/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "./aom_dsp_rtcd.h" #include "av1/common/filter.h" #include "av1/common/scale.h" #include "aom_dsp/aom_filter.h" // Note: Expect val to be in q4 precision static INLINE int scaled_x(int val, const struct scale_factors *sf) { const int off = (sf->x_scale_fp - (1 << REF_SCALE_SHIFT)) * (1 << (SUBPEL_BITS - 1)); const int64_t tval = (int64_t)val * sf->x_scale_fp + off; return (int)ROUND_POWER_OF_TWO_SIGNED_64(tval, REF_SCALE_SHIFT - SCALE_EXTRA_BITS); } // Note: Expect val to be in q4 precision static INLINE int scaled_y(int val, const struct scale_factors *sf) { const int off = (sf->y_scale_fp - (1 << REF_SCALE_SHIFT)) * (1 << (SUBPEL_BITS - 1)); const int64_t tval = (int64_t)val * sf->y_scale_fp + off; return (int)ROUND_POWER_OF_TWO_SIGNED_64(tval, REF_SCALE_SHIFT - SCALE_EXTRA_BITS); } // Note: Expect val to be in q4 precision static int unscaled_value(int val, const struct scale_factors *sf) { (void)sf; return val << SCALE_EXTRA_BITS; } static int get_fixed_point_scale_factor(int other_size, int this_size) { // Calculate scaling factor once for each reference frame // and use fixed point scaling factors in decoding and encoding routines. // Hardware implementations can calculate scale factor in device driver // and use multiplication and shifting on hardware instead of division. return ((other_size << REF_SCALE_SHIFT) + this_size / 2) / this_size; } static int get_coarse_point_scale_factor(int other_size, int this_size) { // Calculate scaling factor once for each reference frame // and use fixed point scaling factors in decoding and encoding routines. // Hardware implementations can calculate scale factor in device driver // and use multiplication and shifting on hardware instead of division. return ((other_size << SCALE_SUBPEL_BITS) + this_size / 2) / this_size; } // Note: x and y are integer precision, mvq4 is q4 precision. MV32 av1_scale_mv(const MV *mvq4, int x, int y, const struct scale_factors *sf) { const int x_off_q4 = scaled_x(x << SUBPEL_BITS, sf); const int y_off_q4 = scaled_y(y << SUBPEL_BITS, sf); const MV32 res = { scaled_y((y << SUBPEL_BITS) + mvq4->row, sf) - y_off_q4, scaled_x((x << SUBPEL_BITS) + mvq4->col, sf) - x_off_q4 }; return res; } #if CONFIG_HIGHBITDEPTH void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, int other_h, int this_w, int this_h, int use_highbd) { #else void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, int other_h, int this_w, int this_h) { #endif if (!valid_ref_frame_size(other_w, other_h, this_w, this_h)) { sf->x_scale_fp = REF_INVALID_SCALE; sf->y_scale_fp = REF_INVALID_SCALE; return; } sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w); sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h); sf->x_step_q4 = get_coarse_point_scale_factor(other_w, this_w); sf->y_step_q4 = get_coarse_point_scale_factor(other_h, this_h); if (av1_is_scaled(sf)) { sf->scale_value_x = scaled_x; sf->scale_value_y = scaled_y; } else { sf->scale_value_x = unscaled_value; sf->scale_value_y = unscaled_value; } // TODO(agrange): Investigate the best choice of functions to use here // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what // to do at full-pel offsets. The current selection, where the filter is // applied in one direction only, and not at all for 0,0, seems to give the // best quality, but it may be worth trying an additional mode that does // do the filtering on full-pel. if (sf->x_step_q4 == SCALE_SUBPEL_SHIFTS) { if (sf->y_step_q4 == SCALE_SUBPEL_SHIFTS) { // No scaling in either direction. sf->predict[0][0][0] = aom_convolve_copy; sf->predict[0][0][1] = aom_convolve_avg; sf->predict[0][1][0] = aom_convolve8_vert; sf->predict[0][1][1] = aom_convolve8_avg_vert; sf->predict[1][0][0] = aom_convolve8_horiz; sf->predict[1][0][1] = aom_convolve8_avg_horiz; } else { // No scaling in x direction. Must always scale in the y direction. sf->predict[0][0][0] = aom_convolve8_vert; sf->predict[0][0][1] = aom_convolve8_avg_vert; sf->predict[0][1][0] = aom_convolve8_vert; sf->predict[0][1][1] = aom_convolve8_avg_vert; sf->predict[1][0][0] = aom_convolve8; sf->predict[1][0][1] = aom_convolve8_avg; } } else { if (sf->y_step_q4 == SCALE_SUBPEL_SHIFTS) { // No scaling in the y direction. Must always scale in the x direction. sf->predict[0][0][0] = aom_convolve8_horiz; sf->predict[0][0][1] = aom_convolve8_avg_horiz; sf->predict[0][1][0] = aom_convolve8; sf->predict[0][1][1] = aom_convolve8_avg; sf->predict[1][0][0] = aom_convolve8_horiz; sf->predict[1][0][1] = aom_convolve8_avg_horiz; } else { // Must always scale in both directions. sf->predict[0][0][0] = aom_convolve8; sf->predict[0][0][1] = aom_convolve8_avg; sf->predict[0][1][0] = aom_convolve8; sf->predict[0][1][1] = aom_convolve8_avg; sf->predict[1][0][0] = aom_convolve8; sf->predict[1][0][1] = aom_convolve8_avg; } } // 2D subpel motion always gets filtered in both directions sf->predict[1][1][0] = aom_convolve8; sf->predict[1][1][1] = aom_convolve8_avg; #if CONFIG_HIGHBITDEPTH if (use_highbd) { if (sf->x_step_q4 == SCALE_SUBPEL_SHIFTS) { if (sf->y_step_q4 == SCALE_SUBPEL_SHIFTS) { // No scaling in either direction. sf->highbd_predict[0][0][0] = aom_highbd_convolve_copy; sf->highbd_predict[0][0][1] = aom_highbd_convolve_avg; sf->highbd_predict[0][1][0] = aom_highbd_convolve8_vert; sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg_vert; sf->highbd_predict[1][0][0] = aom_highbd_convolve8_horiz; sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg_horiz; } else { // No scaling in x direction. Must always scale in the y direction. sf->highbd_predict[0][0][0] = aom_highbd_convolve8_vert; sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg_vert; sf->highbd_predict[0][1][0] = aom_highbd_convolve8_vert; sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg_vert; sf->highbd_predict[1][0][0] = aom_highbd_convolve8; sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg; } } else { if (sf->y_step_q4 == SCALE_SUBPEL_SHIFTS) { // No scaling in the y direction. Must always scale in the x direction. sf->highbd_predict[0][0][0] = aom_highbd_convolve8_horiz; sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg_horiz; sf->highbd_predict[0][1][0] = aom_highbd_convolve8; sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg; sf->highbd_predict[1][0][0] = aom_highbd_convolve8_horiz; sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg_horiz; } else { // Must always scale in both directions. sf->highbd_predict[0][0][0] = aom_highbd_convolve8; sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg; sf->highbd_predict[0][1][0] = aom_highbd_convolve8; sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg; sf->highbd_predict[1][0][0] = aom_highbd_convolve8; sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg; } } // 2D subpel motion always gets filtered in both directions. sf->highbd_predict[1][1][0] = aom_highbd_convolve8; sf->highbd_predict[1][1][1] = aom_highbd_convolve8_avg; } #endif // CONFIG_HIGHBITDEPTH }