/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "av1/common/cfl.h" #include "av1/common/common.h" #include "av1/common/entropy.h" #include "av1/common/entropymode.h" #include "av1/common/entropymv.h" #include "av1/common/mvref_common.h" #include "av1/common/pred_common.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/seg_common.h" #include "av1/common/warped_motion.h" #include "av1/decoder/decodeframe.h" #include "av1/decoder/decodemv.h" #include "aom_dsp/aom_dsp_common.h" #define ACCT_STR __func__ #define DEC_MISMATCH_DEBUG 0 static PREDICTION_MODE read_intra_mode(aom_reader *r, aom_cdf_prob *cdf) { return (PREDICTION_MODE)aom_read_symbol(r, cdf, INTRA_MODES, ACCT_STR); } static void read_cdef(AV1_COMMON *cm, aom_reader *r, MACROBLOCKD *const xd, int mi_col, int mi_row) { MB_MODE_INFO *const mbmi = xd->mi[0]; if (cm->coded_lossless) return; if (cm->allow_intrabc) { assert(cm->cdef_bits == 0); return; } if (!(mi_col & (cm->seq_params.mib_size - 1)) && !(mi_row & (cm->seq_params.mib_size - 1))) { // Top left? xd->cdef_preset[0] = xd->cdef_preset[1] = xd->cdef_preset[2] = xd->cdef_preset[3] = -1; } // Read CDEF param at the first non-skip coding block const int mask = (1 << (6 - MI_SIZE_LOG2)); const int m = ~(mask - 1); const int index = cm->seq_params.sb_size == BLOCK_128X128 ? !!(mi_col & mask) + 2 * !!(mi_row & mask) : 0; cm->mi_grid_visible[(mi_row & m) * cm->mi_stride + (mi_col & m)] ->cdef_strength = xd->cdef_preset[index] = xd->cdef_preset[index] == -1 && !mbmi->skip ? aom_read_literal(r, cm->cdef_bits, ACCT_STR) : xd->cdef_preset[index]; } static int read_delta_qindex(AV1_COMMON *cm, const MACROBLOCKD *xd, aom_reader *r, MB_MODE_INFO *const mbmi, int mi_col, int mi_row) { int sign, abs, reduced_delta_qindex = 0; BLOCK_SIZE bsize = mbmi->sb_type; const int b_col = mi_col & (cm->seq_params.mib_size - 1); const int b_row = mi_row & (cm->seq_params.mib_size - 1); const int read_delta_q_flag = (b_col == 0 && b_row == 0); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; if ((bsize != cm->seq_params.sb_size || mbmi->skip == 0) && read_delta_q_flag) { abs = aom_read_symbol(r, ec_ctx->delta_q_cdf, DELTA_Q_PROBS + 1, ACCT_STR); const int smallval = (abs < DELTA_Q_SMALL); if (!smallval) { const int rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1; const int thr = (1 << rem_bits) + 1; abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr; } if (abs) { sign = aom_read_bit(r, ACCT_STR); } else { sign = 1; } reduced_delta_qindex = sign ? -abs : abs; } return reduced_delta_qindex; } static int read_delta_lflevel(const AV1_COMMON *const cm, aom_reader *r, aom_cdf_prob *const cdf, const MB_MODE_INFO *const mbmi, int mi_col, int mi_row) { int reduced_delta_lflevel = 0; const BLOCK_SIZE bsize = mbmi->sb_type; const int b_col = mi_col & (cm->seq_params.mib_size - 1); const int b_row = mi_row & (cm->seq_params.mib_size - 1); const int read_delta_lf_flag = (b_col == 0 && b_row == 0); if ((bsize != cm->seq_params.sb_size || mbmi->skip == 0) && read_delta_lf_flag) { int abs = aom_read_symbol(r, cdf, DELTA_LF_PROBS + 1, ACCT_STR); const int smallval = (abs < DELTA_LF_SMALL); if (!smallval) { const int rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1; const int thr = (1 << rem_bits) + 1; abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr; } const int sign = abs ? aom_read_bit(r, ACCT_STR) : 1; reduced_delta_lflevel = sign ? -abs : abs; } return reduced_delta_lflevel; } static UV_PREDICTION_MODE read_intra_mode_uv(FRAME_CONTEXT *ec_ctx, aom_reader *r, CFL_ALLOWED_TYPE cfl_allowed, PREDICTION_MODE y_mode) { const UV_PREDICTION_MODE uv_mode = aom_read_symbol(r, ec_ctx->uv_mode_cdf[cfl_allowed][y_mode], UV_INTRA_MODES - !cfl_allowed, ACCT_STR); return uv_mode; } static int read_cfl_alphas(FRAME_CONTEXT *const ec_ctx, aom_reader *r, int *signs_out) { const int joint_sign = aom_read_symbol(r, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS, "cfl:signs"); int idx = 0; // Magnitudes are only coded for nonzero values if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; idx = aom_read_symbol(r, cdf_u, CFL_ALPHABET_SIZE, "cfl:alpha_u") << CFL_ALPHABET_SIZE_LOG2; } if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; idx += aom_read_symbol(r, cdf_v, CFL_ALPHABET_SIZE, "cfl:alpha_v"); } *signs_out = joint_sign; return idx; } static INTERINTRA_MODE read_interintra_mode(MACROBLOCKD *xd, aom_reader *r, int size_group) { const INTERINTRA_MODE ii_mode = (INTERINTRA_MODE)aom_read_symbol( r, xd->tile_ctx->interintra_mode_cdf[size_group], INTERINTRA_MODES, ACCT_STR); return ii_mode; } static PREDICTION_MODE read_inter_mode(FRAME_CONTEXT *ec_ctx, aom_reader *r, int16_t ctx) { int16_t mode_ctx = ctx & NEWMV_CTX_MASK; int is_newmv, is_zeromv, is_refmv; is_newmv = aom_read_symbol(r, ec_ctx->newmv_cdf[mode_ctx], 2, ACCT_STR) == 0; if (is_newmv) return NEWMV; mode_ctx = (ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; is_zeromv = aom_read_symbol(r, ec_ctx->zeromv_cdf[mode_ctx], 2, ACCT_STR) == 0; if (is_zeromv) return GLOBALMV; mode_ctx = (ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; is_refmv = aom_read_symbol(r, ec_ctx->refmv_cdf[mode_ctx], 2, ACCT_STR) == 0; if (is_refmv) return NEARESTMV; else return NEARMV; } static void read_drl_idx(FRAME_CONTEXT *ec_ctx, MACROBLOCKD *xd, MB_MODE_INFO *mbmi, aom_reader *r) { uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); mbmi->ref_mv_idx = 0; if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) { for (int idx = 0; idx < 2; ++idx) { if (xd->ref_mv_count[ref_frame_type] > idx + 1) { uint8_t drl_ctx = av1_drl_ctx(xd->ref_mv_stack[ref_frame_type], idx); int drl_idx = aom_read_symbol(r, ec_ctx->drl_cdf[drl_ctx], 2, ACCT_STR); mbmi->ref_mv_idx = idx + drl_idx; if (!drl_idx) return; } } } if (have_nearmv_in_inter_mode(mbmi->mode)) { // Offset the NEARESTMV mode. // TODO(jingning): Unify the two syntax decoding loops after the NEARESTMV // mode is factored in. for (int idx = 1; idx < 3; ++idx) { if (xd->ref_mv_count[ref_frame_type] > idx + 1) { uint8_t drl_ctx = av1_drl_ctx(xd->ref_mv_stack[ref_frame_type], idx); int drl_idx = aom_read_symbol(r, ec_ctx->drl_cdf[drl_ctx], 2, ACCT_STR); mbmi->ref_mv_idx = idx + drl_idx - 1; if (!drl_idx) return; } } } } static MOTION_MODE read_motion_mode(AV1_COMMON *cm, MACROBLOCKD *xd, MB_MODE_INFO *mbmi, aom_reader *r) { if (cm->switchable_motion_mode == 0) return SIMPLE_TRANSLATION; if (mbmi->skip_mode) return SIMPLE_TRANSLATION; const MOTION_MODE last_motion_mode_allowed = motion_mode_allowed(xd->global_motion, xd, mbmi, cm->allow_warped_motion); int motion_mode; if (last_motion_mode_allowed == SIMPLE_TRANSLATION) return SIMPLE_TRANSLATION; if (last_motion_mode_allowed == OBMC_CAUSAL) { motion_mode = aom_read_symbol(r, xd->tile_ctx->obmc_cdf[mbmi->sb_type], 2, ACCT_STR); return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode); } else { motion_mode = aom_read_symbol(r, xd->tile_ctx->motion_mode_cdf[mbmi->sb_type], MOTION_MODES, ACCT_STR); return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode); } } static PREDICTION_MODE read_inter_compound_mode(MACROBLOCKD *xd, aom_reader *r, int16_t ctx) { const int mode = aom_read_symbol(r, xd->tile_ctx->inter_compound_mode_cdf[ctx], INTER_COMPOUND_MODES, ACCT_STR); assert(is_inter_compound_mode(NEAREST_NEARESTMV + mode)); return NEAREST_NEARESTMV + mode; } int av1_neg_deinterleave(int diff, int ref, int max) { if (!ref) return diff; if (ref >= (max - 1)) return max - diff - 1; if (2 * ref < max) { if (diff <= 2 * ref) { if (diff & 1) return ref + ((diff + 1) >> 1); else return ref - (diff >> 1); } return diff; } else { if (diff <= 2 * (max - ref - 1)) { if (diff & 1) return ref + ((diff + 1) >> 1); else return ref - (diff >> 1); } return max - (diff + 1); } } static int read_segment_id(AV1_COMMON *const cm, const MACROBLOCKD *const xd, int mi_row, int mi_col, aom_reader *r, int skip) { int cdf_num; const int pred = av1_get_spatial_seg_pred(cm, xd, mi_row, mi_col, &cdf_num); if (skip) return pred; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; struct segmentation *const seg = &cm->seg; struct segmentation_probs *const segp = &ec_ctx->seg; aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num]; const int coded_id = aom_read_symbol(r, pred_cdf, MAX_SEGMENTS, ACCT_STR); const int segment_id = av1_neg_deinterleave(coded_id, pred, seg->last_active_segid + 1); if (segment_id < 0 || segment_id > seg->last_active_segid) { aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, "Corrupted segment_ids"); } return segment_id; } static int dec_get_segment_id(const AV1_COMMON *cm, const uint8_t *segment_ids, int mi_offset, int x_mis, int y_mis) { int segment_id = INT_MAX; for (int y = 0; y < y_mis; y++) for (int x = 0; x < x_mis; x++) segment_id = AOMMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]); assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); return segment_id; } static void set_segment_id(AV1_COMMON *cm, int mi_offset, int x_mis, int y_mis, int segment_id) { assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); for (int y = 0; y < y_mis; y++) for (int x = 0; x < x_mis; x++) cm->current_frame_seg_map[mi_offset + y * cm->mi_cols + x] = segment_id; } static int read_intra_segment_id(AV1_COMMON *const cm, const MACROBLOCKD *const xd, int mi_row, int mi_col, int bsize, aom_reader *r, int skip) { struct segmentation *const seg = &cm->seg; if (!seg->enabled) return 0; // Default for disabled segmentation assert(seg->update_map && !seg->temporal_update); const int mi_offset = mi_row * cm->mi_cols + mi_col; const int bw = mi_size_wide[bsize]; const int bh = mi_size_high[bsize]; const int x_mis = AOMMIN(cm->mi_cols - mi_col, bw); const int y_mis = AOMMIN(cm->mi_rows - mi_row, bh); const int segment_id = read_segment_id(cm, xd, mi_row, mi_col, r, skip); set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id); return segment_id; } static void copy_segment_id(const AV1_COMMON *cm, const uint8_t *last_segment_ids, uint8_t *current_segment_ids, int mi_offset, int x_mis, int y_mis) { for (int y = 0; y < y_mis; y++) for (int x = 0; x < x_mis; x++) current_segment_ids[mi_offset + y * cm->mi_cols + x] = last_segment_ids ? last_segment_ids[mi_offset + y * cm->mi_cols + x] : 0; } static int get_predicted_segment_id(AV1_COMMON *const cm, int mi_offset, int x_mis, int y_mis) { return cm->last_frame_seg_map ? dec_get_segment_id(cm, cm->last_frame_seg_map, mi_offset, x_mis, y_mis) : 0; } static int read_inter_segment_id(AV1_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, int preskip, aom_reader *r) { struct segmentation *const seg = &cm->seg; MB_MODE_INFO *const mbmi = xd->mi[0]; const int mi_offset = mi_row * cm->mi_cols + mi_col; const int bw = mi_size_wide[mbmi->sb_type]; const int bh = mi_size_high[mbmi->sb_type]; // TODO(slavarnway): move x_mis, y_mis into xd ????? const int x_mis = AOMMIN(cm->mi_cols - mi_col, bw); const int y_mis = AOMMIN(cm->mi_rows - mi_row, bh); if (!seg->enabled) return 0; // Default for disabled segmentation if (!seg->update_map) { copy_segment_id(cm, cm->last_frame_seg_map, cm->current_frame_seg_map, mi_offset, x_mis, y_mis); return get_predicted_segment_id(cm, mi_offset, x_mis, y_mis); } int segment_id; if (preskip) { if (!seg->segid_preskip) return 0; } else { if (seg->segid_preskip) return mbmi->segment_id; if (mbmi->skip) { if (seg->temporal_update) { mbmi->seg_id_predicted = 0; } segment_id = read_segment_id(cm, xd, mi_row, mi_col, r, 1); set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id); return segment_id; } } if (seg->temporal_update) { const int ctx = av1_get_pred_context_seg_id(xd); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; struct segmentation_probs *const segp = &ec_ctx->seg; aom_cdf_prob *pred_cdf = segp->pred_cdf[ctx]; mbmi->seg_id_predicted = aom_read_symbol(r, pred_cdf, 2, ACCT_STR); if (mbmi->seg_id_predicted) { segment_id = get_predicted_segment_id(cm, mi_offset, x_mis, y_mis); } else { segment_id = read_segment_id(cm, xd, mi_row, mi_col, r, 0); } } else { segment_id = read_segment_id(cm, xd, mi_row, mi_col, r, 0); } set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id); return segment_id; } static int read_skip_mode(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id, aom_reader *r) { if (!cm->skip_mode_flag) return 0; if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { return 0; } if (!is_comp_ref_allowed(xd->mi[0]->sb_type)) return 0; if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) || segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { // These features imply single-reference mode, while skip mode implies // compound reference. Hence, the two are mutually exclusive. // In other words, skip_mode is implicitly 0 here. return 0; } const int ctx = av1_get_skip_mode_context(xd); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; const int skip_mode = aom_read_symbol(r, ec_ctx->skip_mode_cdfs[ctx], 2, ACCT_STR); return skip_mode; } static int read_skip(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id, aom_reader *r) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { return 1; } else { const int ctx = av1_get_skip_context(xd); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; const int skip = aom_read_symbol(r, ec_ctx->skip_cdfs[ctx], 2, ACCT_STR); return skip; } } // Merge the sorted list of cached colors(cached_colors[0...n_cached_colors-1]) // and the sorted list of transmitted colors(colors[n_cached_colors...n-1]) into // one single sorted list(colors[...]). static void merge_colors(uint16_t *colors, uint16_t *cached_colors, int n_colors, int n_cached_colors) { if (n_cached_colors == 0) return; int cache_idx = 0, trans_idx = n_cached_colors; for (int i = 0; i < n_colors; ++i) { if (cache_idx < n_cached_colors && (trans_idx >= n_colors || cached_colors[cache_idx] <= colors[trans_idx])) { colors[i] = cached_colors[cache_idx++]; } else { assert(trans_idx < n_colors); colors[i] = colors[trans_idx++]; } } } static void read_palette_colors_y(MACROBLOCKD *const xd, int bit_depth, PALETTE_MODE_INFO *const pmi, aom_reader *r) { uint16_t color_cache[2 * PALETTE_MAX_SIZE]; uint16_t cached_colors[PALETTE_MAX_SIZE]; const int n_cache = av1_get_palette_cache(xd, 0, color_cache); const int n = pmi->palette_size[0]; int idx = 0; for (int i = 0; i < n_cache && idx < n; ++i) if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i]; if (idx < n) { const int n_cached_colors = idx; pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR); if (idx < n) { const int min_bits = bit_depth - 3; int bits = min_bits + aom_read_literal(r, 2, ACCT_STR); int range = (1 << bit_depth) - pmi->palette_colors[idx - 1] - 1; for (; idx < n; ++idx) { assert(range >= 0); const int delta = aom_read_literal(r, bits, ACCT_STR) + 1; pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta, 0, (1 << bit_depth) - 1); range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]); bits = AOMMIN(bits, av1_ceil_log2(range)); } } merge_colors(pmi->palette_colors, cached_colors, n, n_cached_colors); } else { memcpy(pmi->palette_colors, cached_colors, n * sizeof(cached_colors[0])); } } static void read_palette_colors_uv(MACROBLOCKD *const xd, int bit_depth, PALETTE_MODE_INFO *const pmi, aom_reader *r) { const int n = pmi->palette_size[1]; // U channel colors. uint16_t color_cache[2 * PALETTE_MAX_SIZE]; uint16_t cached_colors[PALETTE_MAX_SIZE]; const int n_cache = av1_get_palette_cache(xd, 1, color_cache); int idx = 0; for (int i = 0; i < n_cache && idx < n; ++i) if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i]; if (idx < n) { const int n_cached_colors = idx; idx += PALETTE_MAX_SIZE; pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR); if (idx < PALETTE_MAX_SIZE + n) { const int min_bits = bit_depth - 3; int bits = min_bits + aom_read_literal(r, 2, ACCT_STR); int range = (1 << bit_depth) - pmi->palette_colors[idx - 1]; for (; idx < PALETTE_MAX_SIZE + n; ++idx) { assert(range >= 0); const int delta = aom_read_literal(r, bits, ACCT_STR); pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta, 0, (1 << bit_depth) - 1); range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]); bits = AOMMIN(bits, av1_ceil_log2(range)); } } merge_colors(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors, n, n_cached_colors); } else { memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors, n * sizeof(cached_colors[0])); } // V channel colors. if (aom_read_bit(r, ACCT_STR)) { // Delta encoding. const int min_bits_v = bit_depth - 4; const int max_val = 1 << bit_depth; int bits = min_bits_v + aom_read_literal(r, 2, ACCT_STR); pmi->palette_colors[2 * PALETTE_MAX_SIZE] = aom_read_literal(r, bit_depth, ACCT_STR); for (int i = 1; i < n; ++i) { int delta = aom_read_literal(r, bits, ACCT_STR); if (delta && aom_read_bit(r, ACCT_STR)) delta = -delta; int val = (int)pmi->palette_colors[2 * PALETTE_MAX_SIZE + i - 1] + delta; if (val < 0) val += max_val; if (val >= max_val) val -= max_val; pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] = val; } } else { for (int i = 0; i < n; ++i) { pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] = aom_read_literal(r, bit_depth, ACCT_STR); } } } static void read_palette_mode_info(AV1_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, aom_reader *r) { const int num_planes = av1_num_planes(cm); MB_MODE_INFO *const mbmi = xd->mi[0]; const BLOCK_SIZE bsize = mbmi->sb_type; assert(av1_allow_palette(cm->allow_screen_content_tools, bsize)); PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); if (mbmi->mode == DC_PRED) { const int palette_mode_ctx = av1_get_palette_mode_ctx(xd); const int modev = aom_read_symbol( r, xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_mode_ctx], 2, ACCT_STR); if (modev) { pmi->palette_size[0] = aom_read_symbol(r, xd->tile_ctx->palette_y_size_cdf[bsize_ctx], PALETTE_SIZES, ACCT_STR) + 2; read_palette_colors_y(xd, cm->seq_params.bit_depth, pmi, r); } } if (num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y)) { const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); const int modev = aom_read_symbol( r, xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2, ACCT_STR); if (modev) { pmi->palette_size[1] = aom_read_symbol(r, xd->tile_ctx->palette_uv_size_cdf[bsize_ctx], PALETTE_SIZES, ACCT_STR) + 2; read_palette_colors_uv(xd, cm->seq_params.bit_depth, pmi, r); } } } static int read_angle_delta(aom_reader *r, aom_cdf_prob *cdf) { const int sym = aom_read_symbol(r, cdf, 2 * MAX_ANGLE_DELTA + 1, ACCT_STR); return sym - MAX_ANGLE_DELTA; } static void read_filter_intra_mode_info(const AV1_COMMON *const cm, MACROBLOCKD *const xd, aom_reader *r) { MB_MODE_INFO *const mbmi = xd->mi[0]; FILTER_INTRA_MODE_INFO *filter_intra_mode_info = &mbmi->filter_intra_mode_info; if (av1_filter_intra_allowed(cm, mbmi)) { filter_intra_mode_info->use_filter_intra = aom_read_symbol( r, xd->tile_ctx->filter_intra_cdfs[mbmi->sb_type], 2, ACCT_STR); if (filter_intra_mode_info->use_filter_intra) { filter_intra_mode_info->filter_intra_mode = aom_read_symbol( r, xd->tile_ctx->filter_intra_mode_cdf, FILTER_INTRA_MODES, ACCT_STR); } } else { filter_intra_mode_info->use_filter_intra = 0; } } void av1_read_tx_type(const AV1_COMMON *const cm, MACROBLOCKD *xd, int blk_row, int blk_col, TX_SIZE tx_size, aom_reader *r) { MB_MODE_INFO *mbmi = xd->mi[0]; const int txk_type_idx = av1_get_txk_type_index(mbmi->sb_type, blk_row, blk_col); TX_TYPE *tx_type = &mbmi->txk_type[txk_type_idx]; *tx_type = DCT_DCT; // No need to read transform type if block is skipped. if (mbmi->skip || segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) return; // No need to read transform type for lossless mode(qindex==0). const int qindex = cm->seg.enabled ? xd->qindex[mbmi->segment_id] : cm->base_qindex; if (qindex <= 0) return; const int inter_block = is_inter_block(mbmi); if (get_ext_tx_types(tx_size, inter_block, cm->reduced_tx_set_used) > 1) { const TxSetType tx_set_type = av1_get_ext_tx_set_type(tx_size, inter_block, cm->reduced_tx_set_used); const int eset = get_ext_tx_set(tx_size, inter_block, cm->reduced_tx_set_used); // eset == 0 should correspond to a set with only DCT_DCT and // there is no need to read the tx_type assert(eset != 0); const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; if (inter_block) { *tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol( r, ec_ctx->inter_ext_tx_cdf[eset][square_tx_size], av1_num_ext_tx_set[tx_set_type], ACCT_STR)]; } else { const PREDICTION_MODE intra_mode = mbmi->filter_intra_mode_info.use_filter_intra ? fimode_to_intradir[mbmi->filter_intra_mode_info .filter_intra_mode] : mbmi->mode; *tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol( r, ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_mode], av1_num_ext_tx_set[tx_set_type], ACCT_STR)]; } } } static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref, nmv_context *ctx, MvSubpelPrecision precision); static INLINE int is_mv_valid(const MV *mv); static INLINE int assign_dv(AV1_COMMON *cm, MACROBLOCKD *xd, int_mv *mv, const int_mv *ref_mv, int mi_row, int mi_col, BLOCK_SIZE bsize, aom_reader *r) { FRAME_CONTEXT *ec_ctx = xd->tile_ctx; read_mv(r, &mv->as_mv, &ref_mv->as_mv, &ec_ctx->ndvc, MV_SUBPEL_NONE); // DV should not have sub-pel. assert((mv->as_mv.col & 7) == 0); assert((mv->as_mv.row & 7) == 0); mv->as_mv.col = (mv->as_mv.col >> 3) * 8; mv->as_mv.row = (mv->as_mv.row >> 3) * 8; int valid = is_mv_valid(&mv->as_mv) && av1_is_dv_valid(mv->as_mv, cm, xd, mi_row, mi_col, bsize, cm->seq_params.mib_size_log2); return valid; } static void read_intrabc_info(AV1_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, aom_reader *r) { MB_MODE_INFO *const mbmi = xd->mi[0]; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; mbmi->use_intrabc = aom_read_symbol(r, ec_ctx->intrabc_cdf, 2, ACCT_STR); if (mbmi->use_intrabc) { BLOCK_SIZE bsize = mbmi->sb_type; mbmi->mode = DC_PRED; mbmi->uv_mode = UV_DC_PRED; mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR); mbmi->motion_mode = SIMPLE_TRANSLATION; int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES]; int_mv ref_mvs[INTRA_FRAME + 1][MAX_MV_REF_CANDIDATES]; int_mv global_mvs[REF_FRAMES]; av1_find_mv_refs(cm, xd, mbmi, INTRA_FRAME, xd->ref_mv_count, xd->ref_mv_stack, ref_mvs, global_mvs, mi_row, mi_col, inter_mode_ctx); int_mv nearestmv, nearmv; av1_find_best_ref_mvs(0, ref_mvs[INTRA_FRAME], &nearestmv, &nearmv, 0); int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv; if (dv_ref.as_int == 0) av1_find_ref_dv(&dv_ref, &xd->tile, cm->seq_params.mib_size, mi_row, mi_col); // Ref DV should not have sub-pel. int valid_dv = (dv_ref.as_mv.col & 7) == 0 && (dv_ref.as_mv.row & 7) == 0; dv_ref.as_mv.col = (dv_ref.as_mv.col >> 3) * 8; dv_ref.as_mv.row = (dv_ref.as_mv.row >> 3) * 8; valid_dv = valid_dv && assign_dv(cm, xd, &mbmi->mv[0], &dv_ref, mi_row, mi_col, bsize, r); if (!valid_dv) { // Intra bc motion vectors are not valid - signal corrupt frame aom_merge_corrupted_flag(&xd->corrupted, 1); } } } // If delta q is present, reads delta_q index. // Also reads delta_q loop filter levels, if present. static void read_delta_q_params(AV1_COMMON *const cm, MACROBLOCKD *const xd, const int mi_row, const int mi_col, aom_reader *r) { if (cm->delta_q_present_flag) { MB_MODE_INFO *const mbmi = xd->mi[0]; xd->current_qindex += read_delta_qindex(cm, xd, r, mbmi, mi_col, mi_row) * cm->delta_q_res; /* Normative: Clamp to [1,MAXQ] to not interfere with lossless mode */ xd->current_qindex = clamp(xd->current_qindex, 1, MAXQ); FRAME_CONTEXT *const ec_ctx = xd->tile_ctx; if (cm->delta_lf_present_flag) { if (cm->delta_lf_multi) { const int frame_lf_count = av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { const int tmp_lvl = xd->delta_lf[lf_id] + read_delta_lflevel(cm, r, ec_ctx->delta_lf_multi_cdf[lf_id], mbmi, mi_col, mi_row) * cm->delta_lf_res; mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id] = clamp(tmp_lvl, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); } } else { const int tmp_lvl = xd->delta_lf_from_base + read_delta_lflevel(cm, r, ec_ctx->delta_lf_cdf, mbmi, mi_col, mi_row) * cm->delta_lf_res; mbmi->delta_lf_from_base = xd->delta_lf_from_base = clamp(tmp_lvl, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); } } } } static void read_intra_frame_mode_info(AV1_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, aom_reader *r) { MB_MODE_INFO *const mbmi = xd->mi[0]; const MB_MODE_INFO *above_mi = xd->above_mbmi; const MB_MODE_INFO *left_mi = xd->left_mbmi; const BLOCK_SIZE bsize = mbmi->sb_type; struct segmentation *const seg = &cm->seg; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; if (seg->segid_preskip) mbmi->segment_id = read_intra_segment_id(cm, xd, mi_row, mi_col, bsize, r, 0); mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r); if (!seg->segid_preskip) mbmi->segment_id = read_intra_segment_id(cm, xd, mi_row, mi_col, bsize, r, mbmi->skip); read_cdef(cm, r, xd, mi_col, mi_row); read_delta_q_params(cm, xd, mi_row, mi_col, r); mbmi->current_qindex = xd->current_qindex; mbmi->ref_frame[0] = INTRA_FRAME; mbmi->ref_frame[1] = NONE_FRAME; mbmi->palette_mode_info.palette_size[0] = 0; mbmi->palette_mode_info.palette_size[1] = 0; mbmi->filter_intra_mode_info.use_filter_intra = 0; xd->above_txfm_context = cm->above_txfm_context[xd->tile.tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); if (av1_allow_intrabc(cm)) { read_intrabc_info(cm, xd, mi_row, mi_col, r); if (is_intrabc_block(mbmi)) return; } mbmi->mode = read_intra_mode(r, get_y_mode_cdf(ec_ctx, above_mi, left_mi)); const int use_angle_delta = av1_use_angle_delta(bsize); mbmi->angle_delta[PLANE_TYPE_Y] = (use_angle_delta && av1_is_directional_mode(mbmi->mode)) ? read_angle_delta(r, ec_ctx->angle_delta_cdf[mbmi->mode - V_PRED]) : 0; if (!cm->seq_params.monochrome && is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y)) { xd->cfl.is_chroma_reference = 1; mbmi->uv_mode = read_intra_mode_uv(ec_ctx, r, is_cfl_allowed(xd), mbmi->mode); if (mbmi->uv_mode == UV_CFL_PRED) { mbmi->cfl_alpha_idx = read_cfl_alphas(ec_ctx, r, &mbmi->cfl_alpha_signs); } mbmi->angle_delta[PLANE_TYPE_UV] = (use_angle_delta && av1_is_directional_mode(get_uv_mode(mbmi->uv_mode))) ? read_angle_delta(r, ec_ctx->angle_delta_cdf[mbmi->uv_mode - V_PRED]) : 0; } else { // Avoid decoding angle_info if there is is no chroma prediction mbmi->uv_mode = UV_DC_PRED; xd->cfl.is_chroma_reference = 0; } xd->cfl.store_y = store_cfl_required(cm, xd); if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) read_palette_mode_info(cm, xd, mi_row, mi_col, r); read_filter_intra_mode_info(cm, xd, r); } static int read_mv_component(aom_reader *r, nmv_component *mvcomp, int use_subpel, int usehp) { int mag, d, fr, hp; const int sign = aom_read_symbol(r, mvcomp->sign_cdf, 2, ACCT_STR); const int mv_class = aom_read_symbol(r, mvcomp->classes_cdf, MV_CLASSES, ACCT_STR); const int class0 = mv_class == MV_CLASS_0; // Integer part if (class0) { d = aom_read_symbol(r, mvcomp->class0_cdf, CLASS0_SIZE, ACCT_STR); mag = 0; } else { const int n = mv_class + CLASS0_BITS - 1; // number of bits d = 0; for (int i = 0; i < n; ++i) d |= aom_read_symbol(r, mvcomp->bits_cdf[i], 2, ACCT_STR) << i; mag = CLASS0_SIZE << (mv_class + 2); } if (use_subpel) { // Fractional part fr = aom_read_symbol(r, class0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf, MV_FP_SIZE, ACCT_STR); // High precision part (if hp is not used, the default value of the hp is 1) hp = usehp ? aom_read_symbol( r, class0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf, 2, ACCT_STR) : 1; } else { fr = 3; hp = 1; } // Result mag += ((d << 3) | (fr << 1) | hp) + 1; return sign ? -mag : mag; } static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref, nmv_context *ctx, MvSubpelPrecision precision) { MV diff = kZeroMv; const MV_JOINT_TYPE joint_type = (MV_JOINT_TYPE)aom_read_symbol(r, ctx->joints_cdf, MV_JOINTS, ACCT_STR); if (mv_joint_vertical(joint_type)) diff.row = read_mv_component(r, &ctx->comps[0], precision > MV_SUBPEL_NONE, precision > MV_SUBPEL_LOW_PRECISION); if (mv_joint_horizontal(joint_type)) diff.col = read_mv_component(r, &ctx->comps[1], precision > MV_SUBPEL_NONE, precision > MV_SUBPEL_LOW_PRECISION); mv->row = ref->row + diff.row; mv->col = ref->col + diff.col; } static REFERENCE_MODE read_block_reference_mode(AV1_COMMON *cm, const MACROBLOCKD *xd, aom_reader *r) { if (!is_comp_ref_allowed(xd->mi[0]->sb_type)) return SINGLE_REFERENCE; if (cm->reference_mode == REFERENCE_MODE_SELECT) { const int ctx = av1_get_reference_mode_context(xd); const REFERENCE_MODE mode = (REFERENCE_MODE)aom_read_symbol( r, xd->tile_ctx->comp_inter_cdf[ctx], 2, ACCT_STR); return mode; // SINGLE_REFERENCE or COMPOUND_REFERENCE } else { assert(cm->reference_mode == SINGLE_REFERENCE); return cm->reference_mode; } } #define READ_REF_BIT(pname) \ aom_read_symbol(r, av1_get_pred_cdf_##pname(xd), 2, ACCT_STR) static COMP_REFERENCE_TYPE read_comp_reference_type(const MACROBLOCKD *xd, aom_reader *r) { const int ctx = av1_get_comp_reference_type_context(xd); const COMP_REFERENCE_TYPE comp_ref_type = (COMP_REFERENCE_TYPE)aom_read_symbol( r, xd->tile_ctx->comp_ref_type_cdf[ctx], 2, ACCT_STR); return comp_ref_type; // UNIDIR_COMP_REFERENCE or BIDIR_COMP_REFERENCE } static void set_ref_frames_for_skip_mode(AV1_COMMON *const cm, MV_REFERENCE_FRAME ref_frame[2]) { ref_frame[0] = LAST_FRAME + cm->ref_frame_idx_0; ref_frame[1] = LAST_FRAME + cm->ref_frame_idx_1; } // Read the referncence frame static void read_ref_frames(AV1_COMMON *const cm, MACROBLOCKD *const xd, aom_reader *r, int segment_id, MV_REFERENCE_FRAME ref_frame[2]) { if (xd->mi[0]->skip_mode) { set_ref_frames_for_skip_mode(cm, ref_frame); return; } if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { ref_frame[0] = (MV_REFERENCE_FRAME)get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME); ref_frame[1] = NONE_FRAME; } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) || segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { ref_frame[0] = LAST_FRAME; ref_frame[1] = NONE_FRAME; } else { const REFERENCE_MODE mode = read_block_reference_mode(cm, xd, r); if (mode == COMPOUND_REFERENCE) { const COMP_REFERENCE_TYPE comp_ref_type = read_comp_reference_type(xd, r); if (comp_ref_type == UNIDIR_COMP_REFERENCE) { const int bit = READ_REF_BIT(uni_comp_ref_p); if (bit) { ref_frame[0] = BWDREF_FRAME; ref_frame[1] = ALTREF_FRAME; } else { const int bit1 = READ_REF_BIT(uni_comp_ref_p1); if (bit1) { const int bit2 = READ_REF_BIT(uni_comp_ref_p2); if (bit2) { ref_frame[0] = LAST_FRAME; ref_frame[1] = GOLDEN_FRAME; } else { ref_frame[0] = LAST_FRAME; ref_frame[1] = LAST3_FRAME; } } else { ref_frame[0] = LAST_FRAME; ref_frame[1] = LAST2_FRAME; } } return; } assert(comp_ref_type == BIDIR_COMP_REFERENCE); const int idx = 1; const int bit = READ_REF_BIT(comp_ref_p); // Decode forward references. if (!bit) { const int bit1 = READ_REF_BIT(comp_ref_p1); ref_frame[!idx] = cm->comp_fwd_ref[bit1 ? 1 : 0]; } else { const int bit2 = READ_REF_BIT(comp_ref_p2); ref_frame[!idx] = cm->comp_fwd_ref[bit2 ? 3 : 2]; } // Decode backward references. const int bit_bwd = READ_REF_BIT(comp_bwdref_p); if (!bit_bwd) { const int bit1_bwd = READ_REF_BIT(comp_bwdref_p1); ref_frame[idx] = cm->comp_bwd_ref[bit1_bwd]; } else { ref_frame[idx] = cm->comp_bwd_ref[2]; } } else if (mode == SINGLE_REFERENCE) { const int bit0 = READ_REF_BIT(single_ref_p1); if (bit0) { const int bit1 = READ_REF_BIT(single_ref_p2); if (!bit1) { const int bit5 = READ_REF_BIT(single_ref_p6); ref_frame[0] = bit5 ? ALTREF2_FRAME : BWDREF_FRAME; } else { ref_frame[0] = ALTREF_FRAME; } } else { const int bit2 = READ_REF_BIT(single_ref_p3); if (bit2) { const int bit4 = READ_REF_BIT(single_ref_p5); ref_frame[0] = bit4 ? GOLDEN_FRAME : LAST3_FRAME; } else { const int bit3 = READ_REF_BIT(single_ref_p4); ref_frame[0] = bit3 ? LAST2_FRAME : LAST_FRAME; } } ref_frame[1] = NONE_FRAME; } else { assert(0 && "Invalid prediction mode."); } } } static INLINE void read_mb_interp_filter(AV1_COMMON *const cm, MACROBLOCKD *const xd, MB_MODE_INFO *const mbmi, aom_reader *r) { FRAME_CONTEXT *ec_ctx = xd->tile_ctx; if (!av1_is_interp_needed(xd)) { set_default_interp_filters(mbmi, cm->interp_filter); return; } if (cm->interp_filter != SWITCHABLE) { mbmi->interp_filters = av1_broadcast_interp_filter(cm->interp_filter); } else { InterpFilter ref0_filter[2] = { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR }; for (int dir = 0; dir < 2; ++dir) { const int ctx = av1_get_pred_context_switchable_interp(xd, dir); ref0_filter[dir] = (InterpFilter)aom_read_symbol( r, ec_ctx->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS, ACCT_STR); if (cm->seq_params.enable_dual_filter == 0) { ref0_filter[1] = ref0_filter[0]; break; } } // The index system works as: (0, 1) -> (vertical, horizontal) filter types mbmi->interp_filters = av1_make_interp_filters(ref0_filter[0], ref0_filter[1]); } } static void read_intra_block_mode_info(AV1_COMMON *const cm, const int mi_row, const int mi_col, MACROBLOCKD *const xd, MB_MODE_INFO *const mbmi, aom_reader *r) { const BLOCK_SIZE bsize = mbmi->sb_type; const int use_angle_delta = av1_use_angle_delta(bsize); mbmi->ref_frame[0] = INTRA_FRAME; mbmi->ref_frame[1] = NONE_FRAME; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; mbmi->mode = read_intra_mode(r, ec_ctx->y_mode_cdf[size_group_lookup[bsize]]); mbmi->angle_delta[PLANE_TYPE_Y] = use_angle_delta && av1_is_directional_mode(mbmi->mode) ? read_angle_delta(r, ec_ctx->angle_delta_cdf[mbmi->mode - V_PRED]) : 0; const int has_chroma = is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); xd->cfl.is_chroma_reference = has_chroma; if (!cm->seq_params.monochrome && has_chroma) { mbmi->uv_mode = read_intra_mode_uv(ec_ctx, r, is_cfl_allowed(xd), mbmi->mode); if (mbmi->uv_mode == UV_CFL_PRED) { mbmi->cfl_alpha_idx = read_cfl_alphas(xd->tile_ctx, r, &mbmi->cfl_alpha_signs); } mbmi->angle_delta[PLANE_TYPE_UV] = use_angle_delta && av1_is_directional_mode(get_uv_mode(mbmi->uv_mode)) ? read_angle_delta(r, ec_ctx->angle_delta_cdf[mbmi->uv_mode - V_PRED]) : 0; } else { // Avoid decoding angle_info if there is is no chroma prediction mbmi->uv_mode = UV_DC_PRED; } xd->cfl.store_y = store_cfl_required(cm, xd); mbmi->palette_mode_info.palette_size[0] = 0; mbmi->palette_mode_info.palette_size[1] = 0; if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) read_palette_mode_info(cm, xd, mi_row, mi_col, r); read_filter_intra_mode_info(cm, xd, r); } static INLINE int is_mv_valid(const MV *mv) { return mv->row > MV_LOW && mv->row < MV_UPP && mv->col > MV_LOW && mv->col < MV_UPP; } static INLINE int assign_mv(AV1_COMMON *cm, MACROBLOCKD *xd, PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame[2], int_mv mv[2], int_mv ref_mv[2], int_mv nearest_mv[2], int_mv near_mv[2], int mi_row, int mi_col, int is_compound, int allow_hp, aom_reader *r) { FRAME_CONTEXT *ec_ctx = xd->tile_ctx; MB_MODE_INFO *mbmi = xd->mi[0]; BLOCK_SIZE bsize = mbmi->sb_type; if (cm->cur_frame_force_integer_mv) { allow_hp = MV_SUBPEL_NONE; } switch (mode) { case NEWMV: { nmv_context *const nmvc = &ec_ctx->nmvc; read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp); break; } case NEARESTMV: { mv[0].as_int = nearest_mv[0].as_int; break; } case NEARMV: { mv[0].as_int = near_mv[0].as_int; break; } case GLOBALMV: { mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]], cm->allow_high_precision_mv, bsize, mi_col, mi_row, cm->cur_frame_force_integer_mv) .as_int; break; } case NEW_NEWMV: { assert(is_compound); for (int i = 0; i < 2; ++i) { nmv_context *const nmvc = &ec_ctx->nmvc; read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, nmvc, allow_hp); } break; } case NEAREST_NEARESTMV: { assert(is_compound); mv[0].as_int = nearest_mv[0].as_int; mv[1].as_int = nearest_mv[1].as_int; break; } case NEAR_NEARMV: { assert(is_compound); mv[0].as_int = near_mv[0].as_int; mv[1].as_int = near_mv[1].as_int; break; } case NEW_NEARESTMV: { nmv_context *const nmvc = &ec_ctx->nmvc; read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp); assert(is_compound); mv[1].as_int = nearest_mv[1].as_int; break; } case NEAREST_NEWMV: { nmv_context *const nmvc = &ec_ctx->nmvc; mv[0].as_int = nearest_mv[0].as_int; read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, nmvc, allow_hp); assert(is_compound); break; } case NEAR_NEWMV: { nmv_context *const nmvc = &ec_ctx->nmvc; mv[0].as_int = near_mv[0].as_int; read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, nmvc, allow_hp); assert(is_compound); break; } case NEW_NEARMV: { nmv_context *const nmvc = &ec_ctx->nmvc; read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp); assert(is_compound); mv[1].as_int = near_mv[1].as_int; break; } case GLOBAL_GLOBALMV: { assert(is_compound); mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]], cm->allow_high_precision_mv, bsize, mi_col, mi_row, cm->cur_frame_force_integer_mv) .as_int; mv[1].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[1]], cm->allow_high_precision_mv, bsize, mi_col, mi_row, cm->cur_frame_force_integer_mv) .as_int; break; } default: { return 0; } } int ret = is_mv_valid(&mv[0].as_mv); if (is_compound) { ret = ret && is_mv_valid(&mv[1].as_mv); } return ret; } static int read_is_inter_block(AV1_COMMON *const cm, MACROBLOCKD *const xd, int segment_id, aom_reader *r) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { const int frame = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME); if (frame < LAST_FRAME) return 0; return frame != INTRA_FRAME; } if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { return 1; } const int ctx = av1_get_intra_inter_context(xd); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; const int is_inter = aom_read_symbol(r, ec_ctx->intra_inter_cdf[ctx], 2, ACCT_STR); return is_inter; } #if DEC_MISMATCH_DEBUG static void dec_dump_logs(AV1_COMMON *cm, MB_MODE_INFO *const mbmi, int mi_row, int mi_col, int16_t mode_ctx) { int_mv mv[2] = { { 0 } }; for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) mv[ref].as_mv = mbmi->mv[ref].as_mv; const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; int16_t zeromv_ctx = -1; int16_t refmv_ctx = -1; if (mbmi->mode != NEWMV) { zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; if (mbmi->mode != GLOBALMV) refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; } #define FRAME_TO_CHECK 11 if (cm->current_video_frame == FRAME_TO_CHECK && cm->show_frame == 1) { printf( "=== DECODER ===: " "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, " "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, " "ref[1]=%d, motion_mode=%d, mode_ctx=%d, " "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n", cm->current_video_frame, mi_row, mi_col, mbmi->skip_mode, mbmi->mode, mbmi->sb_type, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col, mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0], mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, zeromv_ctx, refmv_ctx, mbmi->tx_size); } } #endif // DEC_MISMATCH_DEBUG static void read_inter_block_mode_info(AV1Decoder *const pbi, MACROBLOCKD *const xd, MB_MODE_INFO *const mbmi, int mi_row, int mi_col, aom_reader *r) { AV1_COMMON *const cm = &pbi->common; const BLOCK_SIZE bsize = mbmi->sb_type; const int allow_hp = cm->allow_high_precision_mv; int_mv nearestmv[2], nearmv[2]; int_mv ref_mvs[MODE_CTX_REF_FRAMES][MAX_MV_REF_CANDIDATES] = { { { 0 } } }; int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES]; int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; mbmi->uv_mode = UV_DC_PRED; mbmi->palette_mode_info.palette_size[0] = 0; mbmi->palette_mode_info.palette_size[1] = 0; av1_collect_neighbors_ref_counts(xd); read_ref_frames(cm, xd, r, mbmi->segment_id, mbmi->ref_frame); const int is_compound = has_second_ref(mbmi); MV_REFERENCE_FRAME ref_frame = av1_ref_frame_type(mbmi->ref_frame); int_mv global_mvs[REF_FRAMES]; av1_find_mv_refs(cm, xd, mbmi, ref_frame, xd->ref_mv_count, xd->ref_mv_stack, ref_mvs, global_mvs, mi_row, mi_col, inter_mode_ctx); int mode_ctx = av1_mode_context_analyzer(inter_mode_ctx, mbmi->ref_frame); mbmi->ref_mv_idx = 0; if (mbmi->skip_mode) { assert(is_compound); mbmi->mode = NEAREST_NEARESTMV; } else { if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) || segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_GLOBALMV)) { mbmi->mode = GLOBALMV; } else { if (is_compound) mbmi->mode = read_inter_compound_mode(xd, r, mode_ctx); else mbmi->mode = read_inter_mode(ec_ctx, r, mode_ctx); if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV || have_nearmv_in_inter_mode(mbmi->mode)) read_drl_idx(ec_ctx, xd, mbmi, r); } } if (is_compound != is_inter_compound_mode(mbmi->mode)) { aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, "Prediction mode %d invalid with ref frame %d %d", mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]); } if (!is_compound && mbmi->mode != GLOBALMV) { av1_find_best_ref_mvs(allow_hp, ref_mvs[mbmi->ref_frame[0]], &nearestmv[0], &nearmv[0], cm->cur_frame_force_integer_mv); } if (is_compound && mbmi->mode != GLOBAL_GLOBALMV) { int ref_mv_idx = mbmi->ref_mv_idx + 1; nearestmv[0] = xd->ref_mv_stack[ref_frame][0].this_mv; nearestmv[1] = xd->ref_mv_stack[ref_frame][0].comp_mv; nearmv[0] = xd->ref_mv_stack[ref_frame][ref_mv_idx].this_mv; nearmv[1] = xd->ref_mv_stack[ref_frame][ref_mv_idx].comp_mv; lower_mv_precision(&nearestmv[0].as_mv, allow_hp, cm->cur_frame_force_integer_mv); lower_mv_precision(&nearestmv[1].as_mv, allow_hp, cm->cur_frame_force_integer_mv); lower_mv_precision(&nearmv[0].as_mv, allow_hp, cm->cur_frame_force_integer_mv); lower_mv_precision(&nearmv[1].as_mv, allow_hp, cm->cur_frame_force_integer_mv); } else if (mbmi->ref_mv_idx > 0 && mbmi->mode == NEARMV) { int_mv cur_mv = xd->ref_mv_stack[mbmi->ref_frame[0]][1 + mbmi->ref_mv_idx].this_mv; nearmv[0] = cur_mv; } int_mv ref_mv[2]; ref_mv[0] = nearestmv[0]; ref_mv[1] = nearestmv[1]; if (is_compound) { int ref_mv_idx = mbmi->ref_mv_idx; // Special case: NEAR_NEWMV and NEW_NEARMV modes use // 1 + mbmi->ref_mv_idx (like NEARMV) instead of // mbmi->ref_mv_idx (like NEWMV) if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) ref_mv_idx = 1 + mbmi->ref_mv_idx; // TODO(jingning, yunqing): Do we need a lower_mv_precision() call here? if (compound_ref0_mode(mbmi->mode) == NEWMV) ref_mv[0] = xd->ref_mv_stack[ref_frame][ref_mv_idx].this_mv; if (compound_ref1_mode(mbmi->mode) == NEWMV) ref_mv[1] = xd->ref_mv_stack[ref_frame][ref_mv_idx].comp_mv; } else { if (mbmi->mode == NEWMV) { if (xd->ref_mv_count[ref_frame] > 1) ref_mv[0] = xd->ref_mv_stack[ref_frame][mbmi->ref_mv_idx].this_mv; } } if (mbmi->skip_mode) { assert(mbmi->mode == NEAREST_NEARESTMV); mbmi->mv[0].as_int = nearestmv[0].as_int; mbmi->mv[1].as_int = nearestmv[1].as_int; } else { int mv_corrupted_flag = !assign_mv(cm, xd, mbmi->mode, mbmi->ref_frame, mbmi->mv, ref_mv, nearestmv, nearmv, mi_row, mi_col, is_compound, allow_hp, r); aom_merge_corrupted_flag(&xd->corrupted, mv_corrupted_flag); } mbmi->use_wedge_interintra = 0; if (cm->seq_params.enable_interintra_compound && !mbmi->skip_mode && is_interintra_allowed(mbmi)) { const int bsize_group = size_group_lookup[bsize]; const int interintra = aom_read_symbol(r, ec_ctx->interintra_cdf[bsize_group], 2, ACCT_STR); assert(mbmi->ref_frame[1] == NONE_FRAME); if (interintra) { const INTERINTRA_MODE interintra_mode = read_interintra_mode(xd, r, bsize_group); mbmi->ref_frame[1] = INTRA_FRAME; mbmi->interintra_mode = interintra_mode; mbmi->angle_delta[PLANE_TYPE_Y] = 0; mbmi->angle_delta[PLANE_TYPE_UV] = 0; mbmi->filter_intra_mode_info.use_filter_intra = 0; if (is_interintra_wedge_used(bsize)) { mbmi->use_wedge_interintra = aom_read_symbol( r, ec_ctx->wedge_interintra_cdf[bsize], 2, ACCT_STR); if (mbmi->use_wedge_interintra) { mbmi->interintra_wedge_index = aom_read_symbol(r, ec_ctx->wedge_idx_cdf[bsize], 16, ACCT_STR); mbmi->interintra_wedge_sign = 0; } } } } for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; } mbmi->motion_mode = SIMPLE_TRANSLATION; if (is_motion_variation_allowed_bsize(mbmi->sb_type) && !mbmi->skip_mode && !has_second_ref(mbmi)) mbmi->num_proj_ref = findSamples(cm, xd, mi_row, mi_col, pts, pts_inref); av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col); if (mbmi->ref_frame[1] != INTRA_FRAME) mbmi->motion_mode = read_motion_mode(cm, xd, mbmi, r); // init mbmi->comp_group_idx = 0; mbmi->compound_idx = 1; mbmi->interinter_comp.type = COMPOUND_AVERAGE; if (has_second_ref(mbmi) && !mbmi->skip_mode) { // Read idx to indicate current compound inter prediction mode group const int masked_compound_used = is_any_masked_compound_used(bsize) && cm->seq_params.enable_masked_compound; if (masked_compound_used) { const int ctx_comp_group_idx = get_comp_group_idx_context(xd); mbmi->comp_group_idx = aom_read_symbol( r, ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2, ACCT_STR); } if (mbmi->comp_group_idx == 0) { if (cm->seq_params.enable_jnt_comp) { const int comp_index_ctx = get_comp_index_context(cm, xd); mbmi->compound_idx = aom_read_symbol( r, ec_ctx->compound_index_cdf[comp_index_ctx], 2, ACCT_STR); } else { // Distance-weighted compound is disabled, so always use average mbmi->compound_idx = 1; } } else { assert(cm->reference_mode != SINGLE_REFERENCE && is_inter_compound_mode(mbmi->mode) && mbmi->motion_mode == SIMPLE_TRANSLATION); assert(masked_compound_used); // compound_diffwtd, wedge if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) mbmi->interinter_comp.type = 1 + aom_read_symbol(r, ec_ctx->compound_type_cdf[bsize], COMPOUND_TYPES - 1, ACCT_STR); else mbmi->interinter_comp.type = COMPOUND_DIFFWTD; if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); mbmi->interinter_comp.wedge_index = aom_read_symbol(r, ec_ctx->wedge_idx_cdf[bsize], 16, ACCT_STR); mbmi->interinter_comp.wedge_sign = aom_read_bit(r, ACCT_STR); } else { assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD); mbmi->interinter_comp.mask_type = aom_read_literal(r, MAX_DIFFWTD_MASK_BITS, ACCT_STR); } } } read_mb_interp_filter(cm, xd, mbmi, r); if (mbmi->motion_mode == WARPED_CAUSAL) { mbmi->wm_params.wmtype = DEFAULT_WMTYPE; mbmi->wm_params.invalid = 0; if (mbmi->num_proj_ref > 1) mbmi->num_proj_ref = selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref, mbmi->num_proj_ref, bsize); if (find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize, mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col, &mbmi->wm_params, mi_row, mi_col)) { #if WARPED_MOTION_DEBUG printf("Warning: unexpected warped model from aomenc\n"); #endif mbmi->wm_params.invalid = 1; } } xd->cfl.is_chroma_reference = is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x, cm->seq_params.subsampling_y); xd->cfl.store_y = store_cfl_required(cm, xd); #if DEC_MISMATCH_DEBUG dec_dump_logs(cm, mi, mi_row, mi_col, mode_ctx); #endif // DEC_MISMATCH_DEBUG } static void read_inter_frame_mode_info(AV1Decoder *const pbi, MACROBLOCKD *const xd, int mi_row, int mi_col, aom_reader *r) { AV1_COMMON *const cm = &pbi->common; MB_MODE_INFO *const mbmi = xd->mi[0]; int inter_block = 1; mbmi->mv[0].as_int = 0; mbmi->mv[1].as_int = 0; mbmi->segment_id = read_inter_segment_id(cm, xd, mi_row, mi_col, 1, r); mbmi->skip_mode = read_skip_mode(cm, xd, mbmi->segment_id, r); if (mbmi->skip_mode) mbmi->skip = 1; else mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r); mbmi->segment_id = read_inter_segment_id(cm, xd, mi_row, mi_col, 0, r); read_cdef(cm, r, xd, mi_col, mi_row); read_delta_q_params(cm, xd, mi_row, mi_col, r); if (!mbmi->skip_mode) inter_block = read_is_inter_block(cm, xd, mbmi->segment_id, r); mbmi->current_qindex = xd->current_qindex; xd->above_txfm_context = cm->above_txfm_context[xd->tile.tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); if (inter_block) read_inter_block_mode_info(pbi, xd, mbmi, mi_row, mi_col, r); else read_intra_block_mode_info(cm, mi_row, mi_col, xd, mbmi, r); } static void intra_copy_frame_mvs(AV1_COMMON *const cm, int mi_row, int mi_col, int x_mis, int y_mis) { const int frame_mvs_stride = ROUND_POWER_OF_TWO(cm->mi_cols, 1); MV_REF *frame_mvs = cm->cur_frame->mvs + (mi_row >> 1) * frame_mvs_stride + (mi_col >> 1); x_mis = ROUND_POWER_OF_TWO(x_mis, 1); y_mis = ROUND_POWER_OF_TWO(y_mis, 1); for (int h = 0; h < y_mis; h++) { MV_REF *mv = frame_mvs; for (int w = 0; w < x_mis; w++) { mv->ref_frame = NONE_FRAME; mv++; } frame_mvs += frame_mvs_stride; } } void av1_read_mode_info(AV1Decoder *const pbi, MACROBLOCKD *xd, int mi_row, int mi_col, aom_reader *r, int x_mis, int y_mis) { AV1_COMMON *const cm = &pbi->common; MB_MODE_INFO *const mi = xd->mi[0]; mi->use_intrabc = 0; if (frame_is_intra_only(cm)) { read_intra_frame_mode_info(cm, xd, mi_row, mi_col, r); intra_copy_frame_mvs(cm, mi_row, mi_col, x_mis, y_mis); } else { read_inter_frame_mode_info(pbi, xd, mi_row, mi_col, r); av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis); } }