/* * Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ /* clang-format off */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include "./aom_config.h" #include "aom_dsp/bitreader.h" #include "aom_dsp/entcode.h" #include "aom_dsp/entdec.h" #include "av1/common/odintrin.h" #include "av1/common/partition.h" #include "av1/common/pvq_state.h" #include "av1/decoder/decint.h" #include "av1/decoder/pvq_decoder.h" #include "aom_ports/system_state.h" int aom_read_symbol_pvq_(aom_reader *r, aom_cdf_prob *cdf, int nsymbs ACCT_STR_PARAM) { if (cdf[0] == 0) aom_cdf_init_q15_1D(cdf, nsymbs, CDF_SIZE(nsymbs)); return aom_read_symbol(r, cdf, nsymbs, ACCT_STR_NAME); } static void aom_decode_pvq_codeword(aom_reader *r, od_pvq_codeword_ctx *ctx, od_coeff *y, int n, int k) { int i; aom_decode_band_pvq_splits(r, ctx, y, n, k, 0); for (i = 0; i < n; i++) { if (y[i] && aom_read_bit(r, "pvq:sign")) y[i] = -y[i]; } } /** Inverse of neg_interleave; decodes the interleaved gain. * * @param [in] x quantized/interleaved gain to decode * @param [in] ref quantized gain of the reference * @return original quantized gain value */ static int neg_deinterleave(int x, int ref) { if (x < 2*ref-1) { if (x & 1) return ref - 1 - (x >> 1); else return ref + (x >> 1); } else return x+1; } /** Synthesizes one parition of coefficient values from a PVQ-encoded * vector. * * @param [out] xcoeff output coefficient partition (x in math doc) * @param [in] ypulse PVQ-encoded values (y in math doc); in the noref * case, this vector has n entries, in the * reference case it contains n-1 entries * (the m-th entry is not included) * @param [in] ref reference vector (prediction) * @param [in] n number of elements in this partition * @param [in] gr gain of the reference vector (prediction) * @param [in] noref indicates presence or lack of prediction * @param [in] g decoded quantized vector gain * @param [in] theta decoded theta (prediction error) * @param [in] qm QM with magnitude compensation * @param [in] qm_inv Inverse of QM with magnitude compensation */ static void pvq_synthesis(od_coeff *xcoeff, od_coeff *ypulse, od_val16 *r16, int n, od_val32 gr, int noref, od_val32 g, od_val32 theta, const int16_t *qm_inv, int shift) { int s; int m; /* Sign of the Householder reflection vector */ s = 0; /* Direction of the Householder reflection vector */ m = noref ? 0 : od_compute_householder(r16, n, gr, &s, shift); od_pvq_synthesis_partial(xcoeff, ypulse, r16, n, noref, g, theta, m, s, qm_inv); } typedef struct { od_coeff *ref; int nb_coeffs; int allow_flip; } cfl_ctx; /** Decodes a single vector of integers (eg, a partition within a * coefficient block) encoded using PVQ * * @param [in,out] ec range encoder * @param [in] q0 scale/quantizer * @param [in] n number of coefficients in partition * @param [in,out] model entropy decoder state * @param [in,out] adapt adaptation context * @param [in,out] exg ExQ16 expectation of decoded gain value * @param [in,out] ext ExQ16 expectation of decoded theta value * @param [in] ref 'reference' (prediction) vector * @param [out] out decoded partition * @param [out] noref boolean indicating absence of reference * @param [in] beta per-band activity masking beta param * @param [in] is_keyframe whether we're encoding a keyframe * @param [in] pli plane index * @param [in] cdf_ctx selects which cdf context to use * @param [in,out] skip_rest whether to skip further bands in each direction * @param [in] band index of the band being decoded * @param [in] band index of the band being decoded * @param [out] skip skip flag with range [0,1] * @param [in] qm QM with magnitude compensation * @param [in] qm_inv Inverse of QM with magnitude compensation */ static void pvq_decode_partition(aom_reader *r, int q0, int n, generic_encoder model[3], od_adapt_ctx *adapt, int *exg, int *ext, od_coeff *ref, od_coeff *out, int *noref, od_val16 beta, int is_keyframe, int pli, int cdf_ctx, cfl_ctx *cfl, int has_skip, int *skip_rest, int band, int *skip, const int16_t *qm, const int16_t *qm_inv) { int k; od_val32 qcg; int itheta; od_val32 theta; od_val32 gr; od_val32 gain_offset; od_coeff y[MAXN]; int qg; int id; int i; od_val16 ref16[MAXN]; int rshift; theta = 0; gr = 0; gain_offset = 0; /* Skip is per-direction. For band=0, we can use any of the flags. */ if (skip_rest[(band + 2) % 3]) { qg = 0; if (is_keyframe) { itheta = -1; *noref = 1; } else { itheta = 0; *noref = 0; } } else { /* Jointly decode gain, itheta and noref for small values. Then we handle larger gain. */ id = aom_read_symbol_pvq(r, &adapt->pvq.pvq_gaintheta_cdf[cdf_ctx][0], 8 + 7*has_skip, "pvq:gaintheta"); if (!is_keyframe && id >= 10) id++; if (is_keyframe && id >= 8) id++; if (id >= 8) { id -= 8; skip_rest[0] = skip_rest[1] = skip_rest[2] = 1; } qg = id & 1; itheta = (id >> 1) - 1; *noref = (itheta == -1); } /* The CfL flip bit is only decoded on the first band that has noref=0. */ if (cfl->allow_flip && !*noref) { int flip; flip = aom_read_bit(r, "cfl:flip"); if (flip) { for (i = 0; i < cfl->nb_coeffs; i++) cfl->ref[i] = -cfl->ref[i]; } cfl->allow_flip = 0; } if (qg > 0) { int tmp; tmp = *exg; qg = 1 + generic_decode(r, &model[!*noref], &tmp, 2, "pvq:gain"); OD_IIR_DIADIC(*exg, qg << 16, 2); } *skip = 0; #if defined(OD_FLOAT_PVQ) rshift = 0; #else /* Shift needed to make the reference fit in 15 bits, so that the Householder vector can fit in 16 bits. */ rshift = OD_MAXI(0, od_vector_log_mag(ref, n) - 14); #endif for (i = 0; i < n; i++) { #if defined(OD_FLOAT_PVQ) ref16[i] = ref[i]*(double)qm[i]*OD_QM_SCALE_1; #else ref16[i] = OD_SHR_ROUND(ref[i]*qm[i], OD_QM_SHIFT + rshift); #endif } if(!*noref){ /* we have a reference; compute its gain */ od_val32 cgr; int icgr; int cfl_enabled; cfl_enabled = pli != 0 && is_keyframe && !OD_DISABLE_CFL; cgr = od_pvq_compute_gain(ref16, n, q0, &gr, beta, rshift); if (cfl_enabled) cgr = OD_CGAIN_SCALE; #if defined(OD_FLOAT_PVQ) icgr = (int)floor(.5 + cgr); #else icgr = OD_SHR_ROUND(cgr, OD_CGAIN_SHIFT); #endif /* quantized gain is interleave encoded when there's a reference; deinterleave it now */ if (is_keyframe) qg = neg_deinterleave(qg, icgr); else { qg = neg_deinterleave(qg, icgr + 1) - 1; if (qg == 0) *skip = (icgr ? OD_PVQ_SKIP_ZERO : OD_PVQ_SKIP_COPY); } if (qg == icgr && itheta == 0 && !cfl_enabled) *skip = OD_PVQ_SKIP_COPY; gain_offset = cgr - OD_SHL(icgr, OD_CGAIN_SHIFT); qcg = OD_SHL(qg, OD_CGAIN_SHIFT) + gain_offset; /* read and decode first-stage PVQ error theta */ if (itheta > 1) { int tmp; tmp = *ext; itheta = 2 + generic_decode(r, &model[2], &tmp, 2, "pvq:theta"); OD_IIR_DIADIC(*ext, itheta << 16, 2); } theta = od_pvq_compute_theta(itheta, od_pvq_compute_max_theta(qcg, beta)); } else{ itheta = 0; if (!is_keyframe) qg++; qcg = OD_SHL(qg, OD_CGAIN_SHIFT); if (qg == 0) *skip = OD_PVQ_SKIP_ZERO; } k = od_pvq_compute_k(qcg, itheta, *noref, n, beta); if (k != 0) { /* when noref==0, y is actually size n-1 */ aom_decode_pvq_codeword(r, &adapt->pvq.pvq_codeword_ctx, y, n - !*noref, k); } else { OD_CLEAR(y, n); } if (*skip) { if (*skip == OD_PVQ_SKIP_COPY) OD_COPY(out, ref, n); else OD_CLEAR(out, n); } else { od_val32 g; g = od_gain_expand(qcg, q0, beta); pvq_synthesis(out, y, ref16, n, gr, *noref, g, theta, qm_inv, rshift); } /* If OD_PVQ_SKIP_ZERO or OD_PVQ_SKIP_COPY, set skip to 1 for visualization */ if (*skip) *skip = 1; } /** Decodes a coefficient block (except for DC) encoded using PVQ * * @param [in,out] dec daala decoder context * @param [in] ref 'reference' (prediction) vector * @param [out] out decoded partition * @param [in] q0 quantizer * @param [in] pli plane index * @param [in] bs log of the block size minus two * @param [in] beta per-band activity masking beta param * @param [in] is_keyframe whether we're encoding a keyframe * @param [out] flags bitmask of the per band skip and noref flags * @param [in] ac_dc_coded skip flag for the block (range 0-3) * @param [in] qm QM with magnitude compensation * @param [in] qm_inv Inverse of QM with magnitude compensation */ void od_pvq_decode(daala_dec_ctx *dec, od_coeff *ref, od_coeff *out, int q0, int pli, int bs, const od_val16 *beta, int is_keyframe, unsigned int *flags, PVQ_SKIP_TYPE ac_dc_coded, const int16_t *qm, const int16_t *qm_inv){ int noref[PVQ_MAX_PARTITIONS]; int skip[PVQ_MAX_PARTITIONS]; int *exg; int *ext; int nb_bands; int i; const int *off; int size[PVQ_MAX_PARTITIONS]; generic_encoder *model; int skip_rest[3] = {0}; cfl_ctx cfl; const unsigned char *pvq_qm; int use_masking; aom_clear_system_state(); /*Default to skip=1 and noref=0 for all bands.*/ for (i = 0; i < PVQ_MAX_PARTITIONS; i++) { noref[i] = 0; skip[i] = 1; } use_masking = dec->use_activity_masking; if (use_masking) pvq_qm = &dec->state.pvq_qm_q4[pli][0]; else pvq_qm = 0; exg = &dec->state.adapt->pvq.pvq_exg[pli][bs][0]; ext = dec->state.adapt->pvq.pvq_ext + bs*PVQ_MAX_PARTITIONS; model = dec->state.adapt->pvq.pvq_param_model; nb_bands = OD_BAND_OFFSETS[bs][0]; off = &OD_BAND_OFFSETS[bs][1]; out[0] = ac_dc_coded & DC_CODED; if (ac_dc_coded < AC_CODED) { if (is_keyframe) for (i = 1; i < 1 << (2*bs + 4); i++) out[i] = 0; else for (i = 1; i < 1 << (2*bs + 4); i++) out[i] = ref[i]; } else { for (i = 0; i < nb_bands; i++) size[i] = off[i+1] - off[i]; cfl.ref = ref; cfl.nb_coeffs = off[nb_bands]; cfl.allow_flip = pli != 0 && is_keyframe; for (i = 0; i < nb_bands; i++) { int q; if (use_masking) q = OD_MAXI(1, q0 * pvq_qm[od_qm_get_index(bs, i + 1)] >> 4); else q = OD_MAXI(1, q0); pvq_decode_partition(dec->r, q, size[i], model, dec->state.adapt, exg + i, ext + i, ref + off[i], out + off[i], &noref[i], beta[i], is_keyframe, pli, (pli != 0)*OD_TXSIZES*PVQ_MAX_PARTITIONS + bs*PVQ_MAX_PARTITIONS + i, &cfl, i == 0 && (i < nb_bands - 1), skip_rest, i, &skip[i], qm + off[i], qm_inv + off[i]); if (i == 0 && !skip_rest[0] && bs > 0) { int skip_dir; int j; skip_dir = aom_read_symbol(dec->r, &dec->state.adapt->pvq.pvq_skip_dir_cdf[(pli != 0) + 2*(bs - 1)][0], 7, "pvq:skiprest"); for (j = 0; j < 3; j++) skip_rest[j] = !!(skip_dir & (1 << j)); } } } *flags = 0; for (i = nb_bands - 1; i >= 0; i--) { *flags <<= 1; *flags |= noref[i]&1; *flags <<= 1; *flags |= skip[i]&1; } }