX) { if (bsize_at_least_8x8) { this_rdc.rate += partition_cost[PARTITION_NONE]; this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); #if CONFIG_SUPERTX this_rate_nocoef += partition_cost[PARTITION_NONE]; #endif } if (this_rdc.rdcost < best_rdc.rdcost) { // Adjust dist breakout threshold according to the partition size. const int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_dist_thr >> ((2 * (MAX_SB_SIZE_LOG2 - 2)) - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize])); const int rate_breakout_thr = cpi->sf.partition_search_breakout_rate_thr * num_pels_log2_lookup[bsize]; best_rdc = this_rdc; #if CONFIG_SUPERTX best_rate_nocoef = this_rate_nocoef; assert(best_rate_nocoef >= 0); #endif if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE; // If all y, u, v transform blocks in this partition are skippable, and // the dist & rate are within the thresholds, the partition search is // terminated for current branch of the partition search tree. // The dist & rate thresholds are set to 0 at speed 0 to disable the // early termination at that speed. if (!x->e_mbd.lossless[xd->mi[0]->mbmi.segment_id] && (ctx_none->skippable && best_rdc.dist < dist_breakout_thr && best_rdc.rate < rate_breakout_thr)) { do_square_split = 0; do_rectangular_split = 0; } #if CONFIG_FP_MB_STATS // Check if every 16x16 first pass block statistics has zero // motion and the corresponding first pass residue is small enough. // If that is the case, check the difference variance between the // current frame and the last frame. If the variance is small enough, // stop further splitting in RD optimization if (cpi->use_fp_mb_stats && do_square_split && cm->base_qindex > qindex_skip_threshold_lookup[bsize]) { int mb_row = mi_row >> 1; int mb_col = mi_col >> 1; int mb_row_end = AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); int mb_col_end = AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); int r, c; int skip = 1; for (r = mb_row; r < mb_row_end; r++) { for (c = mb_col; c < mb_col_end; c++) { const int mb_index = r * cm->mb_cols + c; if (!(cpi->twopass.this_frame_mb_stats[mb_index] & FPMB_MOTION_ZERO_MASK) || !(cpi->twopass.this_frame_mb_stats[mb_index] & FPMB_ERROR_SMALL_MASK)) { skip = 0; break; } } if (skip == 0) { break; } } if (skip) { if (src_diff_var == UINT_MAX) { set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); src_diff_var = get_sby_perpixel_diff_variance( cpi, &x->plane[0].src, mi_row, mi_col, bsize); } if (src_diff_var < 8) { do_square_split = 0; do_rectangular_split = 0; } } } #endif } } #if !CONFIG_PVQ restore_context(x, &x_ctx, mi_row, mi_col, bsize); #else restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); #endif } // store estimated motion vector if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none); // PARTITION_SPLIT // TODO(jingning): use the motion vectors given by the above search as // the starting point of motion search in the following partition type check. if (do_square_split) { int reached_last_index = 0; subsize = get_subsize(bsize, PARTITION_SPLIT); if (bsize == BLOCK_8X8 && !unify_bsize) { #if CONFIG_DUAL_FILTER if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed) pc_tree->leaf_split[0]->pred_interp_filter = ctx_none->mic.mbmi.interp_filter[0]; #else if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed) pc_tree->leaf_split[0]->pred_interp_filter = ctx_none->mic.mbmi.interp_filter; #endif #if CONFIG_SUPERTX rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, &sum_rate_nocoef, #if CONFIG_EXT_PARTITION_TYPES PARTITION_SPLIT, #endif subsize, pc_tree->leaf_split[0], INT64_MAX); #else rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, #if CONFIG_EXT_PARTITION_TYPES PARTITION_SPLIT, #endif subsize, pc_tree->leaf_split[0], best_rdc.rdcost); #endif // CONFIG_SUPERTX if (sum_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; #if CONFIG_SUPERTX sum_rate_nocoef = INT_MAX; #endif } #if CONFIG_SUPERTX if (supertx_allowed && sum_rdc.rdcost < INT64_MAX) { TX_SIZE supertx_size = max_txsize_lookup[bsize]; const PARTITION_TYPE best_partition = pc_tree->partitioning; pc_tree->partitioning = PARTITION_SPLIT; sum_rdc.rate += av1_cost_bit( cm->fc->supertx_prob[partition_supertx_context_lookup [PARTITION_SPLIT]][supertx_size], 0); sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); if (is_inter_mode(pc_tree->leaf_split[0]->mic.mbmi.mode)) { TX_TYPE best_tx = DCT_DCT; RD_STATS tmp_rdc; av1_init_rd_stats(&tmp_rdc); tmp_rdc.rate = sum_rate_nocoef; restore_context(x, &x_ctx, mi_row, mi_col, bsize); rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, &tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree); tmp_rdc.rate += av1_cost_bit( cm->fc->supertx_prob[partition_supertx_context_lookup [PARTITION_SPLIT]][supertx_size], 1); tmp_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist); if (tmp_rdc.rdcost < sum_rdc.rdcost) { sum_rdc = tmp_rdc; update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx, supertx_size, pc_tree); } } pc_tree->partitioning = best_partition; } #endif // CONFIG_SUPERTX reached_last_index = 1; } else { int idx; #if CONFIG_SUPERTX for (idx = 0; idx < 4 && sum_rdc.rdcost < INT64_MAX; ++idx) { #else for (idx = 0; idx < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++idx) { #endif // CONFIG_SUPERTX const int x_idx = (idx & 1) * mi_step; const int y_idx = (idx >> 1) * mi_step; if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) continue; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); pc_tree->split[idx]->index = idx; #if CONFIG_SUPERTX rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize, &this_rdc, &this_rate_nocoef, INT64_MAX - sum_rdc.rdcost, pc_tree->split[idx]); #else rd_pick_partition( cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize, &this_rdc, best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[idx]); #endif // CONFIG_SUPERTX if (this_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; #if CONFIG_SUPERTX sum_rate_nocoef = INT_MAX; #endif // CONFIG_SUPERTX break; } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; #if CONFIG_SUPERTX sum_rate_nocoef += this_rate_nocoef; #endif // CONFIG_SUPERTX } } reached_last_index = (idx == 4); #if CONFIG_SUPERTX if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && reached_last_index) { TX_SIZE supertx_size = max_txsize_lookup[bsize]; const PARTITION_TYPE best_partition = pc_tree->partitioning; pc_tree->partitioning = PARTITION_SPLIT; sum_rdc.rate += av1_cost_bit( cm->fc->supertx_prob[partition_supertx_context_lookup [PARTITION_SPLIT]][supertx_size], 0); sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) { TX_TYPE best_tx = DCT_DCT; RD_STATS tmp_rdc; av1_init_rd_stats(&tmp_rdc); tmp_rdc.rate = sum_rate_nocoef; restore_context(x, &x_ctx, mi_row, mi_col, bsize); rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, &tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree); tmp_rdc.rate += av1_cost_bit( cm->fc->supertx_prob[partition_supertx_context_lookup [PARTITION_SPLIT]][supertx_size], 1); tmp_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist); if (tmp_rdc.rdcost < sum_rdc.rdcost) { sum_rdc = tmp_rdc; update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx, supertx_size, pc_tree); } } pc_tree->partitioning = best_partition; } #endif // CONFIG_SUPERTX } if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) { sum_rdc.rate += partition_cost[PARTITION_SPLIT]; sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); #if CONFIG_SUPERTX sum_rate_nocoef += partition_cost[PARTITION_SPLIT]; #endif // CONFIG_SUPERTX if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; #if CONFIG_SUPERTX best_rate_nocoef = sum_rate_nocoef; assert(best_rate_nocoef >= 0); #endif // CONFIG_SUPERTX pc_tree->partitioning = PARTITION_SPLIT; } } else if (cpi->sf.less_rectangular_check) { // skip rectangular partition test when larger block size // gives better rd cost do_rectangular_split &= !partition_none_allowed; } #if !CONFIG_PVQ restore_context(x, &x_ctx, mi_row, mi_col, bsize); #else restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); #endif } // if (do_split) // PARTITION_HORZ if (partition_horz_allowed && (do_rectangular_split || av1_active_h_edge(cpi, mi_row, mi_step))) { subsize = get_subsize(bsize, PARTITION_HORZ); if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); #if CONFIG_DUAL_FILTER if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) pc_tree->horizontal[0].pred_interp_filter = ctx_none->mic.mbmi.interp_filter[0]; #else if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) pc_tree->horizontal[0].pred_interp_filter = ctx_none->mic.mbmi.interp_filter; #endif rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, #if CONFIG_SUPERTX &sum_rate_nocoef, #endif // CONFIG_SUPERTX #if CONFIG_EXT_PARTITION_TYPES PARTITION_HORZ, #endif subsize, &pc_tree->horizontal[0], best_rdc.rdcost); #if CONFIG_SUPERTX abort_flag = (sum_rdc.rdcost >= best_rd && (bsize > BLOCK_8X8 || unify_bsize)) || (sum_rdc.rate == INT_MAX && bsize == BLOCK_8X8); if (sum_rdc.rdcost < INT64_MAX && #else if (sum_rdc.rdcost < best_rdc.rdcost && #endif // CONFIG_SUPERTX !force_horz_split && (bsize > BLOCK_8X8 || unify_bsize)) { PICK_MODE_CONTEXT *ctx_h = &pc_tree->horizontal[0]; update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1); encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize, ctx_h, NULL); if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_h); #if CONFIG_DUAL_FILTER if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) pc_tree->horizontal[1].pred_interp_filter = ctx_h->mic.mbmi.interp_filter[0]; #else if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) pc_tree->horizontal[1].pred_interp_filter = ctx_none->mic.mbmi.interp_filter; #endif #if CONFIG_SUPERTX rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc, &this_rate_nocoef, #if CONFIG_EXT_PARTITION_TYPES PARTITION_HORZ, #endif subsize, &pc_tree->horizontal[1], INT64_MAX); #else rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc, #if CONFIG_EXT_PARTITION_TYPES PARTITION_HORZ, #endif subsize, &pc_tree->horizontal[1], best_rdc.rdcost - sum_rdc.rdcost); #endif // CONFIG_SUPERTX if (this_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; #if CONFIG_SUPERTX sum_rate_nocoef = INT_MAX; #endif // CONFIG_SUPERTX } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; #if CONFIG_SUPERTX sum_rate_nocoef += this_rate_nocoef; #endif // CONFIG_SUPERTX } } #if CONFIG_SUPERTX if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && !abort_flag) { TX_SIZE supertx_size = max_txsize_lookup[bsize]; const PARTITION_TYPE best_partition = pc_tree->partitioning; pc_tree->partitioning = PARTITION_HORZ; sum_rdc.rate += av1_cost_bit( cm->fc->supertx_prob[partition_supertx_context_lookup[PARTITION_HORZ]] [supertx_size], 0); sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) { TX_TYPE best_tx = DCT_DCT; RD_STATS tmp_rdc; av1_init_rd_stats(&tmp_rdc); tmp_rdc.rate = sum_rate_nocoef; restore_context(x, &x_ctx, mi_row, mi_col, bsize); rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, &tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree); tmp_rdc.rate += av1_cost_bit( cm->fc ->supertx_prob[partition_supertx_context_lookup[PARTITION_HORZ]] [supertx_size], 1); tmp_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist); if (tmp_rdc.rdcost < sum_rdc.rdcost) { sum_rdc = tmp_rdc; update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx, supertx_size, pc_tree); } } pc_tree->partitioning = best_partition; } #endif // CONFIG_SUPERTX if (sum_rdc.rdcost < best_rdc.rdcost) { sum_rdc.rate += partition_cost[PARTITION_HORZ]; sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); #if CONFIG_SUPERTX sum_rate_nocoef += partition_cost[PARTITION_HORZ]; #endif // CONFIG_SUPERTX if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; #if CONFIG_SUPERTX best_rate_nocoef = sum_rate_nocoef; assert(best_rate_nocoef >= 0); #endif // CONFIG_SUPERTX pc_tree->partitioning = PARTITION_HORZ; } } #if !CONFIG_PVQ restore_context(x, &x_ctx, mi_row, mi_col, bsize); #else restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); #endif } // PARTITION_VERT if (partition_vert_allowed && (do_rectangular_split || av1_active_v_edge(cpi, mi_col, mi_step))) { subsize = get_subsize(bsize, PARTITION_VERT); if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); #if CONFIG_DUAL_FILTER if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) pc_tree->vertical[0].pred_interp_filter = ctx_none->mic.mbmi.interp_filter[0]; #else if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) pc_tree->vertical[0].pred_interp_filter = ctx_none->mic.mbmi.interp_filter; #endif rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, #if CONFIG_SUPERTX &sum_rate_nocoef, #endif // CONFIG_SUPERTX #if CONFIG_EXT_PARTITION_TYPES PARTITION_VERT, #endif subsize, &pc_tree->vertical[0], best_rdc.rdcost); #if CONFIG_SUPERTX abort_flag = (sum_rdc.rdcost >= best_rd && (bsize > BLOCK_8X8 || unify_bsize)) || (sum_rdc.rate == INT_MAX && bsize == BLOCK_8X8); if (sum_rdc.rdcost < INT64_MAX && #else if (sum_rdc.rdcost < best_rdc.rdcost && #endif // CONFIG_SUPERTX !force_vert_split && (bsize > BLOCK_8X8 || unify_bsize)) { update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 1); encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize, &pc_tree->vertical[0], NULL); if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); #if CONFIG_DUAL_FILTER if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) pc_tree->vertical[1].pred_interp_filter = ctx_none->mic.mbmi.interp_filter[0]; #else if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) pc_tree->vertical[1].pred_interp_filter = ctx_none->mic.mbmi.interp_filter; #endif #if CONFIG_SUPERTX rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc, &this_rate_nocoef, #if CONFIG_EXT_PARTITION_TYPES PARTITION_VERT, #endif subsize, &pc_tree->vertical[1], INT64_MAX - sum_rdc.rdcost); #else rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc, #if CONFIG_EXT_PARTITION_TYPES PARTITION_VERT, #endif subsize, &pc_tree->vertical[1], best_rdc.rdcost - sum_rdc.rdcost); #endif // CONFIG_SUPERTX if (this_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; #if CONFIG_SUPERTX sum_rate_nocoef = INT_MAX; #endif // CONFIG_SUPERTX } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; #if CONFIG_SUPERTX sum_rate_nocoef += this_rate_nocoef; #endif // CONFIG_SUPERTX } } #if CONFIG_SUPERTX if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && !abort_flag) { TX_SIZE supertx_size = max_txsize_lookup[bsize]; const PARTITION_TYPE best_partition = pc_tree->partitioning; pc_tree->partitioning = PARTITION_VERT; sum_rdc.rate += av1_cost_bit( cm->fc->supertx_prob[partition_supertx_context_lookup[PARTITION_VERT]] [supertx_size], 0); sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) { TX_TYPE best_tx = DCT_DCT; RD_STATS tmp_rdc; av1_init_rd_stats(&tmp_rdc); tmp_rdc.rate = sum_rate_nocoef; restore_context(x, &x_ctx, mi_row, mi_col, bsize); rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, &tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree); tmp_rdc.rate += av1_cost_bit( cm->fc ->supertx_prob[partition_supertx_context_lookup[PARTITION_VERT]] [supertx_size], 1); tmp_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist); if (tmp_rdc.rdcost < sum_rdc.rdcost) { sum_rdc = tmp_rdc; update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx, supertx_size, pc_tree); } } pc_tree->partitioning = best_partition; } #endif // CONFIG_SUPERTX if (sum_rdc.rdcost < best_rdc.rdcost) { sum_rdc.rate += partition_cost[PARTITION_VERT]; sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); #if CONFIG_SUPERTX sum_rate_nocoef += partition_cost[PARTITION_VERT]; #endif // CONFIG_SUPERTX if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; #if CONFIG_SUPERTX best_rate_nocoef = sum_rate_nocoef; assert(best_rate_nocoef >= 0); #endif // CONFIG_SUPERTX pc_tree->partitioning = PARTITION_VERT; } } #if !CONFIG_PVQ restore_context(x, &x_ctx, mi_row, mi_col, bsize); #else restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); #endif } #if CONFIG_EXT_PARTITION_TYPES // PARTITION_HORZ_A if (partition_horz_allowed && do_rectangular_split && bsize > BLOCK_8X8 && partition_none_allowed) { subsize = get_subsize(bsize, PARTITION_HORZ_A); rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->horizontala, ctx_none, mi_row, mi_col, bsize, PARTITION_HORZ_A, #if CONFIG_SUPERTX best_rd, &best_rate_nocoef, &x_ctx, #endif mi_row, mi_col, bsize2, mi_row, mi_col + mi_step, bsize2, mi_row + mi_step, mi_col, subsize); restore_context(x, &x_ctx, mi_row, mi_col, bsize); } // PARTITION_HORZ_B if (partition_horz_allowed && do_rectangular_split && bsize > BLOCK_8X8 && partition_none_allowed) { subsize = get_subsize(bsize, PARTITION_HORZ_B); rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->horizontalb, ctx_none, mi_row, mi_col, bsize, PARTITION_HORZ_B, #if CONFIG_SUPERTX best_rd, &best_rate_nocoef, &x_ctx, #endif mi_row, mi_col, subsize, mi_row + mi_step, mi_col, bsize2, mi_row + mi_step, mi_col + mi_step, bsize2); restore_context(x, &x_ctx, mi_row, mi_col, bsize); } // PARTITION_VERT_A if (partition_vert_allowed && do_rectangular_split && bsize > BLOCK_8X8 && partition_none_allowed) { subsize = get_subsize(bsize, PARTITION_VERT_A); rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->verticala, ctx_none, mi_row, mi_col, bsize, PARTITION_VERT_A, #if CONFIG_SUPERTX best_rd, &best_rate_nocoef, &x_ctx, #endif mi_row, mi_col, bsize2, mi_row + mi_step, mi_col, bsize2, mi_row, mi_col + mi_step, subsize); restore_context(x, &x_ctx, mi_row, mi_col, bsize); } // PARTITION_VERT_B if (partition_vert_allowed && do_rectangular_split && bsize > BLOCK_8X8 && partition_none_allowed) { subsize = get_subsize(bsize, PARTITION_VERT_B); rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->verticalb, ctx_none, mi_row, mi_col, bsize, PARTITION_VERT_B, #if CONFIG_SUPERTX best_rd, &best_rate_nocoef, &x_ctx, #endif mi_row, mi_col, subsize, mi_row, mi_col + mi_step, bsize2, mi_row + mi_step, mi_col + mi_step, bsize2); restore_context(x, &x_ctx, mi_row, mi_col, bsize); } #endif // CONFIG_EXT_PARTITION_TYPES // TODO(jbb): This code added so that we avoid static analysis // warning related to the fact that best_rd isn't used after this // point. This code should be refactored so that the duplicate // checks occur in some sub function and thus are used... (void)best_rd; *rd_cost = best_rdc; #if CONFIG_SUPERTX *rate_nocoef = best_rate_nocoef; #endif // CONFIG_SUPERTX #if CONFIG_CFL // Store the luma for the best mode x->cfl_store_y = 1; #endif if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && pc_tree->index != 3) { if (bsize == cm->sb_size) { #if CONFIG_MOTION_VAR && CONFIG_NCOBMC set_mode_info_sb(cpi, td, tile_info, tp, mi_row, mi_col, bsize, pc_tree); #endif encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, pc_tree, NULL); } else { encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, pc_tree, NULL); } } #if CONFIG_CFL x->cfl_store_y = 0; #endif if (bsize == cm->sb_size) { #if !CONFIG_PVQ && !CONFIG_LV_MAP assert(tp_orig < *tp || (tp_orig == *tp && xd->mi[0]->mbmi.skip)); #endif assert(best_rdc.rate < INT_MAX); assert(best_rdc.dist < INT64_MAX); } else { assert(tp_orig == *tp); } } static void encode_rd_sb_row(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, int mi_row, TOKENEXTRA **tp) { AV1_COMMON *const cm = &cpi->common; const TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; SPEED_FEATURES *const sf = &cpi->sf; int mi_col; #if CONFIG_EXT_PARTITION const int leaf_nodes = 256; #else const int leaf_nodes = 64; #endif // CONFIG_EXT_PARTITION // Initialize the left context for the new SB row av1_zero_left_context(xd); #if CONFIG_DELTA_Q // Reset delta for every tile if (cm->delta_q_present_flag) if (mi_row == tile_info->mi_row_start) xd->prev_qindex = cm->base_qindex; #if CONFIG_EXT_DELTA_Q if (cm->delta_lf_present_flag) if (mi_row == tile_info->mi_row_start) xd->prev_delta_lf_from_base = 0; #endif #endif // Code each SB in the row for (mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end; mi_col += cm->mib_size) { const struct segmentation *const seg = &cm->seg; int dummy_rate; int64_t dummy_dist; RD_STATS dummy_rdc; #if CONFIG_SUPERTX int dummy_rate_nocoef; #endif // CONFIG_SUPERTX int i; int seg_skip = 0; const int idx_str = cm->mi_stride * mi_row + mi_col; MODE_INFO **mi = cm->mi_grid_visible + idx_str; PC_TREE *const pc_root = td->pc_root[cm->mib_size_log2 - MIN_MIB_SIZE_LOG2]; av1_update_boundary_info(cm, tile_info, mi_row, mi_col); if (sf->adaptive_pred_interp_filter) { for (i = 0; i < leaf_nodes; ++i) td->leaf_tree[i].pred_interp_filter = SWITCHABLE; for (i = 0; i < leaf_nodes; ++i) { td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE; td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE; td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE; td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE; } } av1_zero(x->pred_mv); pc_root->index = 0; if (seg->enabled) { const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; int segment_id = get_segment_id(cm, map, cm->sb_size, mi_row, mi_col); seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); } #if CONFIG_DELTA_Q if (cm->delta_q_present_flag) { // Test mode for delta quantization int sb_row = mi_row >> 3; int sb_col = mi_col >> 3; int sb_stride = (cm->width + MAX_SB_SIZE - 1) >> MAX_SB_SIZE_LOG2; int index = ((sb_row * sb_stride + sb_col + 8) & 31) - 16; // Ensure divisibility of delta_qindex by delta_q_res int offset_qindex = (index < 0 ? -index - 8 : index - 8); int qmask = ~(cm->delta_q_res - 1); int current_qindex = clamp(cm->base_qindex + offset_qindex, cm->delta_q_res, 256 - cm->delta_q_res); current_qindex = ((current_qindex - cm->base_qindex + cm->delta_q_res / 2) & qmask) + cm->base_qindex; assert(current_qindex > 0); xd->delta_qindex = current_qindex - cm->base_qindex; set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64); xd->mi[0]->mbmi.current_q_index = current_qindex; #if !CONFIG_EXT_DELTA_Q xd->mi[0]->mbmi.segment_id = 0; #endif // CONFIG_EXT_DELTA_Q av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id); #if CONFIG_EXT_DELTA_Q if (cpi->oxcf.deltaq_mode == DELTA_Q_LF) { int j, k; int lfmask = ~(cm->delta_lf_res - 1); int current_delta_lf_from_base = offset_qindex / 2; current_delta_lf_from_base = ((current_delta_lf_from_base + cm->delta_lf_res / 2) & lfmask); // pre-set the delta lf for loop filter. Note that this value is set // before mi is assigned for each block in current superblock for (j = 0; j < AOMMIN(cm->mib_size, cm->mi_rows - mi_row); j++) { for (k = 0; k < AOMMIN(cm->mib_size, cm->mi_cols - mi_col); k++) { cm->mi[(mi_row + j) * cm->mi_stride + (mi_col + k)] .mbmi.current_delta_lf_from_base = current_delta_lf_from_base; } } } #endif // CONFIG_EXT_DELTA_Q } #endif // CONFIG_DELTA_Q x->source_variance = UINT_MAX; if (sf->partition_search_type == FIXED_PARTITION || seg_skip) { BLOCK_SIZE bsize; set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size); bsize = seg_skip ? cm->sb_size : sf->always_this_block_size; set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size, &dummy_rate, &dummy_dist, #if CONFIG_SUPERTX &dummy_rate_nocoef, #endif // CONFIG_SUPERTX 1, pc_root); } else if (cpi->partition_search_skippable_frame) { BLOCK_SIZE bsize; set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size); bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col); set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size, &dummy_rate, &dummy_dist, #if CONFIG_SUPERTX &dummy_rate_nocoef, #endif // CONFIG_SUPERTX 1, pc_root); } else if (sf->partition_search_type == VAR_BASED_PARTITION) { choose_partitioning(cpi, td, tile_info, x, mi_row, mi_col); rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size, &dummy_rate, &dummy_dist, #if CONFIG_SUPERTX &dummy_rate_nocoef, #endif // CONFIG_SUPERTX 1, pc_root); } else { // If required set upper and lower partition size limits if (sf->auto_min_max_partition_size) { set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size); rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col, &x->min_partition_size, &x->max_partition_size); } rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, cm->sb_size, &dummy_rdc, #if CONFIG_SUPERTX &dummy_rate_nocoef, #endif // CONFIG_SUPERTX INT64_MAX, pc_root); } } #if CONFIG_SUBFRAME_PROB_UPDATE if (cm->do_subframe_update && cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { const int mi_rows_per_update = MI_SIZE * AOMMAX(cm->mi_rows / MI_SIZE / COEF_PROBS_BUFS, 1); if ((mi_row + MI_SIZE) % mi_rows_per_update == 0 && mi_row + MI_SIZE < cm->mi_rows && cm->coef_probs_update_idx < COEF_PROBS_BUFS - 1) { TX_SIZE t; SUBFRAME_STATS *subframe_stats = &cpi->subframe_stats; for (t = 0; t < TX_SIZES; ++t) av1_full_to_model_counts(cpi->td.counts->coef[t], cpi->td.rd_counts.coef_counts[t]); av1_partial_adapt_probs(cm, mi_row, mi_col); ++cm->coef_probs_update_idx; av1_copy(subframe_stats->coef_probs_buf[cm->coef_probs_update_idx], cm->fc->coef_probs); av1_copy(subframe_stats->coef_counts_buf[cm->coef_probs_update_idx], cpi->td.rd_counts.coef_counts); av1_copy(subframe_stats->eob_counts_buf[cm->coef_probs_update_idx], cm->counts.eob_branch); av1_fill_token_costs(x->token_costs, cm->fc->coef_probs); } } #endif // CONFIG_SUBFRAME_PROB_UPDATE } static void init_encode_frame_mb_context(AV1_COMP *cpi) { MACROBLOCK *const x = &cpi->td.mb; AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; // Copy data over into macro block data structures. av1_setup_src_planes(x, cpi->source, 0, 0); av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y); } #if !CONFIG_REF_ADAPT static int check_dual_ref_flags(AV1_COMP *cpi) { const int ref_flags = cpi->ref_frame_flags; if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) { return 0; } else { return (!!(ref_flags & AOM_GOLD_FLAG) + !!(ref_flags & AOM_LAST_FLAG) + #if CONFIG_EXT_REFS !!(ref_flags & AOM_LAST2_FLAG) + !!(ref_flags & AOM_LAST3_FLAG) + !!(ref_flags & AOM_BWD_FLAG) + #endif // CONFIG_EXT_REFS !!(ref_flags & AOM_ALT_FLAG)) >= 2; } } #endif // !CONFIG_REF_ADAPT #if !CONFIG_VAR_TX static void reset_skip_tx_size(AV1_COMMON *cm, TX_SIZE max_tx_size) { int mi_row, mi_col; const int mis = cm->mi_stride; MODE_INFO **mi_ptr = cm->mi_grid_visible; for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) { for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) { if (txsize_sqr_up_map[mi_ptr[mi_col]->mbmi.tx_size] > max_tx_size) mi_ptr[mi_col]->mbmi.tx_size = max_tx_size; } } } #endif static MV_REFERENCE_FRAME get_frame_type(const AV1_COMP *cpi) { if (frame_is_intra_only(&cpi->common)) return INTRA_FRAME; #if CONFIG_EXT_REFS // We will not update the golden frame with an internal overlay frame else if ((cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) || cpi->rc.is_src_frame_ext_arf) #else else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) #endif return ALTREF_FRAME; else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) return GOLDEN_FRAME; else // TODO(zoeliu): To investigate whether a frame_type other than // INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately. return LAST_FRAME; } static TX_MODE select_tx_mode(const AV1_COMP *cpi, MACROBLOCKD *const xd) { int i, all_lossless = 1; if (cpi->common.seg.enabled) { for (i = 0; i < MAX_SEGMENTS; ++i) { if (!xd->lossless[i]) { all_lossless = 0; break; } } } else { all_lossless = xd->lossless[0]; } if (all_lossless) return ONLY_4X4; if (cpi->sf.tx_size_search_method == USE_LARGESTALL) return ALLOW_32X32 + CONFIG_TX64X64; else if (cpi->sf.tx_size_search_method == USE_FULL_RD || cpi->sf.tx_size_search_method == USE_TX_8X8) return TX_MODE_SELECT; else return cpi->common.tx_mode; } void av1_init_tile_data(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; int tile_col, tile_row; TOKENEXTRA *pre_tok = cpi->tile_tok[0][0]; unsigned int tile_tok = 0; if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) { if (cpi->tile_data != NULL) aom_free(cpi->tile_data); CHECK_MEM_ERROR( cm, cpi->tile_data, aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data))); cpi->allocated_tiles = tile_cols * tile_rows; for (tile_row = 0; tile_row < tile_rows; ++tile_row) for (tile_col = 0; tile_col < tile_cols; ++tile_col) { TileDataEnc *const tile_data = &cpi->tile_data[tile_row * tile_cols + tile_col]; int i, j; for (i = 0; i < BLOCK_SIZES; ++i) { for (j = 0; j < MAX_MODES; ++j) { tile_data->thresh_freq_fact[i][j] = 32; tile_data->mode_map[i][j] = j; } } #if CONFIG_PVQ // This will be dynamically increased as more pvq block is encoded. tile_data->pvq_q.buf_len = 1000; CHECK_MEM_ERROR( cm, tile_data->pvq_q.buf, aom_malloc(tile_data->pvq_q.buf_len * sizeof(PVQ_INFO))); tile_data->pvq_q.curr_pos = 0; #endif } } for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { TileInfo *const tile_info = &cpi->tile_data[tile_row * tile_cols + tile_col].tile_info; av1_tile_init(tile_info, cm, tile_row, tile_col); cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok; pre_tok = cpi->tile_tok[tile_row][tile_col]; tile_tok = allocated_tokens(*tile_info); #if CONFIG_PVQ cpi->tile_data[tile_row * tile_cols + tile_col].pvq_q.curr_pos = 0; #endif } } } void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row, int tile_col) { AV1_COMMON *const cm = &cpi->common; TileDataEnc *const this_tile = &cpi->tile_data[tile_row * cm->tile_cols + tile_col]; const TileInfo *const tile_info = &this_tile->tile_info; TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col]; int mi_row; #if CONFIG_DEPENDENT_HORZTILES #if CONFIG_TILE_GROUPS if ((!cm->dependent_horz_tiles) || (tile_row == 0) || tile_info->tg_horz_boundary) { #else if ((!cm->dependent_horz_tiles) || (tile_row == 0)) { #endif av1_zero_above_context(cm, tile_info->mi_col_start, tile_info->mi_col_end); } #else av1_zero_above_context(cm, tile_info->mi_col_start, tile_info->mi_col_end); #endif // Set up pointers to per thread motion search counters. this_tile->m_search_count = 0; // Count of motion search hits. this_tile->ex_search_count = 0; // Exhaustive mesh search hits. td->mb.m_search_count_ptr = &this_tile->m_search_count; td->mb.ex_search_count_ptr = &this_tile->ex_search_count; #if CONFIG_PVQ td->mb.pvq_q = &this_tile->pvq_q; // TODO(yushin) : activity masking info needs be signaled by a bitstream td->mb.daala_enc.use_activity_masking = AV1_PVQ_ENABLE_ACTIVITY_MASKING; if (td->mb.daala_enc.use_activity_masking) td->mb.daala_enc.qm = OD_HVS_QM; // Hard coded. Enc/dec required to sync. else td->mb.daala_enc.qm = OD_FLAT_QM; // Hard coded. Enc/dec required to sync. { // FIXME: Multiple segments support int segment_id = 0; int rdmult = set_segment_rdmult(cpi, &td->mb, segment_id); int qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex); #if CONFIG_HIGHBITDEPTH const int quantizer_shift = td->mb.e_mbd.bd - 8; #else const int quantizer_shift = 0; #endif // CONFIG_HIGHBITDEPTH int64_t q_ac = OD_MAXI( 1, av1_ac_quant(qindex, 0, cpi->common.bit_depth) >> quantizer_shift); int64_t q_dc = OD_MAXI( 1, av1_dc_quant(qindex, 0, cpi->common.bit_depth) >> quantizer_shift); /* td->mb.daala_enc.pvq_norm_lambda = OD_PVQ_LAMBDA; */ td->mb.daala_enc.pvq_norm_lambda = (double)rdmult * (64 / 16) / (q_ac * q_ac * (1 << RDDIV_BITS)); td->mb.daala_enc.pvq_norm_lambda_dc = (double)rdmult * (64 / 16) / (q_dc * q_dc * (1 << RDDIV_BITS)); // printf("%f\n", td->mb.daala_enc.pvq_norm_lambda); } od_init_qm(td->mb.daala_enc.state.qm, td->mb.daala_enc.state.qm_inv, td->mb.daala_enc.qm == OD_HVS_QM ? OD_QM8_Q4_HVS : OD_QM8_Q4_FLAT); if (td->mb.daala_enc.use_activity_masking) { int pli; int use_masking = td->mb.daala_enc.use_activity_masking; int segment_id = 0; int qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex); for (pli = 0; pli < MAX_MB_PLANE; pli++) { int i; int q; q = qindex; if (q <= OD_DEFAULT_QMS[use_masking][0][pli].interp_q << OD_COEFF_SHIFT) { od_interp_qm(&td->mb.daala_enc.state.pvq_qm_q4[pli][0], q, &OD_DEFAULT_QMS[use_masking][0][pli], NULL); } else { i = 0; while (OD_DEFAULT_QMS[use_masking][i + 1][pli].qm_q4 != NULL && q > OD_DEFAULT_QMS[use_masking][i + 1][pli].interp_q << OD_COEFF_SHIFT) { i++; } od_interp_qm(&td->mb.daala_enc.state.pvq_qm_q4[pli][0], q, &OD_DEFAULT_QMS[use_masking][i][pli], &OD_DEFAULT_QMS[use_masking][i + 1][pli]); } } } #if CONFIG_DAALA_EC od_ec_enc_init(&td->mb.daala_enc.w.ec, 65025); #else #error "CONFIG_PVQ currently requires CONFIG_DAALA_EC." #endif #if CONFIG_DAALA_EC od_ec_enc_reset(&td->mb.daala_enc.w.ec); #else #error "CONFIG_PVQ currently requires CONFIG_DAALA_EC." #endif #endif // #if CONFIG_PVQ #if CONFIG_EC_ADAPT this_tile->tctx = *cm->fc; td->mb.e_mbd.tile_ctx = &this_tile->tctx; #endif // #if CONFIG_EC_ADAPT #if CONFIG_CFL MACROBLOCKD *const xd = &td->mb.e_mbd; xd->cfl = &this_tile->cfl; cfl_init(xd->cfl, cm, xd->plane[AOM_PLANE_U].subsampling_x, xd->plane[AOM_PLANE_U].subsampling_y); #endif #if CONFIG_PVQ td->mb.daala_enc.state.adapt = &this_tile->tctx.pvq_context; #endif // CONFIG_PVQ for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; mi_row += cm->mib_size) { encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok); } cpi->tok_count[tile_row][tile_col] = (unsigned int)(tok - cpi->tile_tok[tile_row][tile_col]); assert(cpi->tok_count[tile_row][tile_col] <= allocated_tokens(*tile_info)); #if CONFIG_PVQ #if CONFIG_DAALA_EC od_ec_enc_clear(&td->mb.daala_enc.w.ec); #else #error "CONFIG_PVQ currently requires CONFIG_DAALA_EC." #endif td->mb.pvq_q->last_pos = td->mb.pvq_q->curr_pos; // rewind current position so that bitstream can be written // from the 1st pvq block td->mb.pvq_q->curr_pos = 0; td->mb.pvq_q = NULL; #endif } static void encode_tiles(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; int tile_col, tile_row; av1_init_tile_data(cpi); for (tile_row = 0; tile_row < cm->tile_rows; ++tile_row) for (tile_col = 0; tile_col < cm->tile_cols; ++tile_col) av1_encode_tile(cpi, &cpi->td, tile_row, tile_col); } #if CONFIG_FP_MB_STATS static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats, AV1_COMMON *cm, uint8_t **this_frame_mb_stats) { uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start + cm->current_video_frame * cm->MBs * sizeof(uint8_t); if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF; *this_frame_mb_stats = mb_stats_in; return 1; } #endif #if CONFIG_GLOBAL_MOTION #define GLOBAL_TRANS_TYPES_ENC 3 // highest motion model to search static int gm_get_params_cost(WarpedMotionParams *gm, WarpedMotionParams *ref_gm, int allow_hp) { assert(gm->wmtype < GLOBAL_TRANS_TYPES); int params_cost = 0; int trans_bits, trans_prec_diff; switch (gm->wmtype) { case HOMOGRAPHY: case HORTRAPEZOID: case VERTRAPEZOID: if (gm->wmtype != HORTRAPEZOID) params_cost += aom_count_signed_primitive_refsubexpfin( GM_ROW3HOMO_MAX + 1, SUBEXPFIN_K, (ref_gm->wmmat[6] >> GM_ROW3HOMO_PREC_DIFF), (gm->wmmat[6] >> GM_ROW3HOMO_PREC_DIFF)); if (gm->wmtype != VERTRAPEZOID) params_cost += aom_count_signed_primitive_refsubexpfin( GM_ROW3HOMO_MAX + 1, SUBEXPFIN_K, (ref_gm->wmmat[7] >> GM_ROW3HOMO_PREC_DIFF), (gm->wmmat[7] >> GM_ROW3HOMO_PREC_DIFF)); // Fallthrough intended case AFFINE: case ROTZOOM: params_cost += aom_count_signed_primitive_refsubexpfin( GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS), (gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); if (gm->wmtype != VERTRAPEZOID) params_cost += aom_count_signed_primitive_refsubexpfin( GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_gm->wmmat[3] >> GM_ALPHA_PREC_DIFF), (gm->wmmat[3] >> GM_ALPHA_PREC_DIFF)); if (gm->wmtype >= AFFINE) { if (gm->wmtype != HORTRAPEZOID) params_cost += aom_count_signed_primitive_refsubexpfin( GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_gm->wmmat[4] >> GM_ALPHA_PREC_DIFF), (gm->wmmat[4] >> GM_ALPHA_PREC_DIFF)); params_cost += aom_count_signed_primitive_refsubexpfin( GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS), (gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); } // Fallthrough intended case TRANSLATION: trans_bits = (gm->wmtype == TRANSLATION) ? GM_ABS_TRANS_ONLY_BITS - !allow_hp : GM_ABS_TRANS_BITS; trans_prec_diff = (gm->wmtype == TRANSLATION) ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp : GM_TRANS_PREC_DIFF; params_cost += aom_count_signed_primitive_refsubexpfin( (1 << trans_bits) + 1, SUBEXPFIN_K, (ref_gm->wmmat[0] >> trans_prec_diff), (gm->wmmat[0] >> trans_prec_diff)); params_cost += aom_count_signed_primitive_refsubexpfin( (1 << trans_bits) + 1, SUBEXPFIN_K, (ref_gm->wmmat[1] >> trans_prec_diff), (gm->wmmat[1] >> trans_prec_diff)); // Fallthrough intended case IDENTITY: break; default: assert(0); } return (params_cost << AV1_PROB_COST_SHIFT); } #endif // CONFIG_GLOBAL_MOTION static void encode_frame_internal(AV1_COMP *cpi) { ThreadData *const td = &cpi->td; MACROBLOCK *const x = &td->mb; AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; RD_COUNTS *const rdc = &cpi->td.rd_counts; int i; #if CONFIG_TEMPMV_SIGNALING || CONFIG_EXT_REFS const int last_fb_buf_idx = get_ref_frame_buf_idx(cpi, LAST_FRAME); #endif // CONFIG_TEMPMV_SIGNALING || CONFIG_EXT_REFS #if CONFIG_ADAPT_SCAN av1_deliver_eob_threshold(cm, xd); #endif x->min_partition_size = AOMMIN(x->min_partition_size, cm->sb_size); x->max_partition_size = AOMMIN(x->max_partition_size, cm->sb_size); #if CONFIG_REF_MV cm->setup_mi(cm); #endif xd->mi = cm->mi_grid_visible; xd->mi[0] = cm->mi; av1_zero(*td->counts); av1_zero(rdc->coef_counts); av1_zero(rdc->comp_pred_diff); #if CONFIG_GLOBAL_MOTION av1_zero(rdc->global_motion_used); if (cpi->common.frame_type == INTER_FRAME && cpi->source && !cpi->global_motion_search_done) { YV12_BUFFER_CONFIG *ref_buf; int frame; double params_by_motion[RANSAC_NUM_MOTIONS * (MAX_PARAMDIM - 1)]; const double *params_this_motion; int inliers_by_motion[RANSAC_NUM_MOTIONS]; WarpedMotionParams tmp_wm_params; static const double kInfiniteErrAdv = 1e12; static const double kIdentityParams[MAX_PARAMDIM - 1] = { 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0 }; for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { ref_buf = get_ref_frame_buffer(cpi, frame); if (ref_buf) { TransformationType model; aom_clear_system_state(); for (model = ROTZOOM; model < GLOBAL_TRANS_TYPES_ENC; ++model) { double best_erroradvantage = kInfiniteErrAdv; // Initially set all params to identity. for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) { memcpy(params_by_motion + (MAX_PARAMDIM - 1) * i, kIdentityParams, (MAX_PARAMDIM - 1) * sizeof(*params_by_motion)); } compute_global_motion_feature_based( model, cpi->source, ref_buf, #if CONFIG_HIGHBITDEPTH cpi->common.bit_depth, #endif // CONFIG_HIGHBITDEPTH inliers_by_motion, params_by_motion, RANSAC_NUM_MOTIONS); for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) { if (inliers_by_motion[i] == 0) continue; params_this_motion = params_by_motion + (MAX_PARAMDIM - 1) * i; convert_model_to_params(params_this_motion, &tmp_wm_params); if (tmp_wm_params.wmtype != IDENTITY) { const double erroradv_this_motion = refine_integerized_param( &tmp_wm_params, tmp_wm_params.wmtype, #if CONFIG_HIGHBITDEPTH xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, #endif // CONFIG_HIGHBITDEPTH ref_buf->y_buffer, ref_buf->y_width, ref_buf->y_height, ref_buf->y_stride, cpi->source->y_buffer, cpi->source->y_width, cpi->source->y_height, cpi->source->y_stride, 3); if (erroradv_this_motion < best_erroradvantage) { best_erroradvantage = erroradv_this_motion; // Save the wm_params modified by refine_integerized_param() // rather than motion index to avoid rerunning refine() below. memcpy(&(cm->global_motion[frame]), &tmp_wm_params, sizeof(WarpedMotionParams)); } } } if (cm->global_motion[frame].wmtype <= AFFINE) if (!get_shear_params(&cm->global_motion[frame])) set_default_warp_params(&cm->global_motion[frame]); if (cm->global_motion[frame].wmtype == TRANSLATION) { cm->global_motion[frame].wmmat[0] = convert_to_trans_prec(cm->allow_high_precision_mv, cm->global_motion[frame].wmmat[0]) * GM_TRANS_ONLY_DECODE_FACTOR; cm->global_motion[frame].wmmat[1] = convert_to_trans_prec(cm->allow_high_precision_mv, cm->global_motion[frame].wmmat[1]) * GM_TRANS_ONLY_DECODE_FACTOR; } // If the best error advantage found doesn't meet the threshold for // this motion type, revert to IDENTITY. if (!is_enough_erroradvantage( best_erroradvantage, gm_get_params_cost(&cm->global_motion[frame], &cm->prev_frame->global_motion[frame], cm->allow_high_precision_mv))) { set_default_warp_params(&cm->global_motion[frame]); } if (cm->global_motion[frame].wmtype != IDENTITY) break; } aom_clear_system_state(); } cpi->gmparams_cost[frame] = gm_get_params_cost(&cm->global_motion[frame], &cm->prev_frame->global_motion[frame], cm->allow_high_precision_mv) + cpi->gmtype_cost[cm->global_motion[frame].wmtype] - cpi->gmtype_cost[IDENTITY]; } cpi->global_motion_search_done = 1; } memcpy(cm->cur_frame->global_motion, cm->global_motion, TOTAL_REFS_PER_FRAME * sizeof(WarpedMotionParams)); #endif // CONFIG_GLOBAL_MOTION for (i = 0; i < MAX_SEGMENTS; ++i) { const int qindex = cm->seg.enabled ? av1_get_qindex(&cm->seg, i, cm->base_qindex) : cm->base_qindex; xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; xd->qindex[i] = qindex; } if (!cm->seg.enabled && xd->lossless[0]) x->optimize = 0; cm->tx_mode = select_tx_mode(cpi, xd); #if CONFIG_DELTA_Q // Fix delta q resolution for the moment cm->delta_q_res = DEFAULT_DELTA_Q_RES; // Set delta_q_present_flag before it is used for the first time #if CONFIG_EXT_DELTA_Q cm->delta_lf_res = DEFAULT_DELTA_LF_RES; // update delta_q_present_flag and delta_lf_present_flag based on base_qindex cm->delta_q_present_flag &= cm->base_qindex > 0; cm->delta_lf_present_flag &= cm->base_qindex > 0; #else cm->delta_q_present_flag = cpi->oxcf.aq_mode == DELTA_AQ && cm->base_qindex > 0; #endif // CONFIG_EXT_DELTA_Q #endif av1_frame_init_quantizer(cpi); av1_initialize_rd_consts(cpi); av1_initialize_me_consts(cpi, x, cm->base_qindex); init_encode_frame_mb_context(cpi); #if CONFIG_TEMPMV_SIGNALING if (last_fb_buf_idx != INVALID_IDX) { cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_buf_idx]; cm->use_prev_frame_mvs &= !cm->error_resilient_mode && cm->width == cm->prev_frame->buf.y_width && cm->height == cm->prev_frame->buf.y_height && !cm->intra_only && !cm->prev_frame->intra_only; } #else cm->use_prev_frame_mvs = !cm->error_resilient_mode && cm->width == cm->last_width && cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame; #endif #if CONFIG_EXT_REFS // NOTE(zoeliu): As cm->prev_frame can take neither a frame of // show_exisiting_frame=1, nor can it take a frame not used as // a reference, it is probable that by the time it is being // referred to, the frame buffer it originally points to may // already get expired and have been reassigned to the current // newly coded frame. Hence, we need to check whether this is // the case, and if yes, we have 2 choices: // (1) Simply disable the use of previous frame mvs; or // (2) Have cm->prev_frame point to one reference frame buffer, // e.g. LAST_FRAME. if (cm->use_prev_frame_mvs && !enc_is_ref_frame_buf(cpi, cm->prev_frame)) { // Reassign the LAST_FRAME buffer to cm->prev_frame. cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_buf_idx]; } #endif // CONFIG_EXT_REFS // Special case: set prev_mi to NULL when the previous mode info // context cannot be used. cm->prev_mi = cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL; #if CONFIG_VAR_TX x->txb_split_count = 0; #if CONFIG_REF_MV av1_zero(x->blk_skip_drl); #endif #endif if (cpi->sf.partition_search_type == VAR_BASED_PARTITION && cpi->td.var_root[0] == NULL) av1_setup_var_tree(&cpi->common, &cpi->td); { struct aom_usec_timer emr_timer; aom_usec_timer_start(&emr_timer); #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm, &cpi->twopass.this_frame_mb_stats); } #endif // If allowed, encoding tiles in parallel with one thread handling one tile. // TODO(geza.lore): The multi-threaded encoder is not safe with more than // 1 tile rows, as it uses the single above_context et al arrays from // cpi->common if (AOMMIN(cpi->oxcf.max_threads, cm->tile_cols) > 1 && cm->tile_rows == 1) av1_encode_tiles_mt(cpi); else encode_tiles(cpi); aom_usec_timer_mark(&emr_timer); cpi->time_encode_sb_row += aom_usec_timer_elapsed(&emr_timer); } #if 0 // Keep record of the total distortion this time around for future use cpi->last_frame_distortion = cpi->frame_distortion; #endif } void av1_encode_frame(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; #if CONFIG_EXT_TX // Indicates whether or not to use a default reduced set for ext-tx // rather than the potential full set of 16 transforms cm->reduced_tx_set_used = 0; #endif // CONFIG_EXT_TX // In the longer term the encoder should be generalized to match the // decoder such that we allow compound where one of the 3 buffers has a // different sign bias and that buffer is then the fixed ref. However, this // requires further work in the rd loop. For now the only supported encoder // side behavior is where the ALT ref buffer has opposite sign bias to // the other two. if (!frame_is_intra_only(cm)) { #if CONFIG_LOWDELAY_COMPOUND // Normative in encoder cpi->allow_comp_inter_inter = 1; #if CONFIG_EXT_REFS cm->comp_fwd_ref[0] = LAST_FRAME; cm->comp_fwd_ref[1] = LAST2_FRAME; cm->comp_fwd_ref[2] = LAST3_FRAME; cm->comp_fwd_ref[3] = GOLDEN_FRAME; cm->comp_bwd_ref[0] = BWDREF_FRAME; cm->comp_bwd_ref[1] = ALTREF_FRAME; #else cm->comp_fixed_ref = ALTREF_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = GOLDEN_FRAME; #endif // CONFIG_EXT_REFS #else if ((cm->ref_frame_sign_bias[ALTREF_FRAME] == cm->ref_frame_sign_bias[GOLDEN_FRAME]) || (cm->ref_frame_sign_bias[ALTREF_FRAME] == cm->ref_frame_sign_bias[LAST_FRAME])) { cpi->allow_comp_inter_inter = 0; } else { cpi->allow_comp_inter_inter = 1; #if CONFIG_EXT_REFS cm->comp_fwd_ref[0] = LAST_FRAME; cm->comp_fwd_ref[1] = LAST2_FRAME; cm->comp_fwd_ref[2] = LAST3_FRAME; cm->comp_fwd_ref[3] = GOLDEN_FRAME; cm->comp_bwd_ref[0] = BWDREF_FRAME; cm->comp_bwd_ref[1] = ALTREF_FRAME; #else cm->comp_fixed_ref = ALTREF_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = GOLDEN_FRAME; #endif // CONFIG_EXT_REFS } #endif } else { cpi->allow_comp_inter_inter = 0; } if (cpi->sf.frame_parameter_update) { int i; RD_OPT *const rd_opt = &cpi->rd; FRAME_COUNTS *counts = cpi->td.counts; RD_COUNTS *const rdc = &cpi->td.rd_counts; // This code does a single RD pass over the whole frame assuming // either compound, single or hybrid prediction as per whatever has // worked best for that type of frame in the past. // It also predicts whether another coding mode would have worked // better than this coding mode. If that is the case, it remembers // that for subsequent frames. // It does the same analysis for transform size selection also. // // TODO(zoeliu): To investigate whether a frame_type other than // INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately. const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi); int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type]; const int is_alt_ref = frame_type == ALTREF_FRAME; /* prediction (compound, single or hybrid) mode selection */ #if CONFIG_REF_ADAPT // NOTE(zoeliu): "is_alt_ref" is true only for OVERLAY/INTNL_OVERLAY frames if (is_alt_ref || !cpi->allow_comp_inter_inter) cm->reference_mode = SINGLE_REFERENCE; else cm->reference_mode = REFERENCE_MODE_SELECT; #else if (is_alt_ref || !cpi->allow_comp_inter_inter) cm->reference_mode = SINGLE_REFERENCE; else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] && mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] && check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100) cm->reference_mode = COMPOUND_REFERENCE; else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT]) cm->reference_mode = SINGLE_REFERENCE; else cm->reference_mode = REFERENCE_MODE_SELECT; #endif // CONFIG_REF_ADAPT #if CONFIG_DUAL_FILTER cm->interp_filter = SWITCHABLE; #endif encode_frame_internal(cpi); for (i = 0; i < REFERENCE_MODES; ++i) mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2; if (cm->reference_mode == REFERENCE_MODE_SELECT) { int single_count_zero = 0; int comp_count_zero = 0; for (i = 0; i < COMP_INTER_CONTEXTS; i++) { single_count_zero += counts->comp_inter[i][0]; comp_count_zero += counts->comp_inter[i][1]; } if (comp_count_zero == 0) { cm->reference_mode = SINGLE_REFERENCE; av1_zero(counts->comp_inter); #if !CONFIG_REF_ADAPT } else if (single_count_zero == 0) { cm->reference_mode = COMPOUND_REFERENCE; av1_zero(counts->comp_inter); #endif // !CONFIG_REF_ADAPT } } #if CONFIG_VAR_TX if (cm->tx_mode == TX_MODE_SELECT && cpi->td.mb.txb_split_count == 0) cm->tx_mode = ALLOW_32X32 + CONFIG_TX64X64; #else if (cm->tx_mode == TX_MODE_SELECT) { #if CONFIG_TX64X64 int count4x4 = 0; int count8x8_8x8p = 0, count8x8_lp = 0; int count16x16_16x16p = 0, count16x16_lp = 0; int count32x32_32x32p = 0, count32x32_lp = 0; int count64x64_64x64p = 0; for (i = 0; i < TX_SIZE_CONTEXTS; ++i) { // counts->tx_size[max_depth][context_idx][this_depth_level] count4x4 += counts->tx_size[0][i][0]; count4x4 += counts->tx_size[1][i][0]; count4x4 += counts->tx_size[2][i][0]; count4x4 += counts->tx_size[3][i][0]; count8x8_8x8p += counts->tx_size[0][i][1]; count8x8_lp += counts->tx_size[1][i][1]; count8x8_lp += counts->tx_size[2][i][1]; count8x8_lp += counts->tx_size[3][i][1]; count16x16_16x16p += counts->tx_size[1][i][2]; count16x16_lp += counts->tx_size[2][i][2]; count16x16_lp += counts->tx_size[3][i][2]; count32x32_32x32p += counts->tx_size[2][i][3]; count32x32_lp += counts->tx_size[3][i][3]; count64x64_64x64p += counts->tx_size[3][i][4]; } #if CONFIG_EXT_TX && CONFIG_RECT_TX count4x4 += counts->tx_size_implied[0][TX_4X4]; count4x4 += counts->tx_size_implied[1][TX_4X4]; count4x4 += counts->tx_size_implied[2][TX_4X4]; count4x4 += counts->tx_size_implied[3][TX_4X4]; count8x8_8x8p += counts->tx_size_implied[1][TX_8X8]; count8x8_lp += counts->tx_size_implied[2][TX_8X8]; count8x8_lp += counts->tx_size_implied[3][TX_8X8]; count8x8_lp += counts->tx_size_implied[4][TX_8X8]; count16x16_16x16p += counts->tx_size_implied[2][TX_16X16]; count16x16_lp += counts->tx_size_implied[3][TX_16X16]; count16x16_lp += counts->tx_size_implied[4][TX_16X16]; count32x32_32x32p += counts->tx_size_implied[3][TX_32X32]; count32x32_lp += counts->tx_size_implied[4][TX_32X32]; count64x64_64x64p += counts->tx_size_implied[4][TX_64X64]; #endif // CONFIG_EXT_TX && CONFIG_RECT_TX if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 && count32x32_lp == 0 && count32x32_32x32p == 0 && #if CONFIG_SUPERTX cm->counts.supertx_size[TX_16X16] == 0 && cm->counts.supertx_size[TX_32X32] == 0 && cm->counts.supertx_size[TX_64X64] == 0 && #endif count64x64_64x64p == 0) { cm->tx_mode = ALLOW_8X8; reset_skip_tx_size(cm, TX_8X8); } else if (count8x8_8x8p == 0 && count8x8_lp == 0 && count16x16_16x16p == 0 && count16x16_lp == 0 && count32x32_32x32p == 0 && count32x32_lp == 0 && #if CONFIG_SUPERTX cm->counts.supertx_size[TX_8X8] == 0 && cm->counts.supertx_size[TX_16X16] == 0 && cm->counts.supertx_size[TX_32X32] == 0 && cm->counts.supertx_size[TX_64X64] == 0 && #endif count64x64_64x64p == 0) { cm->tx_mode = ONLY_4X4; reset_skip_tx_size(cm, TX_4X4); } else if (count4x4 == 0 && count8x8_lp == 0 && count16x16_lp == 0 && count32x32_lp == 0) { cm->tx_mode = ALLOW_64X64; } else if (count4x4 == 0 && count8x8_lp == 0 && count16x16_lp == 0 && #if CONFIG_SUPERTX cm->counts.supertx_size[TX_64X64] == 0 && #endif count64x64_64x64p == 0) { cm->tx_mode = ALLOW_32X32; reset_skip_tx_size(cm, TX_32X32); } else if (count4x4 == 0 && count8x8_lp == 0 && count32x32_lp == 0 && count32x32_32x32p == 0 && #if CONFIG_SUPERTX cm->counts.supertx_size[TX_32X32] == 0 && cm->counts.supertx_size[TX_64X64] == 0 && #endif count64x64_64x64p == 0) { cm->tx_mode = ALLOW_16X16; reset_skip_tx_size(cm, TX_16X16); } #else // CONFIG_TX64X64 int count4x4 = 0; int count8x8_lp = 0, count8x8_8x8p = 0; int count16x16_16x16p = 0, count16x16_lp = 0; int count32x32 = 0; for (i = 0; i < TX_SIZE_CONTEXTS; ++i) { // counts->tx_size[max_depth][context_idx][this_depth_level] count4x4 += counts->tx_size[0][i][0]; count4x4 += counts->tx_size[1][i][0]; count4x4 += counts->tx_size[2][i][0]; count8x8_8x8p += counts->tx_size[0][i][1]; count8x8_lp += counts->tx_size[1][i][1]; count8x8_lp += counts->tx_size[2][i][1]; count16x16_16x16p += counts->tx_size[1][i][2]; count16x16_lp += counts->tx_size[2][i][2]; count32x32 += counts->tx_size[2][i][3]; } #if CONFIG_EXT_TX && CONFIG_RECT_TX count4x4 += counts->tx_size_implied[0][TX_4X4]; count4x4 += counts->tx_size_implied[1][TX_4X4]; count4x4 += counts->tx_size_implied[2][TX_4X4]; count4x4 += counts->tx_size_implied[3][TX_4X4]; count8x8_8x8p += counts->tx_size_implied[1][TX_8X8]; count8x8_lp += counts->tx_size_implied[2][TX_8X8]; count8x8_lp += counts->tx_size_implied[3][TX_8X8]; count16x16_lp += counts->tx_size_implied[3][TX_16X16]; count16x16_16x16p += counts->tx_size_implied[2][TX_16X16]; count32x32 += counts->tx_size_implied[3][TX_32X32]; #endif // CONFIG_EXT_TX && CONFIG_RECT_TX if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 && #if CONFIG_SUPERTX cm->counts.supertx_size[TX_16X16] == 0 && cm->counts.supertx_size[TX_32X32] == 0 && #endif // CONFIG_SUPERTX count32x32 == 0) { cm->tx_mode = ALLOW_8X8; reset_skip_tx_size(cm, TX_8X8); } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 && count8x8_lp == 0 && count16x16_lp == 0 && #if CONFIG_SUPERTX cm->counts.supertx_size[TX_8X8] == 0 && cm->counts.supertx_size[TX_16X16] == 0 && cm->counts.supertx_size[TX_32X32] == 0 && #endif // CONFIG_SUPERTX count32x32 == 0) { cm->tx_mode = ONLY_4X4; reset_skip_tx_size(cm, TX_4X4); } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) { cm->tx_mode = ALLOW_32X32; } else if (count32x32 == 0 && count8x8_lp == 0 && #if CONFIG_SUPERTX cm->counts.supertx_size[TX_32X32] == 0 && #endif // CONFIG_SUPERTX count4x4 == 0) { cm->tx_mode = ALLOW_16X16; reset_skip_tx_size(cm, TX_16X16); } #endif // CONFIG_TX64X64 } #endif } else { encode_frame_internal(cpi); } } static void sum_intra_stats(FRAME_COUNTS *counts, MACROBLOCKD *xd, const MODE_INFO *mi, const MODE_INFO *above_mi, const MODE_INFO *left_mi, const int intraonly, const int mi_row, const int mi_col) { const MB_MODE_INFO *const mbmi = &mi->mbmi; const PREDICTION_MODE y_mode = mbmi->mode; const PREDICTION_MODE uv_mode = mbmi->uv_mode; const BLOCK_SIZE bsize = mbmi->sb_type; const int unify_bsize = CONFIG_CB4X4; if (bsize < BLOCK_8X8 && !unify_bsize) { int idx, idy; const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; for (idy = 0; idy < 2; idy += num_4x4_h) for (idx = 0; idx < 2; idx += num_4x4_w) { const int bidx = idy * 2 + idx; const PREDICTION_MODE bmode = mi->bmi[bidx].as_mode; if (intraonly) { const PREDICTION_MODE a = av1_above_block_mode(mi, above_mi, bidx); const PREDICTION_MODE l = av1_left_block_mode(mi, left_mi, bidx); ++counts->kf_y_mode[a][l][bmode]; } else { ++counts->y_mode[0][bmode]; } } } else { if (intraonly) { const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, 0); const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, 0); ++counts->kf_y_mode[above][left][y_mode]; } else { ++counts->y_mode[size_group_lookup[bsize]][y_mode]; } #if CONFIG_FILTER_INTRA if (mbmi->mode == DC_PRED #if CONFIG_PALETTE && mbmi->palette_mode_info.palette_size[0] == 0 #endif // CONFIG_PALETTE ) { const int use_filter_intra_mode = mbmi->filter_intra_mode_info.use_filter_intra_mode[0]; ++counts->filter_intra[0][use_filter_intra_mode]; } if (mbmi->uv_mode == DC_PRED #if CONFIG_PALETTE && mbmi->palette_mode_info.palette_size[1] == 0 #endif // CONFIG_PALETTE ) { const int use_filter_intra_mode = mbmi->filter_intra_mode_info.use_filter_intra_mode[1]; ++counts->filter_intra[1][use_filter_intra_mode]; } #endif // CONFIG_FILTER_INTRA #if CONFIG_EXT_INTRA && CONFIG_INTRA_INTERP if (av1_is_directional_mode(mbmi->mode, bsize)) { const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd); const int p_angle = mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP; if (av1_is_intra_filter_switchable(p_angle)) ++counts->intra_filter[intra_filter_ctx][mbmi->intra_filter]; } #endif // CONFIG_INTRA_INTERP && CONFIG_INTRA_INTERP } #if CONFIG_CB4X4 if (!is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y)) return; #else (void)mi_row; (void)mi_col; (void)xd; #endif ++counts->uv_mode[y_mode][uv_mode]; } #if CONFIG_VAR_TX static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd, FRAME_COUNTS *counts, TX_SIZE tx_size, int depth, int blk_row, int blk_col) { MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; const int tx_row = blk_row >> 1; const int tx_col = blk_col >> 1; const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0); const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0); int ctx = txfm_partition_context(xd->above_txfm_context + tx_col, xd->left_txfm_context + tx_row, mbmi->sb_type, tx_size); const TX_SIZE plane_tx_size = mbmi->inter_tx_size[tx_row][tx_col]; if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; if (tx_size == plane_tx_size) { ++counts->txfm_partition[ctx][0]; mbmi->tx_size = tx_size; txfm_partition_update(xd->above_txfm_context + tx_col, xd->left_txfm_context + tx_row, tx_size, tx_size); } else { const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; const int bs = tx_size_wide_unit[sub_txs]; int i; ++counts->txfm_partition[ctx][1]; ++x->txb_split_count; if (tx_size == TX_8X8) { mbmi->inter_tx_size[tx_row][tx_col] = TX_4X4; mbmi->tx_size = TX_4X4; txfm_partition_update(xd->above_txfm_context + tx_col, xd->left_txfm_context + tx_row, TX_4X4, tx_size); return; } for (i = 0; i < 4; ++i) { int offsetr = (i >> 1) * bs; int offsetc = (i & 0x01) * bs; update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr, blk_col + offsetc); } } } static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE plane_bsize, int mi_row, int mi_col, FRAME_COUNTS *td_counts) { MACROBLOCKD *xd = &x->e_mbd; const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0]; TX_SIZE max_tx_size = get_vartx_max_txsize(&xd->mi[0]->mbmi, plane_bsize); const int bh = tx_size_high_unit[max_tx_size]; const int bw = tx_size_wide_unit[max_tx_size]; int idx, idy; xd->above_txfm_context = cm->above_txfm_context + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); for (idy = 0; idy < mi_height; idy += bh) for (idx = 0; idx < mi_width; idx += bw) update_txfm_count(x, xd, td_counts, max_tx_size, mi_width != mi_height, idy, idx); } static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row, int blk_col) { MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; const int tx_row = blk_row >> 1; const int tx_col = blk_col >> 1; const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0); const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0); const TX_SIZE plane_tx_size = mbmi->inter_tx_size[tx_row][tx_col]; if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; if (tx_size == plane_tx_size) { mbmi->tx_size = tx_size; txfm_partition_update(xd->above_txfm_context + tx_col, xd->left_txfm_context + tx_row, tx_size, tx_size); } else { const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; const int bsl = tx_size_wide_unit[sub_txs]; int i; if (tx_size == TX_8X8) { mbmi->inter_tx_size[tx_row][tx_col] = TX_4X4; mbmi->tx_size = TX_4X4; txfm_partition_update(xd->above_txfm_context + tx_col, xd->left_txfm_context + tx_row, TX_4X4, tx_size); return; } assert(bsl > 0); for (i = 0; i < 4; ++i) { int offsetr = (i >> 1) * bsl; int offsetc = (i & 0x01) * bsl; set_txfm_context(xd, sub_txs, blk_row + offsetr, blk_col + offsetc); } } } static void tx_partition_set_contexts(const AV1_COMMON *const cm, MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, int mi_row, int mi_col) { const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0]; TX_SIZE max_tx_size = get_vartx_max_txsize(&xd->mi[0]->mbmi, plane_bsize); const int bh = tx_size_high_unit[max_tx_size]; const int bw = tx_size_wide_unit[max_tx_size]; int idx, idy; xd->above_txfm_context = cm->above_txfm_context + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); for (idy = 0; idy < mi_height; idy += bh) for (idx = 0; idx < mi_width; idx += bw) set_txfm_context(xd, max_tx_size, idy, idx); } #endif void av1_update_tx_type_count(const AV1_COMMON *cm, MACROBLOCKD *xd, #if CONFIG_TXK_SEL int block, int plane, #endif BLOCK_SIZE bsize, TX_SIZE tx_size, FRAME_COUNTS *counts) { MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; int is_inter = is_inter_block(mbmi); #if !CONFIG_TXK_SEL TX_TYPE tx_type = mbmi->tx_type; #else // Only y plane's tx_type is updated if (plane > 0) return; TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, tx_size); #endif #if CONFIG_EXT_TX if (get_ext_tx_types(tx_size, bsize, is_inter, cm->reduced_tx_set_used) > 1 && cm->base_qindex > 0 && !mbmi->skip && !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { const int eset = get_ext_tx_set(tx_size, bsize, is_inter, cm->reduced_tx_set_used); if (eset > 0) { if (is_inter) { ++counts->inter_ext_tx[eset][txsize_sqr_map[tx_size]][tx_type]; } else { ++counts->intra_ext_tx[eset][txsize_sqr_map[tx_size]][mbmi->mode] [tx_type]; } } } #else (void)bsize; if (tx_size < TX_32X32 && ((!cm->seg.enabled && cm->base_qindex > 0) || (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && !mbmi->skip && !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { if (is_inter) { ++counts->inter_ext_tx[tx_size][tx_type]; } else { ++counts->intra_ext_tx[tx_size][intra_mode_to_tx_type_context[mbmi->mode]] [tx_type]; } } #endif // CONFIG_EXT_TX } static void encode_superblock(const AV1_COMP *const cpi, ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run, int mi_row, int mi_col, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int *rate) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO **mi_8x8 = xd->mi; MODE_INFO *mi = mi_8x8[0]; MB_MODE_INFO *mbmi = &mi->mbmi; const int seg_skip = segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); const int mis = cm->mi_stride; const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; const int is_inter = is_inter_block(mbmi); #if CONFIG_CB4X4 const BLOCK_SIZE block_size = bsize; #else const BLOCK_SIZE block_size = AOMMAX(bsize, BLOCK_8X8); #endif #if CONFIG_PVQ x->pvq_speed = 0; x->pvq_coded = (dry_run == OUTPUT_ENABLED) ? 1 : 0; #endif #if CONFIG_CFL x->cfl_store_y = (dry_run == OUTPUT_ENABLED) ? 1 : 0; #endif if (!is_inter) { int plane; mbmi->skip = 1; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { av1_encode_intra_block_plane((AV1_COMMON *)cm, x, block_size, plane, 1, mi_row, mi_col); } if (!dry_run) { sum_intra_stats(td->counts, xd, mi, xd->above_mi, xd->left_mi, frame_is_intra_only(cm), mi_row, mi_col); } #if CONFIG_PALETTE if (bsize >= BLOCK_8X8 && !dry_run) { for (plane = 0; plane <= 1; ++plane) { if (mbmi->palette_mode_info.palette_size[plane] > 0) { mbmi->palette_mode_info.palette_first_color_idx[plane] = xd->plane[plane].color_index_map[0]; // TODO(huisu): this increases the use of token buffer. Needs stretch // test to verify. av1_tokenize_palette_sb(cpi, td, plane, t, dry_run, bsize, rate); } } } #endif // CONFIG_PALETTE #if CONFIG_VAR_TX mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size); #endif #if CONFIG_LV_MAP av1_update_txb_context(cpi, td, dry_run, block_size, rate, mi_row, mi_col); #else // CONFIG_LV_MAP av1_tokenize_sb(cpi, td, t, dry_run, block_size, rate, mi_row, mi_col); #endif // CONFIG_LV_MAP } else { int ref; const int is_compound = has_second_ref(mbmi); set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); for (ref = 0; ref < 1 + is_compound; ++ref) { YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]); #if CONFIG_INTRABC assert(IMPLIES(!is_intrabc_block(mbmi), cfg)); #else assert(cfg != NULL); #endif // !CONFIG_INTRABC av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, &xd->block_refs[ref]->sf); } if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip) av1_build_inter_predictors_sby(xd, mi_row, mi_col, NULL, block_size); av1_build_inter_predictors_sbuv(xd, mi_row, mi_col, NULL, block_size); #if CONFIG_MOTION_VAR if (mbmi->motion_mode == OBMC_CAUSAL) { #if CONFIG_NCOBMC if (dry_run == OUTPUT_ENABLED) av1_build_ncobmc_inter_predictors_sb(cm, xd, mi_row, mi_col); else #endif av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); } #endif // CONFIG_MOTION_VAR av1_encode_sb((AV1_COMMON *)cm, x, block_size, mi_row, mi_col); #if CONFIG_VAR_TX if (mbmi->skip) mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size); av1_tokenize_sb_vartx(cpi, td, t, dry_run, mi_row, mi_col, block_size, rate); #else #if CONFIG_LV_MAP av1_update_txb_context(cpi, td, dry_run, block_size, rate, mi_row, mi_col); #else // CONFIG_LV_MAP av1_tokenize_sb(cpi, td, t, dry_run, block_size, rate, mi_row, mi_col); #endif // CONFIG_LV_MAP #endif } if (!dry_run) { #if CONFIG_VAR_TX TX_SIZE tx_size = is_inter && !mbmi->skip ? mbmi->min_tx_size : mbmi->tx_size; #else TX_SIZE tx_size = mbmi->tx_size; #endif if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id] && #if CONFIG_CB4X4 && (CONFIG_VAR_TX || CONFIG_EXT_TX) && CONFIG_RECT_TX mbmi->sb_type > BLOCK_4X4 && #else mbmi->sb_type >= BLOCK_8X8 && #endif !(is_inter && (mbmi->skip || seg_skip))) { #if CONFIG_VAR_TX if (is_inter) { tx_partition_count_update(cm, x, bsize, mi_row, mi_col, td->counts); } else { const int tx_size_ctx = get_tx_size_context(xd); const int tx_size_cat = is_inter ? inter_tx_size_cat_lookup[bsize] : intra_tx_size_cat_lookup[bsize]; const TX_SIZE coded_tx_size = txsize_sqr_up_map[tx_size]; const int depth = tx_size_to_depth(coded_tx_size); ++td->counts->tx_size[tx_size_cat][tx_size_ctx][depth]; if (tx_size != max_txsize_lookup[bsize]) ++x->txb_split_count; } #else const int tx_size_ctx = get_tx_size_context(xd); const int tx_size_cat = is_inter ? inter_tx_size_cat_lookup[bsize] : intra_tx_size_cat_lookup[bsize]; const TX_SIZE coded_tx_size = txsize_sqr_up_map[tx_size]; const int depth = tx_size_to_depth(coded_tx_size); ++td->counts->tx_size[tx_size_cat][tx_size_ctx][depth]; #endif #if CONFIG_EXT_TX && CONFIG_RECT_TX assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi))); #endif // CONFIG_EXT_TX && CONFIG_RECT_TX } else { int i, j; TX_SIZE intra_tx_size; // The new intra coding scheme requires no change of transform size if (is_inter) { if (xd->lossless[mbmi->segment_id]) { intra_tx_size = TX_4X4; } else { intra_tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, 1); } } else { #if CONFIG_EXT_TX && CONFIG_RECT_TX intra_tx_size = tx_size; #else intra_tx_size = (bsize >= BLOCK_8X8) ? tx_size : TX_4X4; #endif // CONFIG_EXT_TX && CONFIG_RECT_TX } #if CONFIG_EXT_TX && CONFIG_RECT_TX ++td->counts->tx_size_implied[max_txsize_lookup[bsize]] [txsize_sqr_up_map[tx_size]]; #endif // CONFIG_EXT_TX && CONFIG_RECT_TX for (j = 0; j < mi_height; j++) for (i = 0; i < mi_width; i++) if (mi_col + i < cm->mi_cols && mi_row + j < cm->mi_rows) mi_8x8[mis * j + i]->mbmi.tx_size = intra_tx_size; #if CONFIG_VAR_TX mbmi->min_tx_size = get_min_tx_size(intra_tx_size); if (intra_tx_size != max_txsize_lookup[bsize]) ++x->txb_split_count; #endif } ++td->counts->tx_size_totals[txsize_sqr_map[tx_size]]; ++td->counts ->tx_size_totals[txsize_sqr_map[get_uv_tx_size(mbmi, &xd->plane[1])]]; #if !CONFIG_TXK_SEL av1_update_tx_type_count(cm, xd, bsize, tx_size, td->counts); #endif } #if CONFIG_VAR_TX if (cm->tx_mode == TX_MODE_SELECT && #if CONFIG_CB4X4 mbmi->sb_type > BLOCK_4X4 && #else mbmi->sb_type >= BLOCK_8X8 && #endif is_inter && !(mbmi->skip || seg_skip)) { if (dry_run) tx_partition_set_contexts(cm, xd, bsize, mi_row, mi_col); } else { TX_SIZE tx_size = mbmi->tx_size; // The new intra coding scheme requires no change of transform size if (is_inter) tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, is_inter); else tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4; mbmi->tx_size = tx_size; set_txfm_ctxs(tx_size, xd->n8_w, xd->n8_h, (mbmi->skip || seg_skip), xd); } #endif // CONFIG_VAR_TX } #if CONFIG_SUPERTX static int check_intra_b(PICK_MODE_CONTEXT *ctx) { if (!is_inter_mode((&ctx->mic)->mbmi.mode)) return 1; #if CONFIG_EXT_INTER if (ctx->mic.mbmi.ref_frame[1] == INTRA_FRAME) return 1; #endif // CONFIG_EXT_INTER return 0; } static int check_intra_sb(const AV1_COMP *const cpi, const TileInfo *const tile, int mi_row, int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) { const AV1_COMMON *const cm = &cpi->common; const int hbs = mi_size_wide[bsize] / 2; const PARTITION_TYPE partition = pc_tree->partitioning; const BLOCK_SIZE subsize = get_subsize(bsize, partition); #if CONFIG_EXT_PARTITION_TYPES int i; #endif #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; #endif #if !CONFIG_CB4X4 assert(bsize >= BLOCK_8X8); #endif if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return 1; switch (partition) { case PARTITION_NONE: return check_intra_b(&pc_tree->none); break; case PARTITION_VERT: if (check_intra_b(&pc_tree->vertical[0])) return 1; if (mi_col + hbs < cm->mi_cols && (bsize > BLOCK_8X8 || unify_bsize)) { if (check_intra_b(&pc_tree->vertical[1])) return 1; } break; case PARTITION_HORZ: if (check_intra_b(&pc_tree->horizontal[0])) return 1; if (mi_row + hbs < cm->mi_rows && (bsize > BLOCK_8X8 || unify_bsize)) { if (check_intra_b(&pc_tree->horizontal[1])) return 1; } break; case PARTITION_SPLIT: if (bsize == BLOCK_8X8 && !unify_bsize) { if (check_intra_b(pc_tree->leaf_split[0])) return 1; } else { if (check_intra_sb(cpi, tile, mi_row, mi_col, subsize, pc_tree->split[0])) return 1; if (check_intra_sb(cpi, tile, mi_row, mi_col + hbs, subsize, pc_tree->split[1])) return 1; if (check_intra_sb(cpi, tile, mi_row + hbs, mi_col, subsize, pc_tree->split[2])) return 1; if (check_intra_sb(cpi, tile, mi_row + hbs, mi_col + hbs, subsize, pc_tree->split[3])) return 1; } break; #if CONFIG_EXT_PARTITION_TYPES case PARTITION_HORZ_A: for (i = 0; i < 3; i++) { if (check_intra_b(&pc_tree->horizontala[i])) return 1; } break; case PARTITION_HORZ_B: for (i = 0; i < 3; i++) { if (check_intra_b(&pc_tree->horizontalb[i])) return 1; } break; case PARTITION_VERT_A: for (i = 0; i < 3; i++) { if (check_intra_b(&pc_tree->verticala[i])) return 1; } break; case PARTITION_VERT_B: for (i = 0; i < 3; i++) { if (check_intra_b(&pc_tree->verticalb[i])) return 1; } break; #endif // CONFIG_EXT_PARTITION_TYPES default: assert(0); } return 0; } static int check_supertx_b(TX_SIZE supertx_size, PICK_MODE_CONTEXT *ctx) { return ctx->mic.mbmi.tx_size == supertx_size; } static int check_supertx_sb(BLOCK_SIZE bsize, TX_SIZE supertx_size, PC_TREE *pc_tree) { PARTITION_TYPE partition; BLOCK_SIZE subsize; #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; #endif partition = pc_tree->partitioning; subsize = get_subsize(bsize, partition); switch (partition) { case PARTITION_NONE: return check_supertx_b(supertx_size, &pc_tree->none); case PARTITION_VERT: return check_supertx_b(supertx_size, &pc_tree->vertical[0]); case PARTITION_HORZ: return check_supertx_b(supertx_size, &pc_tree->horizontal[0]); case PARTITION_SPLIT: if (bsize == BLOCK_8X8 && !unify_bsize) return check_supertx_b(supertx_size, pc_tree->leaf_split[0]); else return check_supertx_sb(subsize, supertx_size, pc_tree->split[0]); #if CONFIG_EXT_PARTITION_TYPES case PARTITION_HORZ_A: return check_supertx_b(supertx_size, &pc_tree->horizontala[0]); case PARTITION_HORZ_B: return check_supertx_b(supertx_size, &pc_tree->horizontalb[0]); case PARTITION_VERT_A: return check_supertx_b(supertx_size, &pc_tree->verticala[0]); case PARTITION_VERT_B: return check_supertx_b(supertx_size, &pc_tree->verticalb[0]); #endif // CONFIG_EXT_PARTITION_TYPES default: assert(0); return 0; } } static void predict_superblock(const AV1_COMP *const cpi, ThreadData *td, #if CONFIG_EXT_INTER int mi_row_ori, int mi_col_ori, #endif // CONFIG_EXT_INTER int mi_row_pred, int mi_col_pred, BLOCK_SIZE bsize_pred, int b_sub8x8, int block) { // Used in supertx // (mi_row_ori, mi_col_ori): location for mv // (mi_row_pred, mi_col_pred, bsize_pred): region to predict const AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *mi_8x8 = xd->mi[0]; MODE_INFO *mi = mi_8x8; MB_MODE_INFO *mbmi = &mi->mbmi; int ref; const int is_compound = has_second_ref(mbmi); set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); for (ref = 0; ref < 1 + is_compound; ++ref) { YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]); av1_setup_pre_planes(xd, ref, cfg, mi_row_pred, mi_col_pred, &xd->block_refs[ref]->sf); } if (!b_sub8x8) av1_build_inter_predictors_sb_extend(xd, #if CONFIG_EXT_INTER mi_row_ori, mi_col_ori, #endif // CONFIG_EXT_INTER mi_row_pred, mi_col_pred, bsize_pred); else av1_build_inter_predictors_sb_sub8x8_extend(xd, #if CONFIG_EXT_INTER mi_row_ori, mi_col_ori, #endif // CONFIG_EXT_INTER mi_row_pred, mi_col_pred, bsize_pred, block); } static void predict_b_extend(const AV1_COMP *const cpi, ThreadData *td, const TileInfo *const tile, int block, int mi_row_ori, int mi_col_ori, int mi_row_pred, int mi_col_pred, int mi_row_top, int mi_col_top, uint8_t *dst_buf[3], int dst_stride[3], BLOCK_SIZE bsize_top, BLOCK_SIZE bsize_pred, RUN_TYPE dry_run, int b_sub8x8, int bextend) { // Used in supertx // (mi_row_ori, mi_col_ori): location for mv // (mi_row_pred, mi_col_pred, bsize_pred): region to predict // (mi_row_top, mi_col_top, bsize_top): region of the top partition size // block: sub location of sub8x8 blocks // b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8 // bextend: 1: region to predict is an extension of ori; 0: not MACROBLOCK *const x = &td->mb; const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; int r = (mi_row_pred - mi_row_top) * MI_SIZE; int c = (mi_col_pred - mi_col_top) * MI_SIZE; const int mi_width_top = mi_size_wide[bsize_top]; const int mi_height_top = mi_size_high[bsize_top]; if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top || mi_row_pred >= mi_row_top + mi_height_top || mi_col_pred >= mi_col_top + mi_width_top || mi_row_pred >= cm->mi_rows || mi_col_pred >= cm->mi_cols) return; set_offsets_extend(cpi, td, tile, mi_row_pred, mi_col_pred, mi_row_ori, mi_col_ori, bsize_pred); xd->plane[0].dst.stride = dst_stride[0]; xd->plane[1].dst.stride = dst_stride[1]; xd->plane[2].dst.stride = dst_stride[2]; xd->plane[0].dst.buf = dst_buf[0] + (r >> xd->plane[0].subsampling_y) * dst_stride[0] + (c >> xd->plane[0].subsampling_x); xd->plane[1].dst.buf = dst_buf[1] + (r >> xd->plane[1].subsampling_y) * dst_stride[1] + (c >> xd->plane[1].subsampling_x); xd->plane[2].dst.buf = dst_buf[2] + (r >> xd->plane[2].subsampling_y) * dst_stride[2] + (c >> xd->plane[2].subsampling_x); predict_superblock(cpi, td, #if CONFIG_EXT_INTER mi_row_ori, mi_col_ori, #endif // CONFIG_EXT_INTER mi_row_pred, mi_col_pred, bsize_pred, b_sub8x8, block); if (!dry_run && !bextend) update_stats(&cpi->common, td, mi_row_pred, mi_col_pred, 1); } static void extend_dir(const AV1_COMP *const cpi, ThreadData *td, const TileInfo *const tile, int block, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row, int mi_col, int mi_row_top, int mi_col_top, RUN_TYPE dry_run, uint8_t *dst_buf[3], int dst_stride[3], int dir) { // dir: 0-lower, 1-upper, 2-left, 3-right // 4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright MACROBLOCKD *xd = &td->mb.e_mbd; const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; int xss = xd->plane[1].subsampling_x; int yss = xd->plane[1].subsampling_y; #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; #endif int b_sub8x8 = (bsize < BLOCK_8X8) && !unify_bsize ? 1 : 0; int wide_unit, high_unit; int i, j; int ext_offset = 0; BLOCK_SIZE extend_bsize; int mi_row_pred, mi_col_pred; if (dir == 0 || dir == 1) { // lower and upper extend_bsize = (mi_width == mi_size_wide[BLOCK_8X8] || bsize < BLOCK_8X8 || xss < yss) ? BLOCK_8X8 : BLOCK_16X8; #if CONFIG_CB4X4 if (bsize < BLOCK_8X8) { extend_bsize = BLOCK_4X4; ext_offset = mi_size_wide[BLOCK_8X8]; } #endif wide_unit = mi_size_wide[extend_bsize]; high_unit = mi_size_high[extend_bsize]; mi_row_pred = mi_row + ((dir == 0) ? mi_height : -(mi_height + ext_offset)); mi_col_pred = mi_col; for (j = 0; j < mi_height + ext_offset; j += high_unit) for (i = 0; i < mi_width + ext_offset; i += wide_unit) predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred + j, mi_col_pred + i, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, dry_run, b_sub8x8, 1); } else if (dir == 2 || dir == 3) { // left and right extend_bsize = (mi_height == mi_size_high[BLOCK_8X8] || bsize < BLOCK_8X8 || yss < xss) ? BLOCK_8X8 : BLOCK_8X16; #if CONFIG_CB4X4 if (bsize < BLOCK_8X8) { extend_bsize = BLOCK_4X4; ext_offset = mi_size_wide[BLOCK_8X8]; } #endif wide_unit = mi_size_wide[extend_bsize]; high_unit = mi_size_high[extend_bsize]; mi_row_pred = mi_row; mi_col_pred = mi_col + ((dir == 3) ? mi_width : -(mi_width + ext_offset)); for (j = 0; j < mi_height + ext_offset; j += high_unit) for (i = 0; i < mi_width + ext_offset; i += wide_unit) predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred + j, mi_col_pred + i, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, dry_run, b_sub8x8, 1); } else { extend_bsize = BLOCK_8X8; #if CONFIG_CB4X4 if (bsize < BLOCK_8X8) { extend_bsize = BLOCK_4X4; ext_offset = mi_size_wide[BLOCK_8X8]; } #endif wide_unit = mi_size_wide[extend_bsize]; high_unit = mi_size_high[extend_bsize]; mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height : -(mi_height + ext_offset)); mi_col_pred = mi_col + ((dir == 6 || dir == 7) ? mi_width : -(mi_width + ext_offset)); for (j = 0; j < mi_height + ext_offset; j += high_unit) for (i = 0; i < mi_width + ext_offset; i += wide_unit) predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred + j, mi_col_pred + i, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, dry_run, b_sub8x8, 1); } } static void extend_all(const AV1_COMP *const cpi, ThreadData *td, const TileInfo *const tile, int block, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row, int mi_col, int mi_row_top, int mi_col_top, RUN_TYPE dry_run, uint8_t *dst_buf[3], int dst_stride[3]) { assert(block >= 0 && block < 4); extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 0); extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 1); extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 2); extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 3); extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 4); extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 5); extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 6); extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 7); } // This function generates prediction for multiple blocks, between which // discontinuity around boundary is reduced by smoothing masks. The basic // smoothing mask is a soft step function along horz/vert direction. In more // complicated case when a block is split into 4 subblocks, the basic mask is // first applied to neighboring subblocks (2 pairs) in horizontal direction and // then applied to the 2 masked prediction mentioned above in vertical direction // If the block is split into more than one level, at every stage, masked // prediction is stored in dst_buf[] passed from higher level. static void predict_sb_complex(const AV1_COMP *const cpi, ThreadData *td, const TileInfo *const tile, int mi_row, int mi_col, int mi_row_top, int mi_col_top, RUN_TYPE dry_run, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, uint8_t *dst_buf[3], int dst_stride[3], PC_TREE *pc_tree) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int hbs = mi_size_wide[bsize] / 2; const int is_partition_root = bsize >= BLOCK_8X8; const int ctx = is_partition_root ? partition_plane_context(xd, mi_row, mi_col, #if CONFIG_UNPOISON_PARTITION_CTX mi_row + hbs < cm->mi_rows, mi_col + hbs < cm->mi_cols, #endif bsize) : -1; const PARTITION_TYPE partition = pc_tree->partitioning; const BLOCK_SIZE subsize = get_subsize(bsize, partition); #if CONFIG_EXT_PARTITION_TYPES const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); #endif int i; uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3]; DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); DECLARE_ALIGNED(16, uint8_t, tmp_buf3[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); int dst_stride1[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; int dst_stride2[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; int dst_stride3[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; assert(bsize >= BLOCK_8X8); #endif if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int len = sizeof(uint16_t); dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_TX_SQUARE * len); dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_TX_SQUARE * len); dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_TX_SQUARE * len); dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_TX_SQUARE * len); dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3); dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAX_TX_SQUARE * len); dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAX_TX_SQUARE * len); } else { #endif // CONFIG_HIGHBITDEPTH dst_buf1[0] = tmp_buf1; dst_buf1[1] = tmp_buf1 + MAX_TX_SQUARE; dst_buf1[2] = tmp_buf1 + 2 * MAX_TX_SQUARE; dst_buf2[0] = tmp_buf2; dst_buf2[1] = tmp_buf2 + MAX_TX_SQUARE; dst_buf2[2] = tmp_buf2 + 2 * MAX_TX_SQUARE; dst_buf3[0] = tmp_buf3; dst_buf3[1] = tmp_buf3 + MAX_TX_SQUARE; dst_buf3[2] = tmp_buf3 + 2 * MAX_TX_SQUARE; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH if (!dry_run && ctx >= 0 && bsize < top_bsize) { // Explicitly cast away const. FRAME_COUNTS *const frame_counts = (FRAME_COUNTS *)&cm->counts; frame_counts->partition[ctx][partition]++; } for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; } switch (partition) { case PARTITION_NONE: assert(bsize < top_bsize); predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, bsize, dry_run, 0, 0); extend_all(cpi, td, tile, 0, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); break; case PARTITION_HORZ: if (bsize == BLOCK_8X8 && !unify_bsize) { // Fisrt half predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, BLOCK_8X8, dry_run, 1, 0); if (bsize < top_bsize) extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); // Second half predict_b_extend(cpi, td, tile, 2, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, BLOCK_8X8, dry_run, 1, 1); if (bsize < top_bsize) extend_all(cpi, td, tile, 2, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); // Smooth xd->plane[0].dst.buf = dst_buf[0]; xd->plane[0].dst.stride = dst_stride[0]; av1_build_masked_inter_predictor_complex( xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, 0); } else { // First half predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, dry_run, 0, 0); if (bsize < top_bsize) extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); else extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 0); if (mi_row + hbs < cm->mi_rows) { // Second half predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, subsize, dry_run, 0, 0); if (bsize < top_bsize) extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); else extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1, 1); // Smooth for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } } } break; case PARTITION_VERT: if (bsize == BLOCK_8X8 && !unify_bsize) { // First half predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, BLOCK_8X8, dry_run, 1, 0); if (bsize < top_bsize) extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); // Second half predict_b_extend(cpi, td, tile, 1, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, BLOCK_8X8, dry_run, 1, 1); if (bsize < top_bsize) extend_all(cpi, td, tile, 1, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); // Smooth xd->plane[0].dst.buf = dst_buf[0]; xd->plane[0].dst.stride = dst_stride[0]; av1_build_masked_inter_predictor_complex( xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, 0); } else { // bsize: not important, not useful predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, dry_run, 0, 0); if (bsize < top_bsize) extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); else extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 3); if (mi_col + hbs < cm->mi_cols) { predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, subsize, dry_run, 0, 0); if (bsize < top_bsize) extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); else extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1, 2); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } } } break; case PARTITION_SPLIT: if (bsize == BLOCK_8X8 && !unify_bsize) { predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, BLOCK_8X8, dry_run, 1, 0); predict_b_extend(cpi, td, tile, 1, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, BLOCK_8X8, dry_run, 1, 1); predict_b_extend(cpi, td, tile, 2, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, BLOCK_8X8, dry_run, 1, 1); predict_b_extend(cpi, td, tile, 3, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf3, dst_stride3, top_bsize, BLOCK_8X8, dry_run, 1, 1); if (bsize < top_bsize) { extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); extend_all(cpi, td, tile, 1, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); extend_all(cpi, td, tile, 2, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2); extend_all(cpi, td, tile, 3, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf3, dst_stride3); } } else { predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, subsize, top_bsize, dst_buf, dst_stride, pc_tree->split[0]); if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) predict_sb_complex(cpi, td, tile, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dry_run, subsize, top_bsize, dst_buf1, dst_stride1, pc_tree->split[1]); if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) predict_sb_complex(cpi, td, tile, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dry_run, subsize, top_bsize, dst_buf2, dst_stride2, pc_tree->split[2]); if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) predict_sb_complex(cpi, td, tile, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dry_run, subsize, top_bsize, dst_buf3, dst_stride3, pc_tree->split[3]); } for (i = 0; i < MAX_MB_PLANE; i++) { #if !CONFIG_CB4X4 if (bsize == BLOCK_8X8 && i != 0) continue; // Skip <4x4 chroma smoothing #endif if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) { av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); if (mi_row + hbs < cm->mi_rows) { av1_build_masked_inter_predictor_complex( xd, dst_buf2[i], dst_stride2[i], dst_buf3[i], dst_stride3[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } } else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) { if (bsize == BLOCK_8X8 && i != 0) continue; // Skip <4x4 chroma smoothing av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } } break; #if CONFIG_EXT_PARTITION_TYPES case PARTITION_HORZ_A: predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, bsize2, dry_run, 0, 0); extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, dry_run, 0, 0); extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, subsize, dry_run, 0, 0); if (bsize < top_bsize) extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2); else extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2, 1); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } for (i = 0; i < MAX_MB_PLANE; i++) { av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } break; case PARTITION_VERT_A: predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, bsize2, dry_run, 0, 0); extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, dry_run, 0, 0); extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, subsize, dry_run, 0, 0); if (bsize < top_bsize) extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2); else extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2, 2); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } for (i = 0; i < MAX_MB_PLANE; i++) { av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } break; case PARTITION_HORZ_B: predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, dry_run, 0, 0); if (bsize < top_bsize) extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); else extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 0); predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, dry_run, 0, 0); extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col + hbs, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, bsize2, dry_run, 0, 0); extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf1[i]; xd->plane[i].dst.stride = dst_stride1[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } break; case PARTITION_VERT_B: predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, dry_run, 0, 0); if (bsize < top_bsize) extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); else extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 3); predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, dry_run, 0, 0); extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col + hbs, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, bsize2, dry_run, 0, 0); extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf1[i]; xd->plane[i].dst.stride = dst_stride1[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } break; #endif // CONFIG_EXT_PARTITION_TYPES default: assert(0); } #if CONFIG_EXT_PARTITION_TYPES if (bsize < top_bsize) update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); #else if (bsize < top_bsize && (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)) update_partition_context(xd, mi_row, mi_col, subsize, bsize); #endif // CONFIG_EXT_PARTITION_TYPES } static void rd_supertx_sb(const AV1_COMP *const cpi, ThreadData *td, const TileInfo *const tile, int mi_row, int mi_col, BLOCK_SIZE bsize, int *tmp_rate, int64_t *tmp_dist, TX_TYPE *best_tx, PC_TREE *pc_tree) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; int plane, pnskip, skippable, skippable_uv, rate_uv, this_rate, base_rate = *tmp_rate; int64_t sse, pnsse, sse_uv, this_dist, dist_uv; uint8_t *dst_buf[3]; int dst_stride[3]; TX_SIZE tx_size; MB_MODE_INFO *mbmi; TX_TYPE tx_type, best_tx_nostx; #if CONFIG_EXT_TX int ext_tx_set; #endif // CONFIG_EXT_TX int tmp_rate_tx = 0, skip_tx = 0; int64_t tmp_dist_tx = 0, rd_tx, bestrd_tx = INT64_MAX; set_skip_context(xd, mi_row, mi_col); set_mode_info_offsets(cpi, x, xd, mi_row, mi_col); update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, bsize, 1, pc_tree); av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, mi_col); for (plane = 0; plane < MAX_MB_PLANE; plane++) { dst_buf[plane] = xd->plane[plane].dst.buf; dst_stride[plane] = xd->plane[plane].dst.stride; } predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row, mi_col, 1, bsize, bsize, dst_buf, dst_stride, pc_tree); set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); set_segment_id_supertx(cpi, x, mi_row, mi_col, bsize); mbmi = &xd->mi[0]->mbmi; best_tx_nostx = mbmi->tx_type; *best_tx = DCT_DCT; // chroma skippable_uv = 1; rate_uv = 0; dist_uv = 0; sse_uv = 0; for (plane = 1; plane < MAX_MB_PLANE; ++plane) { #if CONFIG_VAR_TX ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE]; ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE]; const struct macroblockd_plane *const pd = &xd->plane[plane]; RD_STATS this_rd_stats; av1_init_rd_stats(&this_rd_stats); tx_size = max_txsize_lookup[bsize]; tx_size = uv_txsize_lookup[bsize][tx_size][cm->subsampling_x][cm->subsampling_y]; av1_get_entropy_contexts(bsize, tx_size, pd, ctxa, ctxl); av1_subtract_plane(x, bsize, plane); av1_tx_block_rd_b(cpi, x, tx_size, 0, 0, plane, 0, get_plane_block_size(bsize, pd), &ctxa[0], &ctxl[0], &this_rd_stats); this_rate = this_rd_stats.rate; this_dist = this_rd_stats.dist; pnsse = this_rd_stats.sse; pnskip = this_rd_stats.skip; #else tx_size = max_txsize_lookup[bsize]; tx_size = uv_txsize_lookup[bsize][tx_size][cm->subsampling_x][cm->subsampling_y]; av1_subtract_plane(x, bsize, plane); av1_txfm_rd_in_plane_supertx(x, cpi, &this_rate, &this_dist, &pnskip, &pnsse, INT64_MAX, plane, bsize, tx_size, 0); #endif // CONFIG_VAR_TX rate_uv += this_rate; dist_uv += this_dist; sse_uv += pnsse; skippable_uv &= pnskip; } // luma tx_size = max_txsize_lookup[bsize]; av1_subtract_plane(x, bsize, 0); #if CONFIG_EXT_TX ext_tx_set = get_ext_tx_set(tx_size, bsize, 1, cm->reduced_tx_set_used); #endif // CONFIG_EXT_TX for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) { #if CONFIG_VAR_TX ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE]; ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE]; const struct macroblockd_plane *const pd = &xd->plane[0]; RD_STATS this_rd_stats; #endif // CONFIG_VAR_TX #if CONFIG_EXT_TX if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue; #else if (tx_size >= TX_32X32 && tx_type != DCT_DCT) continue; #endif // CONFIG_EXT_TX mbmi->tx_type = tx_type; #if CONFIG_VAR_TX av1_init_rd_stats(&this_rd_stats); av1_get_entropy_contexts(bsize, tx_size, pd, ctxa, ctxl); av1_tx_block_rd_b(cpi, x, tx_size, 0, 0, 0, 0, bsize, &ctxa[0], &ctxl[0], &this_rd_stats); this_rate = this_rd_stats.rate; this_dist = this_rd_stats.dist; pnsse = this_rd_stats.sse; pnskip = this_rd_stats.skip; #else av1_txfm_rd_in_plane_supertx(x, cpi, &this_rate, &this_dist, &pnskip, &pnsse, INT64_MAX, 0, bsize, tx_size, 0); #endif // CONFIG_VAR_TX #if CONFIG_EXT_TX if (get_ext_tx_types(tx_size, bsize, 1, cm->reduced_tx_set_used) > 1 && !xd->lossless[xd->mi[0]->mbmi.segment_id] && this_rate != INT_MAX) { if (ext_tx_set > 0) this_rate += cpi->inter_tx_type_costs[ext_tx_set][mbmi->tx_size][mbmi->tx_type]; } #else if (tx_size < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id] && this_rate != INT_MAX) { this_rate += cpi->inter_tx_type_costs[tx_size][mbmi->tx_type]; } #endif // CONFIG_EXT_TX *tmp_rate = rate_uv + this_rate; *tmp_dist = dist_uv + this_dist; sse = sse_uv + pnsse; skippable = skippable_uv && pnskip; if (skippable) { *tmp_rate = av1_cost_bit(av1_get_skip_prob(cm, xd), 1); x->skip = 1; } else { if (RDCOST(x->rdmult, x->rddiv, *tmp_rate, *tmp_dist) < RDCOST(x->rdmult, x->rddiv, 0, sse)) { *tmp_rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); x->skip = 0; } else { *tmp_dist = sse; *tmp_rate = av1_cost_bit(av1_get_skip_prob(cm, xd), 1); x->skip = 1; } } *tmp_rate += base_rate; rd_tx = RDCOST(x->rdmult, x->rddiv, *tmp_rate, *tmp_dist); if (rd_tx < bestrd_tx * 0.99 || tx_type == DCT_DCT) { *best_tx = tx_type; bestrd_tx = rd_tx; tmp_rate_tx = *tmp_rate; tmp_dist_tx = *tmp_dist; skip_tx = x->skip; } } *tmp_rate = tmp_rate_tx; *tmp_dist = tmp_dist_tx; x->skip = skip_tx; #if CONFIG_VAR_TX for (plane = 0; plane < 1; ++plane) memset(x->blk_skip[plane], x->skip, sizeof(uint8_t) * pc_tree->none.num_4x4_blk); #endif // CONFIG_VAR_TX xd->mi[0]->mbmi.tx_type = best_tx_nostx; } #endif // CONFIG_SUPERTX