/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/av1_rtcd.h" #include "av1/common/cfl.h" #include "av1/common/x86/cfl_simd.h" #define CFL_GET_SUBSAMPLE_FUNCTION_AVX2(sub, bd) \ CFL_SUBSAMPLE(avx2, sub, bd, 32, 32) \ CFL_SUBSAMPLE(avx2, sub, bd, 32, 16) \ CFL_SUBSAMPLE(avx2, sub, bd, 32, 8) \ cfl_subsample_##bd##_fn cfl_get_luma_subsampling_##sub##_##bd##_avx2( \ TX_SIZE tx_size) { \ static const cfl_subsample_##bd##_fn subfn_##sub[TX_SIZES_ALL] = { \ subsample_##bd##_##sub##_4x4_ssse3, /* 4x4 */ \ subsample_##bd##_##sub##_8x8_ssse3, /* 8x8 */ \ subsample_##bd##_##sub##_16x16_ssse3, /* 16x16 */ \ subsample_##bd##_##sub##_32x32_avx2, /* 32x32 */ \ cfl_subsample_##bd##_null, /* 64x64 (invalid CFL size) */ \ subsample_##bd##_##sub##_4x8_ssse3, /* 4x8 */ \ subsample_##bd##_##sub##_8x4_ssse3, /* 8x4 */ \ subsample_##bd##_##sub##_8x16_ssse3, /* 8x16 */ \ subsample_##bd##_##sub##_16x8_ssse3, /* 16x8 */ \ subsample_##bd##_##sub##_16x32_ssse3, /* 16x32 */ \ subsample_##bd##_##sub##_32x16_avx2, /* 32x16 */ \ cfl_subsample_##bd##_null, /* 32x64 (invalid CFL size) */ \ cfl_subsample_##bd##_null, /* 64x32 (invalid CFL size) */ \ subsample_##bd##_##sub##_4x16_ssse3, /* 4x16 */ \ subsample_##bd##_##sub##_16x4_ssse3, /* 16x4 */ \ subsample_##bd##_##sub##_8x32_ssse3, /* 8x32 */ \ subsample_##bd##_##sub##_32x8_avx2, /* 32x8 */ \ cfl_subsample_##bd##_null, /* 16x64 (invalid CFL size) */ \ cfl_subsample_##bd##_null, /* 64x16 (invalid CFL size) */ \ }; \ return subfn_##sub[tx_size]; \ } /** * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more * precise version of a box filter 4:2:0 pixel subsampling in Q3. * * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the * active area is specified using width and height. * * Note: We don't need to worry about going over the active area, as long as we * stay inside the CfL prediction buffer. * * Note: For 4:2:0 luma subsampling, the width will never be greater than 16. */ static void cfl_luma_subsampling_420_lbd_avx2(const uint8_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { (void)width; // Forever 32 const __m256i twos = _mm256_set1_epi8(2); // Thirty two twos const int luma_stride = input_stride << 1; __m256i *row = (__m256i *)pred_buf_q3; const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256; do { __m256i top = _mm256_loadu_si256((__m256i *)input); __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride)); __m256i top_16x16 = _mm256_maddubs_epi16(top, twos); __m256i bot_16x16 = _mm256_maddubs_epi16(bot, twos); __m256i sum_16x16 = _mm256_add_epi16(top_16x16, bot_16x16); _mm256_storeu_si256(row, sum_16x16); input += luma_stride; } while ((row += CFL_BUF_LINE_I256) < row_end); } CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, lbd) /** * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more * precise version of a box filter 4:2:2 pixel subsampling in Q3. * * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the * active area is specified using width and height. * * Note: We don't need to worry about going over the active area, as long as we * stay inside the CfL prediction buffer. */ static void cfl_luma_subsampling_422_lbd_avx2(const uint8_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { (void)width; // Forever 32 const __m256i fours = _mm256_set1_epi8(4); // Thirty two fours __m256i *row = (__m256i *)pred_buf_q3; const __m256i *row_end = row + height * CFL_BUF_LINE_I256; do { __m256i top = _mm256_loadu_si256((__m256i *)input); __m256i top_16x16 = _mm256_maddubs_epi16(top, fours); _mm256_storeu_si256(row, top_16x16); input += input_stride; } while ((row += CFL_BUF_LINE_I256) < row_end); } CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, lbd) /** * Multiplies the pixels by 8 (scaling in Q3). The AVX2 subsampling is only * performed on block of width 32. * * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the * active area is specified using width and height. * * Note: We don't need to worry about going over the active area, as long as we * stay inside the CfL prediction buffer. */ static void cfl_luma_subsampling_444_lbd_avx2(const uint8_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { (void)width; // Forever 32 __m256i *row = (__m256i *)pred_buf_q3; const __m256i *row_end = row + height * CFL_BUF_LINE_I256; const __m256i zeros = _mm256_setzero_si256(); do { __m256i top = _mm256_loadu_si256((__m256i *)input); top = _mm256_permute4x64_epi64(top, _MM_SHUFFLE(3, 1, 2, 0)); __m256i row_lo = _mm256_unpacklo_epi8(top, zeros); row_lo = _mm256_slli_epi16(row_lo, 3); __m256i row_hi = _mm256_unpackhi_epi8(top, zeros); row_hi = _mm256_slli_epi16(row_hi, 3); _mm256_storeu_si256(row, row_lo); _mm256_storeu_si256(row + 1, row_hi); input += input_stride; } while ((row += CFL_BUF_LINE_I256) < row_end); } CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, lbd) /** * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more * precise version of a box filter 4:2:0 pixel subsampling in Q3. * * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the * active area is specified using width and height. * * Note: We don't need to worry about going over the active area, as long as we * stay inside the CfL prediction buffer. * * Note: For 4:2:0 luma subsampling, the width will never be greater than 16. */ static void cfl_luma_subsampling_420_hbd_avx2(const uint16_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { (void)width; // Forever 32 const int luma_stride = input_stride << 1; __m256i *row = (__m256i *)pred_buf_q3; const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256; do { __m256i top = _mm256_loadu_si256((__m256i *)input); __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride)); __m256i sum = _mm256_add_epi16(top, bot); __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); __m256i bot_1 = _mm256_loadu_si256((__m256i *)(input + 16 + input_stride)); __m256i sum_1 = _mm256_add_epi16(top_1, bot_1); __m256i hsum = _mm256_hadd_epi16(sum, sum_1); hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0)); hsum = _mm256_add_epi16(hsum, hsum); _mm256_storeu_si256(row, hsum); input += luma_stride; } while ((row += CFL_BUF_LINE_I256) < row_end); } CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, hbd) /** * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more * precise version of a box filter 4:2:2 pixel subsampling in Q3. * * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the * active area is specified using width and height. * * Note: We don't need to worry about going over the active area, as long as we * stay inside the CfL prediction buffer. * */ static void cfl_luma_subsampling_422_hbd_avx2(const uint16_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { (void)width; // Forever 32 __m256i *row = (__m256i *)pred_buf_q3; const __m256i *row_end = row + height * CFL_BUF_LINE_I256; do { __m256i top = _mm256_loadu_si256((__m256i *)input); __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); __m256i hsum = _mm256_hadd_epi16(top, top_1); hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0)); hsum = _mm256_slli_epi16(hsum, 2); _mm256_storeu_si256(row, hsum); input += input_stride; } while ((row += CFL_BUF_LINE_I256) < row_end); } CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, hbd) static void cfl_luma_subsampling_444_hbd_avx2(const uint16_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { (void)width; // Forever 32 __m256i *row = (__m256i *)pred_buf_q3; const __m256i *row_end = row + height * CFL_BUF_LINE_I256; do { __m256i top = _mm256_loadu_si256((__m256i *)input); __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); _mm256_storeu_si256(row, _mm256_slli_epi16(top, 3)); _mm256_storeu_si256(row + 1, _mm256_slli_epi16(top_1, 3)); input += input_stride; } while ((row += CFL_BUF_LINE_I256) < row_end); } CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, hbd) static INLINE __m256i predict_unclipped(const __m256i *input, __m256i alpha_q12, __m256i alpha_sign, __m256i dc_q0) { __m256i ac_q3 = _mm256_loadu_si256(input); __m256i ac_sign = _mm256_sign_epi16(alpha_sign, ac_q3); __m256i scaled_luma_q0 = _mm256_mulhrs_epi16(_mm256_abs_epi16(ac_q3), alpha_q12); scaled_luma_q0 = _mm256_sign_epi16(scaled_luma_q0, ac_sign); return _mm256_add_epi16(scaled_luma_q0, dc_q0); } static INLINE void cfl_predict_lbd_avx2(const int16_t *pred_buf_q3, uint8_t *dst, int dst_stride, int alpha_q3, int width, int height) { (void)width; const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3); const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9); const __m256i dc_q0 = _mm256_set1_epi16(*dst); __m256i *row = (__m256i *)pred_buf_q3; const __m256i *row_end = row + height * CFL_BUF_LINE_I256; do { __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0); __m256i next = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0); res = _mm256_packus_epi16(res, next); res = _mm256_permute4x64_epi64(res, _MM_SHUFFLE(3, 1, 2, 0)); _mm256_storeu_si256((__m256i *)dst, res); dst += dst_stride; } while ((row += CFL_BUF_LINE_I256) < row_end); } CFL_PREDICT_X(avx2, 32, 8, lbd); CFL_PREDICT_X(avx2, 32, 16, lbd); CFL_PREDICT_X(avx2, 32, 32, lbd); cfl_predict_lbd_fn get_predict_lbd_fn_avx2(TX_SIZE tx_size) { static const cfl_predict_lbd_fn pred[TX_SIZES_ALL] = { predict_lbd_4x4_ssse3, /* 4x4 */ predict_lbd_8x8_ssse3, /* 8x8 */ predict_lbd_16x16_ssse3, /* 16x16 */ predict_lbd_32x32_avx2, /* 32x32 */ cfl_predict_lbd_null, /* 64x64 (invalid CFL size) */ predict_lbd_4x8_ssse3, /* 4x8 */ predict_lbd_8x4_ssse3, /* 8x4 */ predict_lbd_8x16_ssse3, /* 8x16 */ predict_lbd_16x8_ssse3, /* 16x8 */ predict_lbd_16x32_ssse3, /* 16x32 */ predict_lbd_32x16_avx2, /* 32x16 */ cfl_predict_lbd_null, /* 32x64 (invalid CFL size) */ cfl_predict_lbd_null, /* 64x32 (invalid CFL size) */ predict_lbd_4x16_ssse3, /* 4x16 */ predict_lbd_16x4_ssse3, /* 16x4 */ predict_lbd_8x32_ssse3, /* 8x32 */ predict_lbd_32x8_avx2, /* 32x8 */ cfl_predict_lbd_null, /* 16x64 (invalid CFL size) */ cfl_predict_lbd_null, /* 64x16 (invalid CFL size) */ }; // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the // function pointer array out of bounds. return pred[tx_size % TX_SIZES_ALL]; } static __m256i highbd_max_epi16(int bd) { const __m256i neg_one = _mm256_set1_epi16(-1); // (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd) return _mm256_xor_si256(_mm256_slli_epi16(neg_one, bd), neg_one); } static __m256i highbd_clamp_epi16(__m256i u, __m256i zero, __m256i max) { return _mm256_max_epi16(_mm256_min_epi16(u, max), zero); } static INLINE void cfl_predict_hbd_avx2(const int16_t *pred_buf_q3, uint16_t *dst, int dst_stride, int alpha_q3, int bd, int width, int height) { // Use SSSE3 version for smaller widths assert(width == 16 || width == 32); const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3); const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9); const __m256i dc_q0 = _mm256_loadu_si256((__m256i *)dst); const __m256i max = highbd_max_epi16(bd); __m256i *row = (__m256i *)pred_buf_q3; const __m256i *row_end = row + height * CFL_BUF_LINE_I256; do { const __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0); _mm256_storeu_si256((__m256i *)dst, highbd_clamp_epi16(res, _mm256_setzero_si256(), max)); if (width == 32) { const __m256i res_1 = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0); _mm256_storeu_si256( (__m256i *)(dst + 16), highbd_clamp_epi16(res_1, _mm256_setzero_si256(), max)); } dst += dst_stride; } while ((row += CFL_BUF_LINE_I256) < row_end); } CFL_PREDICT_X(avx2, 16, 4, hbd) CFL_PREDICT_X(avx2, 16, 8, hbd) CFL_PREDICT_X(avx2, 16, 16, hbd) CFL_PREDICT_X(avx2, 16, 32, hbd) CFL_PREDICT_X(avx2, 32, 8, hbd) CFL_PREDICT_X(avx2, 32, 16, hbd) CFL_PREDICT_X(avx2, 32, 32, hbd) cfl_predict_hbd_fn get_predict_hbd_fn_avx2(TX_SIZE tx_size) { static const cfl_predict_hbd_fn pred[TX_SIZES_ALL] = { predict_hbd_4x4_ssse3, /* 4x4 */ predict_hbd_8x8_ssse3, /* 8x8 */ predict_hbd_16x16_avx2, /* 16x16 */ predict_hbd_32x32_avx2, /* 32x32 */ cfl_predict_hbd_null, /* 64x64 (invalid CFL size) */ predict_hbd_4x8_ssse3, /* 4x8 */ predict_hbd_8x4_ssse3, /* 8x4 */ predict_hbd_8x16_ssse3, /* 8x16 */ predict_hbd_16x8_avx2, /* 16x8 */ predict_hbd_16x32_avx2, /* 16x32 */ predict_hbd_32x16_avx2, /* 32x16 */ cfl_predict_hbd_null, /* 32x64 (invalid CFL size) */ cfl_predict_hbd_null, /* 64x32 (invalid CFL size) */ predict_hbd_4x16_ssse3, /* 4x16 */ predict_hbd_16x4_avx2, /* 16x4 */ predict_hbd_8x32_ssse3, /* 8x32 */ predict_hbd_32x8_avx2, /* 32x8 */ cfl_predict_hbd_null, /* 16x64 (invalid CFL size) */ cfl_predict_hbd_null, /* 64x16 (invalid CFL size) */ }; // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the // function pointer array out of bounds. return pred[tx_size % TX_SIZES_ALL]; } // Returns a vector where all the (32-bits) elements are the sum of all the // lanes in a. static INLINE __m256i fill_sum_epi32(__m256i a) { // Given that a == [A, B, C, D, E, F, G, H] a = _mm256_hadd_epi32(a, a); // Given that A' == A + B, C' == C + D, E' == E + F, G' == G + H // a == [A', C', A', C', E', G', E', G'] a = _mm256_permute4x64_epi64(a, _MM_SHUFFLE(3, 1, 2, 0)); // a == [A', C', E', G', A', C', E', G'] a = _mm256_hadd_epi32(a, a); // Given that A'' == A' + C' and E'' == E' + G' // a == [A'', E'', A'', E'', A'', E'', A'', E''] return _mm256_hadd_epi32(a, a); // Given that A''' == A'' + E'' // a == [A''', A''', A''', A''', A''', A''', A''', A'''] } static INLINE __m256i _mm256_addl_epi16(__m256i a) { return _mm256_add_epi32(_mm256_unpacklo_epi16(a, _mm256_setzero_si256()), _mm256_unpackhi_epi16(a, _mm256_setzero_si256())); } static INLINE void subtract_average_avx2(const uint16_t *src_ptr, int16_t *dst_ptr, int width, int height, int round_offset, int num_pel_log2) { // Use SSE2 version for smaller widths assert(width == 16 || width == 32); const __m256i *src = (__m256i *)src_ptr; const __m256i *const end = src + height * CFL_BUF_LINE_I256; // To maximize usage of the AVX2 registers, we sum two rows per loop // iteration const int step = 2 * CFL_BUF_LINE_I256; __m256i sum = _mm256_setzero_si256(); // For width 32, we use a second sum accumulator to reduce accumulator // dependencies in the loop. __m256i sum2; if (width == 32) sum2 = _mm256_setzero_si256(); do { // Add top row to the bottom row __m256i l0 = _mm256_add_epi16(_mm256_loadu_si256(src), _mm256_loadu_si256(src + CFL_BUF_LINE_I256)); sum = _mm256_add_epi32(sum, _mm256_addl_epi16(l0)); if (width == 32) { /* Don't worry, this if it gets optimized out. */ // Add the second part of the top row to the second part of the bottom row __m256i l1 = _mm256_add_epi16(_mm256_loadu_si256(src + 1), _mm256_loadu_si256(src + 1 + CFL_BUF_LINE_I256)); sum2 = _mm256_add_epi32(sum2, _mm256_addl_epi16(l1)); } src += step; } while (src < end); // Combine both sum accumulators if (width == 32) sum = _mm256_add_epi32(sum, sum2); __m256i fill = fill_sum_epi32(sum); __m256i avg_epi16 = _mm256_srli_epi32( _mm256_add_epi32(fill, _mm256_set1_epi32(round_offset)), num_pel_log2); avg_epi16 = _mm256_packs_epi32(avg_epi16, avg_epi16); // Store and subtract loop src = (__m256i *)src_ptr; __m256i *dst = (__m256i *)dst_ptr; do { _mm256_storeu_si256(dst, _mm256_sub_epi16(_mm256_loadu_si256(src), avg_epi16)); if (width == 32) { _mm256_storeu_si256( dst + 1, _mm256_sub_epi16(_mm256_loadu_si256(src + 1), avg_epi16)); } src += CFL_BUF_LINE_I256; dst += CFL_BUF_LINE_I256; } while (src < end); } // Declare wrappers for AVX2 sizes CFL_SUB_AVG_X(avx2, 16, 4, 32, 6) CFL_SUB_AVG_X(avx2, 16, 8, 64, 7) CFL_SUB_AVG_X(avx2, 16, 16, 128, 8) CFL_SUB_AVG_X(avx2, 16, 32, 256, 9) CFL_SUB_AVG_X(avx2, 32, 8, 128, 8) CFL_SUB_AVG_X(avx2, 32, 16, 256, 9) CFL_SUB_AVG_X(avx2, 32, 32, 512, 10) // Based on the observation that for small blocks AVX2 does not outperform // SSE2, we call the SSE2 code for block widths 4 and 8. cfl_subtract_average_fn get_subtract_average_fn_avx2(TX_SIZE tx_size) { static const cfl_subtract_average_fn sub_avg[TX_SIZES_ALL] = { subtract_average_4x4_sse2, /* 4x4 */ subtract_average_8x8_sse2, /* 8x8 */ subtract_average_16x16_avx2, /* 16x16 */ subtract_average_32x32_avx2, /* 32x32 */ cfl_subtract_average_null, /* 64x64 (invalid CFL size) */ subtract_average_4x8_sse2, /* 4x8 */ subtract_average_8x4_sse2, /* 8x4 */ subtract_average_8x16_sse2, /* 8x16 */ subtract_average_16x8_avx2, /* 16x8 */ subtract_average_16x32_avx2, /* 16x32 */ subtract_average_32x16_avx2, /* 32x16 */ cfl_subtract_average_null, /* 32x64 (invalid CFL size) */ cfl_subtract_average_null, /* 64x32 (invalid CFL size) */ subtract_average_4x16_sse2, /* 4x16 */ subtract_average_16x4_avx2, /* 16x4 */ subtract_average_8x32_sse2, /* 8x32 */ subtract_average_32x8_avx2, /* 32x8 */ cfl_subtract_average_null, /* 16x64 (invalid CFL size) */ cfl_subtract_average_null, /* 64x16 (invalid CFL size) */ }; // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to // index the function pointer array out of bounds. return sub_avg[tx_size % TX_SIZES_ALL]; }