/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "./aom_config.h" #if !CONFIG_PVQ #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #endif // !CONFIG_PVQ #include "av1/common/blockd.h" #define ACCT_STR __func__ #if !CONFIG_PVQ || CONFIG_VAR_TX #include "av1/common/common.h" #include "av1/common/entropy.h" #include "av1/common/idct.h" #include "av1/decoder/detokenize.h" #define EOB_CONTEXT_NODE 0 #define ZERO_CONTEXT_NODE 1 #define ONE_CONTEXT_NODE 2 #define LOW_VAL_CONTEXT_NODE 0 #define TWO_CONTEXT_NODE 1 #define THREE_CONTEXT_NODE 2 #define HIGH_LOW_CONTEXT_NODE 3 #define CAT_ONE_CONTEXT_NODE 4 #define CAT_THREEFOUR_CONTEXT_NODE 5 #define CAT_THREE_CONTEXT_NODE 6 #define CAT_FIVE_CONTEXT_NODE 7 #define INCREMENT_COUNT(token) \ do { \ if (counts) ++coef_counts[band][ctx][token]; \ } while (0) #if CONFIG_NEW_MULTISYMBOL #define READ_COEFF(prob_name, cdf_name, num, r) read_coeff(cdf_name, num, r); static INLINE int read_coeff(const aom_cdf_prob *const *cdf, int n, aom_reader *r) { int val = 0; int i = 0; int count = 0; while (count < n) { const int size = AOMMIN(n - count, 4); val |= aom_read_cdf(r, cdf[i++], 1 << size, ACCT_STR) << count; count += size; } return val; } #else #define READ_COEFF(prob_name, cdf_name, num, r) read_coeff(prob_name, num, r); static INLINE int read_coeff(const aom_prob *probs, int n, aom_reader *r) { int i, val = 0; for (i = 0; i < n; ++i) val = (val << 1) | aom_read(r, probs[i], ACCT_STR); return val; } #endif static int token_to_value(aom_reader *const r, int token, TX_SIZE tx_size, int bit_depth) { #if !CONFIG_HIGHBITDEPTH assert(bit_depth == 8); #endif // !CONFIG_HIGHBITDEPTH switch (token) { case ZERO_TOKEN: case ONE_TOKEN: case TWO_TOKEN: case THREE_TOKEN: case FOUR_TOKEN: return token; case CATEGORY1_TOKEN: return CAT1_MIN_VAL + READ_COEFF(av1_cat1_prob, av1_cat1_cdf, 1, r); case CATEGORY2_TOKEN: return CAT2_MIN_VAL + READ_COEFF(av1_cat2_prob, av1_cat2_cdf, 2, r); case CATEGORY3_TOKEN: return CAT3_MIN_VAL + READ_COEFF(av1_cat3_prob, av1_cat3_cdf, 3, r); case CATEGORY4_TOKEN: return CAT4_MIN_VAL + READ_COEFF(av1_cat4_prob, av1_cat4_cdf, 4, r); case CATEGORY5_TOKEN: return CAT5_MIN_VAL + READ_COEFF(av1_cat5_prob, av1_cat5_cdf, 5, r); case CATEGORY6_TOKEN: { const int skip_bits = (int)sizeof(av1_cat6_prob) - av1_get_cat6_extrabits_size(tx_size, bit_depth); return CAT6_MIN_VAL + READ_COEFF(av1_cat6_prob + skip_bits, av1_cat6_cdf, 18 - skip_bits, r); } default: assert(0); // Invalid token. return -1; } } static int decode_coefs(MACROBLOCKD *xd, PLANE_TYPE type, tran_low_t *dqcoeff, TX_SIZE tx_size, TX_TYPE tx_type, const int16_t *dq, #if CONFIG_NEW_QUANT dequant_val_type_nuq *dq_val, #endif // CONFIG_NEW_QUANT #if CONFIG_AOM_QM const qm_val_t *iqm[2][TX_SIZES], #endif // CONFIG_AOM_QM int ctx, const int16_t *scan, const int16_t *nb, int16_t *max_scan_line, aom_reader *r) { FRAME_COUNTS *counts = xd->counts; #if CONFIG_EC_ADAPT FRAME_CONTEXT *ec_ctx = xd->tile_ctx; #else FRAME_CONTEXT *const ec_ctx = xd->fc; #endif const int max_eob = tx_size_2d[tx_size]; const int ref = is_inter_block(&xd->mi[0]->mbmi); #if CONFIG_AOM_QM const qm_val_t *iqmatrix = iqm[!ref][tx_size]; #endif // CONFIG_AOM_QM int band, c = 0; const int tx_size_ctx = txsize_sqr_map[tx_size]; #if CONFIG_NEW_TOKENSET aom_cdf_prob(*coef_head_cdfs)[COEFF_CONTEXTS][CDF_SIZE(ENTROPY_TOKENS)] = ec_ctx->coef_head_cdfs[tx_size_ctx][type][ref]; aom_cdf_prob(*coef_tail_cdfs)[COEFF_CONTEXTS][CDF_SIZE(ENTROPY_TOKENS)] = ec_ctx->coef_tail_cdfs[tx_size_ctx][type][ref]; int val = 0; #if !CONFIG_EC_ADAPT unsigned int *blockz_count; unsigned int(*coef_counts)[COEFF_CONTEXTS][UNCONSTRAINED_NODES + 1] = NULL; unsigned int(*eob_branch_count)[COEFF_CONTEXTS] = NULL; #endif #else aom_prob(*coef_probs)[COEFF_CONTEXTS][UNCONSTRAINED_NODES] = ec_ctx->coef_probs[tx_size_ctx][type][ref]; const aom_prob *prob; #if CONFIG_EC_MULTISYMBOL aom_cdf_prob(*coef_cdfs)[COEFF_CONTEXTS][CDF_SIZE(ENTROPY_TOKENS)] = ec_ctx->coef_cdfs[tx_size_ctx][type][ref]; aom_cdf_prob(*cdf)[CDF_SIZE(ENTROPY_TOKENS)]; #endif // CONFIG_EC_MULTISYMBOL unsigned int(*coef_counts)[COEFF_CONTEXTS][UNCONSTRAINED_NODES + 1] = NULL; unsigned int(*eob_branch_count)[COEFF_CONTEXTS] = NULL; #endif // CONFIG_NEW_TOKENSET uint8_t token_cache[MAX_TX_SQUARE]; const uint8_t *band_translate = get_band_translate(tx_size); int dq_shift; int v, token; int16_t dqv = dq[0]; #if CONFIG_NEW_QUANT const tran_low_t *dqv_val = &dq_val[0][0]; #endif // CONFIG_NEW_QUANT (void)tx_type; #if CONFIG_AOM_QM (void)iqmatrix; #endif // CONFIG_AOM_QM if (counts) { #if !CONFIG_NEW_TOKENSET || !CONFIG_EC_ADAPT coef_counts = counts->coef[tx_size_ctx][type][ref]; eob_branch_count = counts->eob_branch[tx_size_ctx][type][ref]; #endif #if CONFIG_NEW_TOKENSET && !CONFIG_EC_ADAPT blockz_count = counts->blockz_count[tx_size_ctx][type][ref][ctx]; #endif } dq_shift = av1_get_tx_scale(tx_size); #if CONFIG_NEW_TOKENSET band = *band_translate++; int more_data = 1; while (more_data) { int comb_token; int last_pos = (c + 1 == max_eob); int first_pos = (c == 0); #if CONFIG_NEW_QUANT dqv_val = &dq_val[band][0]; #endif // CONFIG_NEW_QUANT comb_token = last_pos ? 2 * aom_read_bit(r, ACCT_STR) + 2 : aom_read_symbol(r, coef_head_cdfs[band][ctx], HEAD_TOKENS + first_pos, ACCT_STR) + !first_pos; if (first_pos) { #if !CONFIG_EC_ADAPT if (counts) ++blockz_count[comb_token != 0]; #endif if (comb_token == 0) return 0; } token = comb_token >> 1; while (!token) { *max_scan_line = AOMMAX(*max_scan_line, scan[c]); token_cache[scan[c]] = 0; #if !CONFIG_EC_ADAPT if (counts && !last_pos) { ++coef_counts[band][ctx][ZERO_TOKEN]; } #endif ++c; dqv = dq[1]; ctx = get_coef_context(nb, token_cache, c); band = *band_translate++; last_pos = (c + 1 == max_eob); comb_token = last_pos ? 2 * aom_read_bit(r, ACCT_STR) + 2 : aom_read_symbol(r, coef_head_cdfs[band][ctx], HEAD_TOKENS, ACCT_STR) + 1; token = comb_token >> 1; } more_data = comb_token & 1; #if !CONFIG_EC_ADAPT if (counts && !last_pos) { ++coef_counts[band][ctx][token]; ++eob_branch_count[band][ctx]; if (!more_data) ++coef_counts[band][ctx][EOB_MODEL_TOKEN]; } #endif if (token > ONE_TOKEN) token += aom_read_symbol(r, coef_tail_cdfs[band][ctx], TAIL_TOKENS, ACCT_STR); #if CONFIG_NEW_QUANT dqv_val = &dq_val[band][0]; #endif // CONFIG_NEW_QUANT *max_scan_line = AOMMAX(*max_scan_line, scan[c]); token_cache[scan[c]] = av1_pt_energy_class[token]; val = token_to_value(r, token, tx_size, #if CONFIG_HIGHBITDEPTH xd->bd); #else 8); #endif // CONFIG_HIGHBITDEPTH #if CONFIG_NEW_QUANT v = av1_dequant_abscoeff_nuq(val, dqv, dqv_val); v = dq_shift ? ROUND_POWER_OF_TWO(v, dq_shift) : v; #else #if CONFIG_AOM_QM dqv = ((iqmatrix[scan[c]] * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; #endif v = (val * dqv) >> dq_shift; #endif v = aom_read_bit(r, ACCT_STR) ? -v : v; #if CONFIG_COEFFICIENT_RANGE_CHECKING #if CONFIG_HIGHBITDEPTH check_range(v, xd->bd); #else check_range(v, 8); #endif // CONFIG_HIGHBITDEPTH #endif // CONFIG_COEFFICIENT_RANGE_CHECKING dqcoeff[scan[c]] = v; ++c; more_data &= (c < max_eob); if (!more_data) break; dqv = dq[1]; ctx = get_coef_context(nb, token_cache, c); band = *band_translate++; #else // CONFIG_NEW_TOKENSET while (c < max_eob) { int val = -1; band = *band_translate++; prob = coef_probs[band][ctx]; if (counts) ++eob_branch_count[band][ctx]; if (!aom_read(r, prob[EOB_CONTEXT_NODE], ACCT_STR)) { INCREMENT_COUNT(EOB_MODEL_TOKEN); break; } #if CONFIG_NEW_QUANT dqv_val = &dq_val[band][0]; #endif // CONFIG_NEW_QUANT while (!aom_read(r, prob[ZERO_CONTEXT_NODE], ACCT_STR)) { INCREMENT_COUNT(ZERO_TOKEN); dqv = dq[1]; token_cache[scan[c]] = 0; ++c; if (c >= max_eob) return c; // zero tokens at the end (no eob token) ctx = get_coef_context(nb, token_cache, c); band = *band_translate++; prob = coef_probs[band][ctx]; #if CONFIG_NEW_QUANT dqv_val = &dq_val[band][0]; #endif // CONFIG_NEW_QUANT } *max_scan_line = AOMMAX(*max_scan_line, scan[c]); #if CONFIG_EC_MULTISYMBOL cdf = &coef_cdfs[band][ctx]; token = ONE_TOKEN + aom_read_symbol(r, *cdf, CATEGORY6_TOKEN - ONE_TOKEN + 1, ACCT_STR); INCREMENT_COUNT(ONE_TOKEN + (token > ONE_TOKEN)); assert(token != ZERO_TOKEN); val = token_to_value(r, token, tx_size, #if CONFIG_HIGHBITDEPTH xd->bd); #else 8); #endif // CONFIG_HIGHBITDEPTH #else // CONFIG_EC_MULTISYMBOL if (!aom_read(r, prob[ONE_CONTEXT_NODE], ACCT_STR)) { INCREMENT_COUNT(ONE_TOKEN); token = ONE_TOKEN; val = 1; } else { INCREMENT_COUNT(TWO_TOKEN); token = aom_read_tree(r, av1_coef_con_tree, av1_pareto8_full[prob[PIVOT_NODE] - 1], ACCT_STR); assert(token != ZERO_TOKEN && token != ONE_TOKEN); val = token_to_value(r, token, tx_size, #if CONFIG_HIGHBITDEPTH xd->bd); #else 8); #endif // CONFIG_HIGHBITDEPTH } #endif // CONFIG_EC_MULTISYMBOL #if CONFIG_NEW_QUANT v = av1_dequant_abscoeff_nuq(val, dqv, dqv_val); v = dq_shift ? ROUND_POWER_OF_TWO(v, dq_shift) : v; #else #if CONFIG_AOM_QM dqv = ((iqmatrix[scan[c]] * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; #endif v = (val * dqv) >> dq_shift; #endif // CONFIG_NEW_QUANT #if CONFIG_COEFFICIENT_RANGE_CHECKING #if CONFIG_HIGHBITDEPTH dqcoeff[scan[c]] = highbd_check_range((aom_read_bit(r, ACCT_STR) ? -v : v), xd->bd); #else dqcoeff[scan[c]] = check_range(aom_read_bit(r, ACCT_STR) ? -v : v, 8); #endif // CONFIG_HIGHBITDEPTH #else dqcoeff[scan[c]] = aom_read_bit(r, ACCT_STR) ? -v : v; #endif // CONFIG_COEFFICIENT_RANGE_CHECKING token_cache[scan[c]] = av1_pt_energy_class[token]; ++c; ctx = get_coef_context(nb, token_cache, c); dqv = dq[1]; #endif // CONFIG_NEW_TOKENSET } return c; } #endif // !CONFIG_PVQ #if CONFIG_PALETTE void av1_decode_palette_tokens(MACROBLOCKD *const xd, int plane, aom_reader *r) { const MODE_INFO *const mi = xd->mi[0]; const MB_MODE_INFO *const mbmi = &mi->mbmi; uint8_t color_order[PALETTE_MAX_SIZE]; const int n = mbmi->palette_mode_info.palette_size[plane]; int i, j; uint8_t *const color_map = xd->plane[plane].color_index_map; const aom_prob( *const prob)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS - 1] = plane ? av1_default_palette_uv_color_index_prob : av1_default_palette_y_color_index_prob; int plane_block_width, plane_block_height, rows, cols; av1_get_block_dimensions(mbmi->sb_type, plane, xd, &plane_block_width, &plane_block_height, &rows, &cols); assert(plane == 0 || plane == 1); #if CONFIG_PALETTE_THROUGHPUT // Run wavefront on the palette map index decoding. for (i = 1; i < rows + cols - 1; ++i) { for (j = AOMMIN(i, cols - 1); j >= AOMMAX(0, i - rows + 1); --j) { const int color_ctx = av1_get_palette_color_index_context( color_map, plane_block_width, (i - j), j, n, color_order, NULL); const int color_idx = aom_read_tree(r, av1_palette_color_index_tree[n - 2], prob[n - 2][color_ctx], ACCT_STR); assert(color_idx >= 0 && color_idx < n); color_map[(i - j) * plane_block_width + j] = color_order[color_idx]; } } // Copy last column to extra columns. if (cols < plane_block_width) { for (i = 0; i < plane_block_height; ++i) { memset(color_map + i * plane_block_width + cols, color_map[i * plane_block_width + cols - 1], (plane_block_width - cols)); } } #else for (i = 0; i < rows; ++i) { for (j = (i == 0 ? 1 : 0); j < cols; ++j) { const int color_ctx = av1_get_palette_color_index_context( color_map, plane_block_width, i, j, n, color_order, NULL); const int color_idx = aom_read_tree(r, av1_palette_color_index_tree[n - PALETTE_MIN_SIZE], prob[n - PALETTE_MIN_SIZE][color_ctx], ACCT_STR); assert(color_idx >= 0 && color_idx < n); color_map[i * plane_block_width + j] = color_order[color_idx]; } memset(color_map + i * plane_block_width + cols, color_map[i * plane_block_width + cols - 1], (plane_block_width - cols)); // Copy last column to extra columns. } #endif // CONFIG_PALETTE_THROUGHPUT // Copy last row to extra rows. for (i = rows; i < plane_block_height; ++i) { memcpy(color_map + i * plane_block_width, color_map + (rows - 1) * plane_block_width, plane_block_width); } } #endif // CONFIG_PALETTE #if !CONFIG_PVQ || CONFIG_VAR_TX int av1_decode_block_tokens(AV1_COMMON *cm, MACROBLOCKD *const xd, int plane, const SCAN_ORDER *sc, int x, int y, TX_SIZE tx_size, TX_TYPE tx_type, int16_t *max_scan_line, aom_reader *r, int seg_id) { struct macroblockd_plane *const pd = &xd->plane[plane]; const int16_t *const dequant = pd->seg_dequant[seg_id]; const int ctx = get_entropy_context(tx_size, pd->above_context + x, pd->left_context + y); #if CONFIG_NEW_QUANT const int ref = is_inter_block(&xd->mi[0]->mbmi); int dq = get_dq_profile_from_ctx(xd->qindex[seg_id], ctx, ref, pd->plane_type); #endif // CONFIG_NEW_QUANT const int eob = decode_coefs(xd, pd->plane_type, pd->dqcoeff, tx_size, tx_type, dequant, #if CONFIG_NEW_QUANT pd->seg_dequant_nuq[seg_id][dq], #endif // CONFIG_NEW_QUANT #if CONFIG_AOM_QM pd->seg_iqmatrix[seg_id], #endif // CONFIG_AOM_QM ctx, sc->scan, sc->neighbors, max_scan_line, r); av1_set_contexts(xd, pd, plane, tx_size, eob > 0, x, y); #if CONFIG_ADAPT_SCAN if (xd->counts) av1_update_scan_count_facade(cm, xd->counts, tx_size, tx_type, pd->dqcoeff, eob); #else (void)cm; #endif return eob; } #endif // !CONFIG_PVQ