/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "./aom_scale_rtcd.h" #include "./aom_dsp_rtcd.h" #include "./aom_config.h" #include "aom/aom_integer.h" #include "aom_dsp/blend.h" #include "av1/common/blockd.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #if CONFIG_MOTION_VAR #include "av1/common/onyxc_int.h" #endif // CONFIG_MOTION_VAR #if CONFIG_EXT_INTER #define NSMOOTHERS 1 // [smoother][negative][direction] DECLARE_ALIGNED(16, static uint8_t, wedge_mask_obl[NSMOOTHERS][2][WEDGE_DIRECTIONS] [MASK_MASTER_SIZE * MASK_MASTER_SIZE]); DECLARE_ALIGNED(16, static uint8_t, wedge_signflip_lookup[BLOCK_SIZES][MAX_WEDGE_TYPES]); // 3 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound // on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE. DECLARE_ALIGNED(16, static uint8_t, wedge_mask_buf[2 * MAX_WEDGE_TYPES * 3 * MAX_WEDGE_SQUARE]); static wedge_masks_type wedge_masks[BLOCK_SIZES][2]; // Some unused wedge codebooks left temporarily to facilitate experiments. // To be removed when settled. /* static wedge_code_type wedge_codebook_8_hgtw[8] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, }; static wedge_code_type wedge_codebook_8_hltw[8] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; static wedge_code_type wedge_codebook_8_heqw[8] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, }; static const wedge_code_type wedge_codebook_32_hgtw[32] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, { WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 }, { WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 }, { WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 }, { WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 }, }; static const wedge_code_type wedge_codebook_32_hltw[32] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, { WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 }, { WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 }, { WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 }, { WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 }, }; static const wedge_code_type wedge_codebook_32_heqw[32] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, { WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 }, { WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 }, { WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 }, { WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 }, }; */ static const wedge_code_type wedge_codebook_16_hgtw[16] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; static const wedge_code_type wedge_codebook_16_hltw[16] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; static const wedge_code_type wedge_codebook_16_heqw[16] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; const wedge_params_type wedge_params_lookup[BLOCK_SIZES] = { #if CONFIG_CB4X4 { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, #endif // CONFIG_CB4X4 { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, #if CONFIG_WEDGE { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], 0, wedge_masks[BLOCK_8X8] }, { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], 0, wedge_masks[BLOCK_8X16] }, { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], 0, wedge_masks[BLOCK_16X8] }, { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], 0, wedge_masks[BLOCK_16X16] }, { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], 0, wedge_masks[BLOCK_16X32] }, { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], 0, wedge_masks[BLOCK_32X16] }, { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], 0, wedge_masks[BLOCK_32X32] }, { 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_32X64], 0, wedge_masks[BLOCK_32X64] }, { 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_64X32], 0, wedge_masks[BLOCK_64X32] }, { 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_64X64], 0, wedge_masks[BLOCK_64X64] }, #else { 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], 0, wedge_masks[BLOCK_8X8] }, { 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], 0, wedge_masks[BLOCK_8X16] }, { 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], 0, wedge_masks[BLOCK_16X8] }, { 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], 0, wedge_masks[BLOCK_16X16] }, { 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], 0, wedge_masks[BLOCK_16X32] }, { 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], 0, wedge_masks[BLOCK_32X16] }, { 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], 0, wedge_masks[BLOCK_32X32] }, { 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_32X64], 0, wedge_masks[BLOCK_32X64] }, { 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_64X32], 0, wedge_masks[BLOCK_64X32] }, { 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_64X64], 0, wedge_masks[BLOCK_64X64] }, #endif // CONFIG_WEDGE #if CONFIG_EXT_PARTITION { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, #endif // CONFIG_EXT_PARTITION }; static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg, BLOCK_SIZE sb_type) { const uint8_t *master; const int bh = block_size_high[sb_type]; const int bw = block_size_wide[sb_type]; const wedge_code_type *a = wedge_params_lookup[sb_type].codebook + wedge_index; const int smoother = wedge_params_lookup[sb_type].smoother; int woff, hoff; const uint8_t wsignflip = wedge_params_lookup[sb_type].signflip[wedge_index]; assert(wedge_index >= 0 && wedge_index < (1 << get_wedge_bits_lookup(sb_type))); woff = (a->x_offset * bw) >> 3; hoff = (a->y_offset * bh) >> 3; master = wedge_mask_obl[smoother][neg ^ wsignflip][a->direction] + MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + MASK_MASTER_SIZE / 2 - woff; return master; } const uint8_t *av1_get_soft_mask(int wedge_index, int wedge_sign, BLOCK_SIZE sb_type, int offset_x, int offset_y) { const uint8_t *mask = get_wedge_mask_inplace(wedge_index, wedge_sign, sb_type); if (mask) mask -= (offset_x + offset_y * MASK_MASTER_STRIDE); return mask; } #if CONFIG_COMPOUND_SEGMENT static uint8_t *invert_mask(uint8_t *mask_inv_buffer, const uint8_t *const mask, int h, int w, int stride) { int i, j; for (i = 0; i < h; ++i) for (j = 0; j < w; ++j) { mask_inv_buffer[i * stride + j] = AOM_BLEND_A64_MAX_ALPHA - mask[i * stride + j]; } return mask_inv_buffer; } #endif // CONFIG_COMPOUND_SEGMENT const uint8_t *av1_get_compound_type_mask_inverse( const INTERINTER_COMPOUND_DATA *const comp_data, #if CONFIG_COMPOUND_SEGMENT uint8_t *mask_buffer, int h, int w, int stride, #endif BLOCK_SIZE sb_type) { assert(is_masked_compound_type(comp_data->interinter_compound_type)); (void)sb_type; switch (comp_data->interinter_compound_type) { #if CONFIG_WEDGE case COMPOUND_WEDGE: return av1_get_contiguous_soft_mask(comp_data->wedge_index, !comp_data->wedge_sign, sb_type); #endif // CONFIG_WEDGE #if CONFIG_COMPOUND_SEGMENT case COMPOUND_SEG: return invert_mask(mask_buffer, comp_data->seg_mask, h, w, stride); #endif // CONFIG_COMPOUND_SEGMENT default: assert(0); return NULL; } } const uint8_t *av1_get_compound_type_mask( const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) { assert(is_masked_compound_type(comp_data->interinter_compound_type)); (void)sb_type; switch (comp_data->interinter_compound_type) { #if CONFIG_WEDGE case COMPOUND_WEDGE: return av1_get_contiguous_soft_mask(comp_data->wedge_index, comp_data->wedge_sign, sb_type); #endif // CONFIG_WEDGE #if CONFIG_COMPOUND_SEGMENT case COMPOUND_SEG: return comp_data->seg_mask; #endif // CONFIG_COMPOUND_SEGMENT default: assert(0); return NULL; } } #if CONFIG_COMPOUND_SEGMENT #if COMPOUND_SEGMENT_TYPE == 0 static void uniform_mask(uint8_t *mask, int which_inverse, BLOCK_SIZE sb_type, int h, int w, int mask_val) { int i, j; int block_stride = block_size_wide[sb_type]; for (i = 0; i < h; ++i) for (j = 0; j < w; ++j) { mask[i * block_stride + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - mask_val : mask_val; } } void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w) { (void)src0; (void)src1; (void)src0_stride; (void)src1_stride; switch (mask_type) { case UNIFORM_45: uniform_mask(mask, 0, sb_type, h, w, 45); break; case UNIFORM_45_INV: uniform_mask(mask, 1, sb_type, h, w, 45); break; default: assert(0); } } #if CONFIG_HIGHBITDEPTH void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w, int bd) { (void)src0; (void)src1; (void)src0_stride; (void)src1_stride; (void)bd; switch (mask_type) { case UNIFORM_45: uniform_mask(mask, 0, sb_type, h, w, 45); break; case UNIFORM_45_INV: uniform_mask(mask, 1, sb_type, h, w, 45); break; default: assert(0); } } #endif // CONFIG_HIGHBITDEPTH #elif COMPOUND_SEGMENT_TYPE == 1 #define DIFF_FACTOR 16 static void diffwtd_mask(uint8_t *mask, int which_inverse, int mask_base, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w) { int i, j, m, diff; int block_stride = block_size_wide[sb_type]; for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { diff = abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]); m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); mask[i * block_stride + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; } } } void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w) { switch (mask_type) { case DIFFWTD_38: diffwtd_mask(mask, 0, 38, src0, src0_stride, src1, src1_stride, sb_type, h, w); break; case DIFFWTD_38_INV: diffwtd_mask(mask, 1, 38, src0, src0_stride, src1, src1_stride, sb_type, h, w); break; default: assert(0); } } #if CONFIG_HIGHBITDEPTH static void diffwtd_mask_highbd(uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0, int src0_stride, const uint16_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w, int bd) { int i, j, m, diff; int block_stride = block_size_wide[sb_type]; for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { diff = abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]) >> (bd - 8); m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); mask[i * block_stride + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; } } } void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w, int bd) { switch (mask_type) { case DIFFWTD_38: diffwtd_mask_highbd(mask, 0, 42, CONVERT_TO_SHORTPTR(src0), src0_stride, CONVERT_TO_SHORTPTR(src1), src1_stride, sb_type, h, w, bd); break; case DIFFWTD_38_INV: diffwtd_mask_highbd(mask, 1, 42, CONVERT_TO_SHORTPTR(src0), src0_stride, CONVERT_TO_SHORTPTR(src1), src1_stride, sb_type, h, w, bd); break; default: assert(0); } } #endif // CONFIG_HIGHBITDEPTH #endif // COMPOUND_SEGMENT_TYPE #endif // CONFIG_COMPOUND_SEGMENT #if MASK_MASTER_SIZE == 64 static const uint8_t wedge_master_oblique_odd[NSMOOTHERS][MASK_MASTER_SIZE] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18, 37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, } }; static const uint8_t wedge_master_oblique_even[NSMOOTHERS][MASK_MASTER_SIZE] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27, 46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, } }; static const uint8_t wedge_master_vertical[NSMOOTHERS][MASK_MASTER_SIZE] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21, 43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, } }; static void shift_copy(const uint8_t *src, uint8_t *dst, int shift, int width) { if (shift >= 0) { memcpy(dst + shift, src, width - shift); memset(dst, src[0], shift); } else { shift = -shift; memcpy(dst, src + shift, width - shift); memset(dst + width - shift, src[width - 1], shift); } } #else static const double smoother_param[NSMOOTHERS] = { 3.0 }; #endif // MASK_MASTER_SIZE == 64 static void init_wedge_master_masks() { int i, j, s; const int w = MASK_MASTER_SIZE; const int h = MASK_MASTER_SIZE; const int stride = MASK_MASTER_STRIDE; for (s = 0; s < NSMOOTHERS; s++) { // Note: index [0] stores the masters, and [1] its complement. #if MASK_MASTER_SIZE == 64 // Generate prototype by shifting the masters int shift = h / 4; for (i = 0; i < h; i += 2) { shift_copy(wedge_master_oblique_even[s], &wedge_mask_obl[s][0][WEDGE_OBLIQUE63][i * stride], shift, MASK_MASTER_SIZE); shift--; shift_copy(wedge_master_oblique_odd[s], &wedge_mask_obl[s][0][WEDGE_OBLIQUE63][(i + 1) * stride], shift, MASK_MASTER_SIZE); memcpy(&wedge_mask_obl[s][0][WEDGE_VERTICAL][i * stride], wedge_master_vertical[s], MASK_MASTER_SIZE * sizeof(wedge_master_vertical[s][0])); memcpy(&wedge_mask_obl[s][0][WEDGE_VERTICAL][(i + 1) * stride], wedge_master_vertical[s], MASK_MASTER_SIZE * sizeof(wedge_master_vertical[s][0])); } #else const int a[2] = { 2, 1 }; const double asqrt = sqrt(a[0] * a[0] + a[1] * a[1]); for (i = 0; i < h; i++) { for (j = 0; j < w; ++j) { int x = (2 * j + 1 - w); int y = (2 * i + 1 - h); double d = (a[0] * x + a[1] * y) / asqrt; const int msk = (int)rint((1.0 + tanh(d / smoother_param[s])) * 32); wedge_mask_obl[s][0][WEDGE_OBLIQUE63][i * stride + j] = msk; const int mskx = (int)rint((1.0 + tanh(x / smoother_param[s])) * 32); wedge_mask_obl[s][0][WEDGE_VERTICAL][i * stride + j] = mskx; } } #endif // MASK_MASTER_SIZE == 64 for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { const int msk = wedge_mask_obl[s][0][WEDGE_OBLIQUE63][i * stride + j]; wedge_mask_obl[s][0][WEDGE_OBLIQUE27][j * stride + i] = msk; wedge_mask_obl[s][0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = wedge_mask_obl[s][0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = (1 << WEDGE_WEIGHT_BITS) - msk; wedge_mask_obl[s][1][WEDGE_OBLIQUE63][i * stride + j] = wedge_mask_obl[s][1][WEDGE_OBLIQUE27][j * stride + i] = (1 << WEDGE_WEIGHT_BITS) - msk; wedge_mask_obl[s][1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = wedge_mask_obl[s][1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk; const int mskx = wedge_mask_obl[s][0][WEDGE_VERTICAL][i * stride + j]; wedge_mask_obl[s][0][WEDGE_HORIZONTAL][j * stride + i] = mskx; wedge_mask_obl[s][1][WEDGE_VERTICAL][i * stride + j] = wedge_mask_obl[s][1][WEDGE_HORIZONTAL][j * stride + i] = (1 << WEDGE_WEIGHT_BITS) - mskx; } } } } // If the signs for the wedges for various blocksizes are // inconsistent flip the sign flag. Do it only once for every // wedge codebook. static void init_wedge_signs() { BLOCK_SIZE sb_type; memset(wedge_signflip_lookup, 0, sizeof(wedge_signflip_lookup)); for (sb_type = BLOCK_4X4; sb_type < BLOCK_SIZES; ++sb_type) { const int bw = block_size_wide[sb_type]; const int bh = block_size_high[sb_type]; const wedge_params_type wedge_params = wedge_params_lookup[sb_type]; const int wbits = wedge_params.bits; const int wtypes = 1 << wbits; int i, w; if (wbits == 0) continue; for (w = 0; w < wtypes; ++w) { // Get the mask master, i.e. index [0] const uint8_t *mask = get_wedge_mask_inplace(w, 0, sb_type); int avg = 0; for (i = 0; i < bw; ++i) avg += mask[i]; for (i = 1; i < bh; ++i) avg += mask[i * MASK_MASTER_STRIDE]; avg = (avg + (bw + bh - 1) / 2) / (bw + bh - 1); // Default sign of this wedge is 1 if the average < 32, 0 otherwise. // If default sign is 1: // If sign requested is 0, we need to flip the sign and return // the complement i.e. index [1] instead. If sign requested is 1 // we need to flip the sign and return index [0] instead. // If default sign is 0: // If sign requested is 0, we need to return index [0] the master // if sign requested is 1, we need to return the complement index [1] // instead. wedge_params.signflip[w] = (avg < 32); // printf("%d[%d] = %d\n", sb_type, w, wedge_params.signflip[w]); } } } static void init_wedge_masks() { uint8_t *dst = wedge_mask_buf; BLOCK_SIZE bsize; memset(wedge_masks, 0, sizeof(wedge_masks)); for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES; ++bsize) { const uint8_t *mask; const int bw = block_size_wide[bsize]; const int bh = block_size_high[bsize]; const wedge_params_type *wedge_params = &wedge_params_lookup[bsize]; const int wbits = wedge_params->bits; const int wtypes = 1 << wbits; int w; if (wbits == 0) continue; for (w = 0; w < wtypes; ++w) { mask = get_wedge_mask_inplace(w, 0, bsize); aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, bh); wedge_params->masks[0][w] = dst; dst += bw * bh; mask = get_wedge_mask_inplace(w, 1, bsize); aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, bh); wedge_params->masks[1][w] = dst; dst += bw * bh; } assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf)); } } // Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0 void av1_init_wedge_masks() { init_wedge_master_masks(); init_wedge_signs(); init_wedge_masks(); } #if CONFIG_SUPERTX static void build_masked_compound_wedge_extend( uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int wedge_offset_x, int wedge_offset_y, int h, int w) { const int subh = (2 << b_height_log2_lookup[sb_type]) == h; const int subw = (2 << b_width_log2_lookup[sb_type]) == w; const uint8_t *mask; size_t mask_stride; switch (comp_data->interinter_compound_type) { case COMPOUND_WEDGE: mask = av1_get_soft_mask(comp_data->wedge_index, comp_data->wedge_sign, sb_type, wedge_offset_x, wedge_offset_y); mask_stride = MASK_MASTER_STRIDE; break; #if CONFIG_COMPOUND_SEGMENT case COMPOUND_SEG: mask = comp_data->seg_mask; mask_stride = block_size_wide[sb_type]; break; #endif default: assert(0); return; } aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, (int)mask_stride, h, w, subh, subw); } #if CONFIG_HIGHBITDEPTH static void build_masked_compound_wedge_extend_highbd( uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride, const uint8_t *src1_8, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int wedge_offset_x, int wedge_offset_y, int h, int w, int bd) { const int subh = (2 << b_height_log2_lookup[sb_type]) == h; const int subw = (2 << b_width_log2_lookup[sb_type]) == w; const uint8_t *mask; size_t mask_stride; switch (comp_data->interinter_compound_type) { case COMPOUND_WEDGE: mask = av1_get_soft_mask(comp_data->wedge_index, comp_data->wedge_sign, sb_type, wedge_offset_x, wedge_offset_y); mask_stride = MASK_MASTER_STRIDE; break; #if CONFIG_COMPOUND_SEGMENT case COMPOUND_SEG: mask = comp_data->seg_mask; mask_stride = block_size_wide[sb_type]; break; #endif default: assert(0); return; } aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8, src1_stride, mask, (int)mask_stride, h, w, subh, subw, bd); } #endif // CONFIG_HIGHBITDEPTH #else static void build_masked_compound( uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, int w) { // Derive subsampling from h and w passed in. May be refactored to // pass in subsampling factors directly. const int subh = (2 << b_height_log2_lookup[sb_type]) == h; const int subw = (2 << b_width_log2_lookup[sb_type]) == w; const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, block_size_wide[sb_type], h, w, subh, subw); } #if CONFIG_HIGHBITDEPTH static void build_masked_compound_highbd( uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride, const uint8_t *src1_8, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, int w, int bd) { // Derive subsampling from h and w passed in. May be refactored to // pass in subsampling factors directly. const int subh = (2 << b_height_log2_lookup[sb_type]) == h; const int subw = (2 << b_width_log2_lookup[sb_type]) == w; const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); // const uint8_t *mask = // av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type); aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8, src1_stride, mask, block_size_wide[sb_type], h, w, subh, subw, bd); } #endif // CONFIG_HIGHBITDEPTH #endif // CONFIG_SUPERTX void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride, const int subpel_x, const int subpel_y, const struct scale_factors *sf, int w, int h, #if CONFIG_DUAL_FILTER const InterpFilter *interp_filter, #else const InterpFilter interp_filter, #endif int xs, int ys, #if CONFIG_SUPERTX int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX int plane, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION const WarpTypesAllowed *warp_types, int p_col, int p_row, int ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION MACROBLOCKD *xd) { MODE_INFO *mi = xd->mi[0]; const INTERINTER_COMPOUND_DATA comp_data = { #if CONFIG_WEDGE mi->mbmi.wedge_index, mi->mbmi.wedge_sign, #endif // CONFIG_WEDGE #if CONFIG_COMPOUND_SEGMENT mi->mbmi.mask_type, xd->seg_mask, #endif // CONFIG_COMPOUND_SEGMENT mi->mbmi.interinter_compound_type }; // The prediction filter types used here should be those for // the second reference block. #if CONFIG_DUAL_FILTER InterpFilter tmp_ipf[4] = { interp_filter[2], interp_filter[3], interp_filter[2], interp_filter[3], }; #else InterpFilter tmp_ipf = interp_filter; #endif // CONFIG_DUAL_FILTER ConvolveParams conv_params = get_conv_params(0, plane); #if CONFIG_HIGHBITDEPTH DECLARE_ALIGNED(16, uint8_t, tmp_dst_[2 * MAX_SB_SQUARE]); uint8_t *tmp_dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? CONVERT_TO_BYTEPTR(tmp_dst_) : tmp_dst_; av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x, subpel_y, sf, w, h, &conv_params, tmp_ipf, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION warp_types, p_col, p_row, plane, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR 0, 0, #endif xs, ys, xd); #if CONFIG_COMPOUND_SEGMENT if (!plane && comp_data.interinter_compound_type == COMPOUND_SEG) { if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_compound_seg_mask_highbd(comp_data.seg_mask, comp_data.mask_type, dst, dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.sb_type, h, w, xd->bd); else build_compound_seg_mask(comp_data.seg_mask, comp_data.mask_type, dst, dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.sb_type, h, w); } #endif // CONFIG_COMPOUND_SEGMENT #if CONFIG_SUPERTX if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_wedge_extend_highbd( dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w, xd->bd); else build_masked_compound_wedge_extend( dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w); #else if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_highbd(dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, h, w, xd->bd); else build_masked_compound(dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, h, w); #endif // CONFIG_SUPERTX #else // CONFIG_HIGHBITDEPTH DECLARE_ALIGNED(16, uint8_t, tmp_dst[MAX_SB_SQUARE]); av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x, subpel_y, sf, w, h, &conv_params, tmp_ipf, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION warp_types, p_col, p_row, plane, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR 0, 0, #endif xs, ys, xd); #if CONFIG_COMPOUND_SEGMENT if (!plane && comp_data.interinter_compound_type == COMPOUND_SEG) build_compound_seg_mask(comp_data.seg_mask, comp_data.mask_type, dst, dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.sb_type, h, w); #endif // CONFIG_COMPOUND_SEGMENT #if CONFIG_SUPERTX build_masked_compound_wedge_extend(dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w); #else build_masked_compound(dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, h, w); #endif // CONFIG_SUPERTX #endif // CONFIG_HIGHBITDEPTH #if CONFIG_COMPOUND_SEGMENT (void)plane; #endif // CONFIG_COMPOUND_SEGMENT } #endif // CONFIG_EXT_INTER // TODO(sarahparker) av1_highbd_build_inter_predictor and // av1_build_inter_predictor should be combined with // av1_make_inter_predictor #if CONFIG_HIGHBITDEPTH void av1_highbd_build_inter_predictor( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, #if CONFIG_DUAL_FILTER const InterpFilter *interp_filter, #else const InterpFilter interp_filter, #endif #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION const WarpTypesAllowed *warp_types, int p_col, int p_row, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION int plane, enum mv_precision precision, int x, int y, const MACROBLOCKD *xd) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = av1_scale_mv(&mv_q4, x, y, sf); const int subpel_x = mv.col & SUBPEL_MASK; const int subpel_y = mv.row & SUBPEL_MASK; ConvolveParams conv_params = get_conv_params(ref, plane); src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); av1_make_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, &conv_params, interp_filter, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION warp_types, p_col, p_row, plane, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR 0, 0, #endif sf->x_step_q4, sf->y_step_q4, xd); } #endif // CONFIG_HIGHBITDEPTH void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, #if CONFIG_DUAL_FILTER const InterpFilter *interp_filter, #else const InterpFilter interp_filter, #endif #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane, int ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION enum mv_precision precision, int x, int y, const MACROBLOCKD *xd) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = av1_scale_mv(&mv_q4, x, y, sf); const int subpel_x = mv.col & SUBPEL_MASK; const int subpel_y = mv.row & SUBPEL_MASK; src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); av1_make_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, conv_params, interp_filter, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION warp_types, p_col, p_row, plane, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR 0, 0, #endif sf->x_step_q4, sf->y_step_q4, xd); } typedef struct SubpelParams { int xs; int ys; int subpel_x; int subpel_y; } SubpelParams; void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, #if CONFIG_MOTION_VAR int mi_col_offset, int mi_row_offset, #endif // CONFIG_MOTION_VAR int block, int bw, int bh, int x, int y, int w, int h, #if CONFIG_SUPERTX && CONFIG_EXT_INTER int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER int mi_x, int mi_y) { struct macroblockd_plane *const pd = &xd->plane[plane]; #if CONFIG_MOTION_VAR const MODE_INFO *mi = xd->mi[mi_col_offset + xd->mi_stride * mi_row_offset]; #else const MODE_INFO *mi = xd->mi[0]; #endif // CONFIG_MOTION_VAR int is_compound = has_second_ref(&mi->mbmi); int ref; #if CONFIG_INTRABC const int is_intrabc = is_intrabc_block(&mi->mbmi); assert(IMPLIES(is_intrabc, !is_compound)); #endif // CONFIG_INTRABC #if CONFIG_GLOBAL_MOTION int is_global[2] = { 0, 0 }; for (ref = 0; ref < 1 + is_compound; ++ref) { WarpedMotionParams *const wm = &xd->global_motion[mi->mbmi.ref_frame[ref]]; is_global[ref] = is_global_mv_block(mi, block, wm->wmtype); } #endif // CONFIG_GLOBAL_MOTION #if CONFIG_CB4X4 (void)block; (void)cm; #endif #if CONFIG_MOTION_VAR && (CONFIG_CHROMA_SUB8X8 || !CONFIG_CB4X4) const int build_for_obmc = !(mi_col_offset == 0 && mi_row_offset == 0); #endif // CONFIG_MOTION_VAR && (CONFIG_CHROMA_SUB8X8 || !CONFIG_CB4X4) #if CONFIG_CHROMA_SUB8X8 const BLOCK_SIZE bsize = mi->mbmi.sb_type; const int ss_x = pd->subsampling_x; const int ss_y = pd->subsampling_y; int sub8x8_inter = bsize < BLOCK_8X8 && (ss_x || ss_y); const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0; const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0; #if CONFIG_MOTION_VAR if (!build_for_obmc && sub8x8_inter) { #else if (sub8x8_inter) { #endif // CONFIG_MOTION_VAR for (int row = row_start; row <= 0 && sub8x8_inter; ++row) for (int col = col_start; col <= 0; ++col) if (!is_inter_block(&xd->mi[row * xd->mi_stride + col]->mbmi)) sub8x8_inter = 0; } #if CONFIG_MOTION_VAR if (!build_for_obmc && sub8x8_inter) { #else if (sub8x8_inter) { #endif // CONFIG_MOTION_VAR // block size const int b4_w = block_size_wide[bsize] >> ss_x; const int b4_h = block_size_high[bsize] >> ss_y; const BLOCK_SIZE plane_bsize = scale_chroma_bsize(bsize, ss_x, ss_y); const int b8_w = block_size_wide[plane_bsize] >> ss_x; const int b8_h = block_size_high[plane_bsize] >> ss_y; int idx, idy; const int x_base = x; const int y_base = y; const struct buf_2d orig_pred_buf[2] = { pd->pre[0], pd->pre[1] }; int row = row_start; for (idy = 0; idy < b8_h; idy += b4_h) { int col = col_start; for (idx = 0; idx < b8_w; idx += b4_w) { MB_MODE_INFO *this_mbmi = &xd->mi[row * xd->mi_stride + col]->mbmi; is_compound = has_second_ref(this_mbmi); for (ref = 0; ref < 1 + is_compound; ++ref) { struct buf_2d *const dst_buf = &pd->dst; const RefBuffer *ref_buf = &cm->frame_refs[this_mbmi->ref_frame[ref] - LAST_FRAME]; const int c_offset = (mi_x + MI_SIZE * col_start) >> ss_x; const int r_offset = (mi_y + MI_SIZE * row_start) >> ss_y; pd->pre[ref].buf0 = (plane == 1) ? ref_buf->buf->u_buffer : ref_buf->buf->v_buffer; pd->pre[ref].buf = pd->pre[ref].buf0 + scaled_buffer_offset(c_offset, r_offset, ref_buf->buf->uv_stride, &ref_buf->sf); pd->pre[ref].width = ref_buf->buf->uv_crop_width; pd->pre[ref].height = ref_buf->buf->uv_crop_height; pd->pre[ref].stride = ref_buf->buf->uv_stride; #if CONFIG_INTRABC const struct scale_factors *const sf = is_intrabc ? &xd->sf_identity : &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; #else const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; #endif // CONFIG_INTRABC uint8_t *dst = dst_buf->buf; const MV mv = this_mbmi->mv[ref].as_mv; const MV mv_q4 = clamp_mv_to_umv_border_sb( xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); uint8_t *pre; MV32 scaled_mv; int xs, ys, subpel_x, subpel_y; const int is_scaled = av1_is_scaled(sf); ConvolveParams conv_params = get_conv_params(ref, plane); #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION WarpTypesAllowed warp_types; #if CONFIG_GLOBAL_MOTION warp_types.global_warp_allowed = is_global[ref]; #endif // CONFIG_GLOBAL_MOTION #if CONFIG_WARPED_MOTION warp_types.local_warp_allowed = this_mbmi->motion_mode == WARPED_CAUSAL; #endif // CONFIG_WARPED_MOTION #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION x = x_base + idx; y = y_base + idy; dst += dst_buf->stride * y + x; if (is_scaled) { pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); scaled_mv = av1_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); xs = sf->x_step_q4; ys = sf->y_step_q4; } else { pre = pre_buf->buf + y * pre_buf->stride + x; scaled_mv.row = mv_q4.row; scaled_mv.col = mv_q4.col; xs = ys = 16; } subpel_x = scaled_mv.col & SUBPEL_MASK; subpel_y = scaled_mv.row & SUBPEL_MASK; pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride + (scaled_mv.col >> SUBPEL_BITS); #if CONFIG_EXT_INTER if (ref && is_masked_compound_type(mi->mbmi.interinter_compound_type)) av1_make_masked_inter_predictor( pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, mi->mbmi.interp_filter, xs, ys, #if CONFIG_SUPERTX wedge_offset_x, wedge_offset_y, #endif // CONFIG_SUPERTX plane, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION &warp_types, (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION xd); else #endif // CONFIG_EXT_INTER av1_make_inter_predictor( pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, b4_w, b4_h, &conv_params, this_mbmi->interp_filter, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION &warp_types, (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, plane, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR mi_col_offset, mi_row_offset, #endif xs, ys, xd); } ++col; } ++row; } for (ref = 0; ref < 2; ++ref) pd->pre[ref] = orig_pred_buf[ref]; return; } #else (void)cm; #endif // CONFIG_CHROMA_SUB8X8 { struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; uint8_t *pre[2]; MV32 scaled_mv[2]; SubpelParams subpel_params[2]; #if CONFIG_CONVOLVE_ROUND DECLARE_ALIGNED(16, int32_t, tmp_dst[MAX_SB_SIZE * MAX_SB_SIZE]); av1_zero(tmp_dst); #endif // CONFIG_CONVOLVE_ROUND for (ref = 0; ref < 1 + is_compound; ++ref) { #if CONFIG_INTRABC const struct scale_factors *const sf = is_intrabc ? &xd->sf_identity : &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; #else const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; #endif // CONFIG_INTRABC #if CONFIG_CB4X4 const MV mv = mi->mbmi.mv[ref].as_mv; #else const MV mv = #if CONFIG_MOTION_VAR (mi->mbmi.sb_type < BLOCK_8X8 && !build_for_obmc) ? #else mi->mbmi.sb_type < BLOCK_8X8 ? #endif average_split_mvs(pd, mi, ref, block) : mi->mbmi.mv[ref].as_mv; #endif // TODO(jkoleszar): This clamping is done in the incorrect place for the // scaling case. It needs to be done on the scaled MV, not the pre-scaling // MV. Note however that it performs the subsampling aware scaling so // that the result is always q4. // mv_precision precision is MV_PRECISION_Q4. const MV mv_q4 = clamp_mv_to_umv_border_sb( xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); const int is_scaled = av1_is_scaled(sf); if (is_scaled) { pre[ref] = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); scaled_mv[ref] = av1_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); subpel_params[ref].xs = sf->x_step_q4; subpel_params[ref].ys = sf->y_step_q4; } else { pre[ref] = pre_buf->buf + (y * pre_buf->stride + x); scaled_mv[ref].row = mv_q4.row; scaled_mv[ref].col = mv_q4.col; subpel_params[ref].xs = 16; subpel_params[ref].ys = 16; } subpel_params[ref].subpel_x = scaled_mv[ref].col & SUBPEL_MASK; subpel_params[ref].subpel_y = scaled_mv[ref].row & SUBPEL_MASK; pre[ref] += (scaled_mv[ref].row >> SUBPEL_BITS) * pre_buf->stride + (scaled_mv[ref].col >> SUBPEL_BITS); } #if CONFIG_CONVOLVE_ROUND ConvolveParams conv_params = get_conv_params_no_round(ref, plane, tmp_dst, MAX_SB_SIZE); #else ConvolveParams conv_params = get_conv_params(ref, plane); #endif // CONFIG_CONVOLVE_ROUND for (ref = 0; ref < 1 + is_compound; ++ref) { #if CONFIG_INTRABC const struct scale_factors *const sf = is_intrabc ? &xd->sf_identity : &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; #else const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; #endif // CONFIG_INTRABC #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION WarpTypesAllowed warp_types; #if CONFIG_GLOBAL_MOTION warp_types.global_warp_allowed = is_global[ref]; #endif // CONFIG_GLOBAL_MOTION #if CONFIG_WARPED_MOTION warp_types.local_warp_allowed = mi->mbmi.motion_mode == WARPED_CAUSAL; #endif // CONFIG_WARPED_MOTION #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION conv_params.ref = ref; #if CONFIG_EXT_INTER if (ref && is_masked_compound_type(mi->mbmi.interinter_compound_type)) av1_make_masked_inter_predictor( pre[ref], pre_buf->stride, dst, dst_buf->stride, subpel_params[ref].subpel_x, subpel_params[ref].subpel_y, sf, w, h, mi->mbmi.interp_filter, subpel_params[ref].xs, subpel_params[ref].ys, #if CONFIG_SUPERTX wedge_offset_x, wedge_offset_y, #endif // CONFIG_SUPERTX plane, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION &warp_types, (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION xd); else #endif // CONFIG_EXT_INTER av1_make_inter_predictor( pre[ref], pre_buf->stride, dst, dst_buf->stride, subpel_params[ref].subpel_x, subpel_params[ref].subpel_y, sf, w, h, &conv_params, mi->mbmi.interp_filter, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION &warp_types, (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, plane, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR mi_col_offset, mi_row_offset, #endif subpel_params[ref].xs, subpel_params[ref].ys, xd); } #if CONFIG_CONVOLVE_ROUND // TODO(angiebird): This part needs optimization if (conv_params.do_post_rounding) { #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) av1_highbd_convolve_rounding(tmp_dst, MAX_SB_SIZE, dst, dst_buf->stride, w, h, FILTER_BITS * 2 + is_compound - conv_params.round_0 - conv_params.round_1, xd->bd); else #endif // CONFIG_HIGHBITDEPTH av1_convolve_rounding(tmp_dst, MAX_SB_SIZE, dst, dst_buf->stride, w, h, FILTER_BITS * 2 + is_compound - conv_params.round_0 - conv_params.round_1); } #endif // CONFIG_CONVOLVE_ROUND } } void av1_build_inter_predictor_sub8x8(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, int i, int ir, int ic, int mi_row, int mi_col) { struct macroblockd_plane *const pd = &xd->plane[plane]; MODE_INFO *const mi = xd->mi[0]; const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd); const int width = block_size_wide[plane_bsize]; const int height = block_size_high[plane_bsize]; uint8_t *const dst = &pd->dst.buf[(ir * pd->dst.stride + ic) << 2]; int ref; const int is_compound = has_second_ref(&mi->mbmi); (void)cm; #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION WarpTypesAllowed warp_types; const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x) + 4 * ic; const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y) + 4 * ir; #if CONFIG_GLOBAL_MOTION int is_global[2]; for (ref = 0; ref < 1 + is_compound; ++ref) { WarpedMotionParams *const wm = &xd->global_motion[mi->mbmi.ref_frame[ref]]; is_global[ref] = is_global_mv_block(mi, i, wm->wmtype); } #endif // CONFIG_GLOBAL_MOTION #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION for (ref = 0; ref < 1 + is_compound; ++ref) { ConvolveParams conv_params = get_conv_params(ref, plane); const uint8_t *pre = &pd->pre[ref].buf[(ir * pd->pre[ref].stride + ic) << 2]; #if CONFIG_GLOBAL_MOTION warp_types.global_warp_allowed = is_global[ref]; #endif // CONFIG_GLOBAL_MOTION #if CONFIG_WARPED_MOTION warp_types.local_warp_allowed = mi->mbmi.motion_mode == WARPED_CAUSAL; #endif // CONFIG_WARPED_MOTION #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) av1_highbd_build_inter_predictor( pre, pd->pre[ref].stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, ref, mi->mbmi.interp_filter, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION &warp_types, p_col, p_row, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION plane, MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir, xd); else #endif // CONFIG_HIGHBITDEPTH av1_build_inter_predictor(pre, pd->pre[ref].stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, &conv_params, mi->mbmi.interp_filter, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION &warp_types, p_col, p_row, plane, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir, xd); } } static void build_inter_predictors_for_planes(const AV1_COMMON *cm, MACROBLOCKD *xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int plane_from, int plane_to) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; #endif for (plane = plane_from; plane <= plane_to; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = pd->width; const int bh = pd->height; #if CONFIG_CB4X4 if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, pd->subsampling_y)) continue; #endif if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !unify_bsize) { const PARTITION_TYPE bp = bsize - xd->mi[0]->mbmi.sb_type; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); const int pw = 8 >> (have_vsplit | pd->subsampling_x); const int ph = 8 >> (have_hsplit | pd->subsampling_y); int x, y; assert(bp != PARTITION_NONE && bp < PARTITION_TYPES); assert(bsize == BLOCK_8X8); assert(pw * num_4x4_w == bw && ph * num_4x4_h == bh); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_inter_predictors(cm, xd, plane, #if CONFIG_MOTION_VAR 0, 0, #endif // CONFIG_MOTION_VAR y * 2 + x, bw, bh, 4 * x, 4 * y, pw, ph, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } else { build_inter_predictors(cm, xd, plane, #if CONFIG_MOTION_VAR 0, 0, #endif // CONFIG_MOTION_VAR 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } } void av1_build_inter_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 0, 0); #if CONFIG_EXT_INTER && CONFIG_INTERINTRA if (is_interintra_pred(&xd->mi[0]->mbmi)) { BUFFER_SET default_ctx = { { xd->plane[0].dst.buf, NULL, NULL }, { xd->plane[0].dst.stride, 0, 0 } }; if (!ctx) ctx = &default_ctx; av1_build_interintra_predictors_sby(xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride, ctx, bsize); } #else (void)ctx; #endif // CONFIG_EXT_INTER && CONFIG_INTERINTRA } void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 1, MAX_MB_PLANE - 1); #if CONFIG_EXT_INTER && CONFIG_INTERINTRA if (is_interintra_pred(&xd->mi[0]->mbmi)) { BUFFER_SET default_ctx = { { NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf }, { 0, xd->plane[1].dst.stride, xd->plane[2].dst.stride } }; if (!ctx) ctx = &default_ctx; av1_build_interintra_predictors_sbuv( xd, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[1].dst.stride, xd->plane[2].dst.stride, ctx, bsize); } #else (void)ctx; #endif // CONFIG_EXT_INTER && CONFIG_INTERINTRA } // TODO(afergs): Check if ctx can be made constant void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 0, MAX_MB_PLANE - 1); #if CONFIG_EXT_INTER && CONFIG_INTERINTRA if (is_interintra_pred(&xd->mi[0]->mbmi)) { BUFFER_SET default_ctx = { { xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf }, { xd->plane[0].dst.stride, xd->plane[1].dst.stride, xd->plane[2].dst.stride } }; if (!ctx) ctx = &default_ctx; av1_build_interintra_predictors( xd, xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[0].dst.stride, xd->plane[1].dst.stride, xd->plane[2].dst.stride, ctx, bsize); } #else (void)ctx; #endif // CONFIG_EXT_INTER && CONFIG_INTERINTRA } void av1_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE], BLOCK_SIZE bsize, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col) { uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, src->v_buffer }; const int widths[MAX_MB_PLANE] = { src->y_crop_width, src->uv_crop_width, src->uv_crop_width }; const int heights[MAX_MB_PLANE] = { src->y_crop_height, src->uv_crop_height, src->uv_crop_height }; const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, src->uv_stride }; int i; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &planes[i]; setup_pred_plane(&pd->dst, bsize, buffers[i], widths[i], heights[i], strides[i], mi_row, mi_col, NULL, pd->subsampling_x, pd->subsampling_y); } } void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const struct scale_factors *sf) { if (src != NULL) { int i; uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, src->v_buffer }; const int widths[MAX_MB_PLANE] = { src->y_crop_width, src->uv_crop_width, src->uv_crop_width }; const int heights[MAX_MB_PLANE] = { src->y_crop_height, src->uv_crop_height, src->uv_crop_height }; const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, src->uv_stride }; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &xd->plane[i]; setup_pred_plane(&pd->pre[idx], xd->mi[0]->mbmi.sb_type, buffers[i], widths[i], heights[i], strides[i], mi_row, mi_col, sf, pd->subsampling_x, pd->subsampling_y); } } } #if CONFIG_SUPERTX #if CONFIG_CB4X4 static const uint8_t mask_4[4] = { 64, 52, 12, 0 }; static const uint8_t mask_4_uv[4] = { 64, 52, 12, 0 }; #endif // CONFIG_CB4X4 static const uint8_t mask_8[8] = { 64, 64, 62, 52, 12, 2, 0, 0 }; static const uint8_t mask_16[16] = { 63, 62, 60, 58, 55, 50, 43, 36, 28, 21, 14, 9, 6, 4, 2, 1 }; static const uint8_t mask_32[32] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 61, 57, 52, 45, 36, 28, 19, 12, 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static const uint8_t mask_8_uv[8] = { 64, 64, 62, 52, 12, 2, 0, 0 }; static const uint8_t mask_16_uv[16] = { 64, 64, 64, 64, 61, 53, 45, 36, 28, 19, 11, 3, 0, 0, 0, 0 }; static const uint8_t mask_32_uv[32] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 60, 54, 46, 36, 28, 18, 10, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static const uint8_t *get_supertx_mask(int length, int plane) { switch (length) { #if CONFIG_CB4X4 case 4: return plane ? mask_4_uv : mask_4; #endif // CONFIG_CB4X4 case 8: return plane ? mask_8_uv : mask_8; case 16: return plane ? mask_16_uv : mask_16; case 32: return plane ? mask_32_uv : mask_32; default: assert(0); } return NULL; } void av1_build_masked_inter_predictor_complex( MACROBLOCKD *xd, uint8_t *dst, int dst_stride, const uint8_t *pre, int pre_stride, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition, int plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int ssx = pd->subsampling_x; const int ssy = pd->subsampling_y; const int top_w = block_size_wide[top_bsize] >> ssx; const int top_h = block_size_high[top_bsize] >> ssy; const int w = block_size_wide[bsize] >> ssx; const int h = block_size_high[bsize] >> ssy; const int w_offset = ((mi_col - mi_col_ori) * MI_SIZE) >> ssx; const int h_offset = ((mi_row - mi_row_ori) * MI_SIZE) >> ssy; int w_remain, h_remain; #if CONFIG_HIGHBITDEPTH const int is_hdb = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #endif // CONFIG_HIGHBITDEPTH assert(bsize <= BLOCK_32X32); assert(IMPLIES(plane == 0, ssx == 0)); assert(IMPLIES(plane == 0, ssy == 0)); switch (partition) { case PARTITION_HORZ: { const uint8_t *const mask = get_supertx_mask(h, ssy); w_remain = top_w; h_remain = top_h - h_offset - h; dst += h_offset * dst_stride; pre += h_offset * pre_stride; #if CONFIG_HIGHBITDEPTH if (is_hdb) aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, pre, pre_stride, mask, h, top_w, xd->bd); else #endif // CONFIG_HIGHBITDEPTH aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, pre, pre_stride, mask, h, top_w); dst += h * dst_stride; pre += h * pre_stride; break; } case PARTITION_VERT: { const uint8_t *const mask = get_supertx_mask(w, ssx); w_remain = top_w - w_offset - w; h_remain = top_h; dst += w_offset; pre += w_offset; #if CONFIG_HIGHBITDEPTH if (is_hdb) aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, pre, pre_stride, mask, top_h, w, xd->bd); else #endif // CONFIG_HIGHBITDEPTH aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, pre, pre_stride, mask, top_h, w); dst += w; pre += w; break; } default: { assert(0); return; } } if (w_remain == 0 || h_remain == 0) { return; } #if CONFIG_HIGHBITDEPTH if (is_hdb) { dst = (uint8_t *)CONVERT_TO_SHORTPTR(dst); pre = (const uint8_t *)CONVERT_TO_SHORTPTR(pre); dst_stride *= 2; pre_stride *= 2; w_remain *= 2; } #endif // CONFIG_HIGHBITDEPTH do { memcpy(dst, pre, w_remain * sizeof(uint8_t)); dst += dst_stride; pre += pre_stride; } while (--h_remain); } void av1_build_inter_predictors_sb_sub8x8_extend(const AV1_COMMON *cm, MACROBLOCKD *xd, #if CONFIG_EXT_INTER int mi_row_ori, int mi_col_ori, #endif // CONFIG_EXT_INTER int mi_row, int mi_col, BLOCK_SIZE bsize, int block) { // Prediction function used in supertx: // Use the mv at current block (which is less than 8x8) // to get prediction of a block located at (mi_row, mi_col) at size of bsize // bsize can be larger than 8x8. // block (0-3): the sub8x8 location of current block int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; #if CONFIG_EXT_INTER const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE; const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE; #endif // CONFIG_EXT_INTER // For sub8x8 uv: // Skip uv prediction in supertx except the first block (block = 0) int max_plane = block ? 1 : MAX_MB_PLANE; for (plane = 0; plane < max_plane; plane++) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; build_inter_predictors(cm, xd, plane, #if CONFIG_MOTION_VAR 0, 0, #endif // CONFIG_MOTION_VAR block, bw, bh, 0, 0, bw, bh, #if CONFIG_EXT_INTER wedge_offset_x, wedge_offset_y, #endif // CONFIG_EXT_INTER mi_x, mi_y); } #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) { BUFFER_SET ctx = { { xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf }, { xd->plane[0].dst.stride, xd->plane[1].dst.stride, xd->plane[2].dst.stride } }; av1_build_interintra_predictors( xd, xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[0].dst.stride, xd->plane[1].dst.stride, xd->plane[2].dst.stride, &ctx, bsize); } #endif // CONFIG_EXT_INTER } void av1_build_inter_predictors_sb_extend(const AV1_COMMON *cm, MACROBLOCKD *xd, #if CONFIG_EXT_INTER int mi_row_ori, int mi_col_ori, #endif // CONFIG_EXT_INTER int mi_row, int mi_col, BLOCK_SIZE bsize) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; #if CONFIG_EXT_INTER const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE; const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE; #endif // CONFIG_EXT_INTER for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; build_inter_predictors(cm, xd, plane, #if CONFIG_MOTION_VAR 0, 0, #endif // CONFIG_MOTION_VAR 0, bw, bh, 0, 0, bw, bh, #if CONFIG_EXT_INTER wedge_offset_x, wedge_offset_y, #endif // CONFIG_EXT_INTER mi_x, mi_y); } } #endif // CONFIG_SUPERTX #if CONFIG_MOTION_VAR // obmc_mask_N[overlap_position] static const uint8_t obmc_mask_1[1] = { 64 }; static const uint8_t obmc_mask_2[2] = { 45, 64 }; static const uint8_t obmc_mask_4[4] = { 39, 50, 59, 64 }; static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 }; static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54, 56, 58, 60, 61, 64, 64, 64, 64 }; static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 60, 61, 62, 64, 64, 64, 64, 64, 64, 64, 64 }; #if CONFIG_EXT_PARTITION static const uint8_t obmc_mask_64[64] = { 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44, 45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56, 56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, }; #endif // CONFIG_EXT_PARTITION const uint8_t *av1_get_obmc_mask(int length) { switch (length) { case 1: return obmc_mask_1; case 2: return obmc_mask_2; case 4: return obmc_mask_4; case 8: return obmc_mask_8; case 16: return obmc_mask_16; case 32: return obmc_mask_32; #if CONFIG_EXT_PARTITION case 64: return obmc_mask_64; #endif // CONFIG_EXT_PARTITION default: assert(0); return NULL; } } #if CONFIG_NCOBMC // obmc_mask_flipN[overlap_position] static const uint8_t obmc_mask_flip1[1] = { 55 }; static const uint8_t obmc_mask_flip2[2] = { 62, 45 }; static const uint8_t obmc_mask_flip4[4] = { 64, 59, 50, 39 }; static const uint8_t obmc_mask_flip8[8] = { 64, 63, 61, 57, 53, 48, 42, 36 }; static const uint8_t obmc_mask_flip16[16] = { 64, 64, 64, 63, 61, 60, 58, 56, 54, 52, 49, 46, 43, 40, 37, 34 }; static const uint8_t obmc_mask_flip32[32] = { 64, 64, 64, 64, 64, 63, 63, 62, 62, 61, 60, 60, 59, 58, 57, 56, 55, 53, 52, 51, 50, 48, 47, 45, 44, 43, 41, 40, 38, 36, 35, 33 }; #if CONFIG_EXT_PARTITION static const uint8_t obmc_mask_flip64[64] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 63, 63, 63, 62, 62, 62, 62, 62, 61, 60, 60, 60, 60, 60, 59, 58, 58, 57, 57, 56, 56, 56, 55, 54, 53, 52, 52, 51, 51, 51, 50, 49, 48, 47, 47, 46, 45, 44, 44, 44, 43, 42, 41, 40, 40, 39, 38, 37, 36, 35, 35, 34, 33, }; #endif // CONFIG_EXT_PARTITION const uint8_t *av1_get_obmc_mask_flipped(int length) { switch (length) { case 1: return obmc_mask_flip1; case 2: return obmc_mask_flip2; case 4: return obmc_mask_flip4; case 8: return obmc_mask_flip8; case 16: return obmc_mask_flip16; case 32: return obmc_mask_flip32; #if CONFIG_EXT_PARTITION case 64: return obmc_mask_flip64; #endif // CONFIG_EXT_PARTITION default: assert(0); return NULL; } } #endif // CONFIG_NCOBMC void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col) { int i, mi_step; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; xd->mi[0]->mbmi.overlappable_neighbors[0] = 0; xd->mi[0]->mbmi.overlappable_neighbors[1] = 0; if (!is_motion_variation_allowed_bsize(mbmi->sb_type)) return; if (xd->up_available) { const int ilimit = AOMMIN(xd->n8_w, cm->mi_cols - mi_col); for (i = 0; i < ilimit; i += mi_step) { int mi_row_offset = -1; int mi_col_offset = i; MODE_INFO *above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *above_mbmi = &above_mi->mbmi; #if CONFIG_CHROMA_SUB8X8 if (above_mbmi->sb_type < BLOCK_8X8) { ++mi_col_offset; above_mbmi = &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; } #endif BLOCK_SIZE above_bsize = AOMMAX(above_mbmi->sb_type, BLOCK_8X8); mi_step = AOMMIN(xd->n8_w, mi_size_wide[above_bsize]); if (is_neighbor_overlappable(above_mbmi)) xd->mi[0]->mbmi.overlappable_neighbors[0]++; } } if (xd->left_available) { const int ilimit = AOMMIN(xd->n8_h, cm->mi_rows - mi_row); for (i = 0; i < ilimit; i += mi_step) { int mi_row_offset = i; int mi_col_offset = -1; MODE_INFO *left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *left_mbmi = &left_mi->mbmi; #if CONFIG_CHROMA_SUB8X8 if (left_mbmi->sb_type < BLOCK_8X8) { ++mi_row_offset; left_mbmi = &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; } #endif BLOCK_SIZE left_bsize = AOMMAX(left_mbmi->sb_type, BLOCK_8X8); mi_step = AOMMIN(xd->n8_h, mi_size_high[left_bsize]); if (is_neighbor_overlappable(left_mbmi)) xd->mi[0]->mbmi.overlappable_neighbors[1]++; } } } // HW does not support < 4x4 prediction. To limit the bandwidth requirement, for // small blocks, only blend with neighbors from one side. If block-size of // current plane is 4x4 or 8x4, the above neighbor (dir = 0) will be skipped. If // it is 4x8, the left neighbor (dir = 1) will be skipped. #define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable int skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize, const struct macroblockd_plane *pd, int dir) { assert(is_motion_variation_allowed_bsize(bsize)); BLOCK_SIZE bsize_plane = ss_size_lookup[bsize][pd->subsampling_x][pd->subsampling_y]; #if CONFIG_CB4X4 if (bsize_plane < BLOCK_4X4) return 1; #endif switch (bsize_plane) { #if DISABLE_CHROMA_U8X8_OBMC case BLOCK_4X4: case BLOCK_8X4: case BLOCK_4X8: return 1; break; #else case BLOCK_4X4: case BLOCK_8X4: case BLOCK_4X8: return dir == 0; break; #endif default: return 0; } } // This function combines motion compensated predictions that is generated by // top/left neighboring blocks' inter predictors with the regular inter // prediction. We assume the original prediction (bmc) is stored in // xd->plane[].dst.buf void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *above[MAX_MB_PLANE], int above_stride[MAX_MB_PLANE], uint8_t *left[MAX_MB_PLANE], int left_stride[MAX_MB_PLANE]) { const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int plane, i; #if CONFIG_HIGHBITDEPTH const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #endif // CONFIG_HIGHBITDEPTH // handle above row if (xd->up_available) { const int overlap = num_4x4_blocks_high_lookup[bsize] * 2; const int miw = AOMMIN(xd->n8_w, cm->mi_cols - mi_col); const int mi_row_offset = -1; const int neighbor_limit = max_neighbor_obmc[b_width_log2_lookup[bsize]]; int neighbor_count = 0; assert(miw > 0); i = 0; do { // for each mi in the above row int mi_col_offset = i; MB_MODE_INFO *above_mbmi = &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; #if CONFIG_CHROMA_SUB8X8 if (above_mbmi->sb_type < BLOCK_8X8) { ++mi_col_offset; above_mbmi = &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; } #endif const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->sb_type); const int mi_step = AOMMIN(xd->n8_w, mi_size_wide[a_bsize]); if (is_neighbor_overlappable(above_mbmi)) { neighbor_count++; if (neighbor_count > neighbor_limit) break; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = (mi_step * MI_SIZE) >> pd->subsampling_x; const int bh = overlap >> pd->subsampling_y; if (skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; const int dst_stride = pd->dst.stride; uint8_t *const dst = &pd->dst.buf[(i * MI_SIZE) >> pd->subsampling_x]; const int tmp_stride = above_stride[plane]; const uint8_t *const tmp = &above[plane][(i * MI_SIZE) >> pd->subsampling_x]; const uint8_t *const mask = av1_get_obmc_mask(bh); #if CONFIG_HIGHBITDEPTH if (is_hbd) aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw, xd->bd); else #endif // CONFIG_HIGHBITDEPTH aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw); } } i += mi_step; } while (i < miw); } // handle left column if (xd->left_available) { const int overlap = num_4x4_blocks_wide_lookup[bsize] * 2; const int mih = AOMMIN(xd->n8_h, cm->mi_rows - mi_row); const int mi_col_offset = -1; const int neighbor_limit = max_neighbor_obmc[b_height_log2_lookup[bsize]]; int neighbor_count = 0; assert(mih > 0); i = 0; do { // for each mi in the left column int mi_row_offset = i; MB_MODE_INFO *left_mbmi = &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; #if CONFIG_CHROMA_SUB8X8 if (left_mbmi->sb_type < BLOCK_8X8) { ++mi_row_offset; left_mbmi = &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; } #endif const BLOCK_SIZE l_bsize = AOMMAX(BLOCK_8X8, left_mbmi->sb_type); const int mi_step = AOMMIN(xd->n8_h, mi_size_high[l_bsize]); if (is_neighbor_overlappable(left_mbmi)) { neighbor_count++; if (neighbor_count > neighbor_limit) break; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = overlap >> pd->subsampling_x; const int bh = (mi_step * MI_SIZE) >> pd->subsampling_y; if (skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; const int dst_stride = pd->dst.stride; uint8_t *const dst = &pd->dst.buf[(i * MI_SIZE * dst_stride) >> pd->subsampling_y]; const int tmp_stride = left_stride[plane]; const uint8_t *const tmp = &left[plane][(i * MI_SIZE * tmp_stride) >> pd->subsampling_y]; const uint8_t *const mask = av1_get_obmc_mask(bw); #if CONFIG_HIGHBITDEPTH if (is_hbd) aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw, xd->bd); else #endif // CONFIG_HIGHBITDEPTH aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw); } } i += mi_step; } while (i < mih); } } void modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) { #if CONFIG_EXT_INTER if (is_interintra_pred(mbmi)) { mbmi->ref_frame[1] = NONE_FRAME; } else if (has_second_ref(mbmi) && is_masked_compound_type(mbmi->interinter_compound_type)) { mbmi->interinter_compound_type = COMPOUND_AVERAGE; mbmi->ref_frame[1] = NONE_FRAME; } #endif // CONFIG_EXT_INTER if (has_second_ref(mbmi)) mbmi->ref_frame[1] = NONE_FRAME; return; } void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int i, j, mi_step, ref; const int ilimit = AOMMIN(xd->n8_w, cm->mi_cols - mi_col); int mb_to_right_edge_base = xd->mb_to_right_edge; const int neighbor_limit = max_neighbor_obmc[b_width_log2_lookup[bsize]]; int neighbor_count = 0; if (mi_row <= tile->mi_row_start) return; xd->mb_to_bottom_edge += xd->n8_h * 32; for (i = 0; i < ilimit; i += mi_step) { int mi_row_offset = -1; int mi_col_offset = i; int mi_x, mi_y, bw, bh; MODE_INFO *above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *above_mbmi = &above_mi->mbmi; #if CONFIG_CHROMA_SUB8X8 if (above_mbmi->sb_type < BLOCK_8X8) { ++mi_col_offset; above_mbmi = &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; } #endif const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->sb_type); MB_MODE_INFO backup_mbmi; mi_step = AOMMIN(xd->n8_w, mi_size_wide[a_bsize]); if (!is_neighbor_overlappable(above_mbmi)) continue; neighbor_count++; if (neighbor_count > neighbor_limit) break; backup_mbmi = *above_mbmi; modify_neighbor_predictor_for_obmc(above_mbmi); for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, a_bsize, tmp_buf[j], tmp_width[j], tmp_height[j], tmp_stride[j], 0, i, NULL, pd->subsampling_x, pd->subsampling_y); } for (ref = 0; ref < 1 + has_second_ref(above_mbmi); ++ref) { const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref]; const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col + i, &ref_buf->sf); } xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8); xd->mb_to_right_edge = mb_to_right_edge_base + (xd->n8_w - i - mi_step) * 64; mi_x = (mi_col + i) << MI_SIZE_LOG2; mi_y = mi_row << MI_SIZE_LOG2; for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bw = (mi_step * MI_SIZE) >> pd->subsampling_x; bh = AOMMAX((num_4x4_blocks_high_lookup[bsize] * 2) >> pd->subsampling_y, 4); if (skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; build_inter_predictors(cm, xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } *above_mbmi = backup_mbmi; } xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); xd->mb_to_right_edge = mb_to_right_edge_base; xd->mb_to_bottom_edge -= xd->n8_h * 32; } void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int i, j, mi_step, ref; const int ilimit = AOMMIN(xd->n8_h, cm->mi_rows - mi_row); int mb_to_bottom_edge_base = xd->mb_to_bottom_edge; const int neighbor_limit = max_neighbor_obmc[b_height_log2_lookup[bsize]]; int neighbor_count = 0; if (mi_col == 0 || (mi_col - 1 < tile->mi_col_start)) return; xd->mb_to_right_edge += xd->n8_w * 32; for (i = 0; i < ilimit; i += mi_step) { int mi_row_offset = i; int mi_col_offset = -1; int mi_x, mi_y, bw, bh; MODE_INFO *left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *left_mbmi = &left_mi->mbmi; #if CONFIG_CHROMA_SUB8X8 if (left_mbmi->sb_type < BLOCK_8X8) { ++mi_row_offset; left_mbmi = &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; } #endif const BLOCK_SIZE l_bsize = AOMMAX(left_mbmi->sb_type, BLOCK_8X8); MB_MODE_INFO backup_mbmi; mi_step = AOMMIN(xd->n8_h, mi_size_high[l_bsize]); if (!is_neighbor_overlappable(left_mbmi)) continue; neighbor_count++; if (neighbor_count > neighbor_limit) break; backup_mbmi = *left_mbmi; modify_neighbor_predictor_for_obmc(left_mbmi); for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, l_bsize, tmp_buf[j], tmp_width[j], tmp_height[j], tmp_stride[j], i, 0, NULL, pd->subsampling_x, pd->subsampling_y); } for (ref = 0; ref < 1 + has_second_ref(left_mbmi); ++ref) { const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref]; const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, mi_col, &ref_buf->sf); } xd->mb_to_top_edge = -(((mi_row + i) * MI_SIZE) * 8); xd->mb_to_bottom_edge = mb_to_bottom_edge_base + (xd->n8_h - i - mi_step) * 64; mi_x = mi_col << MI_SIZE_LOG2; mi_y = (mi_row + i) << MI_SIZE_LOG2; for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bw = AOMMAX((num_4x4_blocks_wide_lookup[bsize] * 2) >> pd->subsampling_x, 4); bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y; if (skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; build_inter_predictors(cm, xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } *left_mbmi = backup_mbmi; } xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); xd->mb_to_bottom_edge = mb_to_bottom_edge_base; xd->mb_to_right_edge -= xd->n8_w * 32; } void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col) { #if CONFIG_HIGHBITDEPTH DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); #else DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]); #endif // CONFIG_HIGHBITDEPTH uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int len = sizeof(uint16_t); dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len); dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len); dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len); dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len); } else { #endif // CONFIG_HIGHBITDEPTH dst_buf1[0] = tmp_buf1; dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE; dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2; dst_buf2[0] = tmp_buf2; dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE; dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1, dst_width1, dst_height1, dst_stride1); av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2, dst_width2, dst_height2, dst_stride2); av1_setup_dst_planes(xd->plane, xd->mi[0]->mbmi.sb_type, get_frame_new_buffer(cm), mi_row, mi_col); av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1, dst_buf2, dst_stride2); } #if CONFIG_NCOBMC void av1_build_prediction_by_bottom_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int i, j, mi_step, ref; const int ilimit = AOMMIN(xd->n8_w, cm->mi_cols - mi_col); int mb_to_right_edge_base = xd->mb_to_right_edge; if (mi_row + xd->n8_h >= tile->mi_row_end || (mi_row + xd->n8_h) % MI_SIZE == 0 || (mi_row + xd->n8_h) >= cm->mi_rows) return; assert(bsize >= BLOCK_8X8); xd->mb_to_top_edge -= xd->n8_h * 32; for (i = 0; i < ilimit; i += mi_step) { int mi_row_offset = xd->n8_h; int mi_col_offset = i; int mi_x, mi_y, bw, bh; MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *mbmi = &mi->mbmi; #if CONFIG_EXT_INTER MB_MODE_INFO backup_mbmi; #endif // CONFIG_EXT_INTER mi_step = AOMMIN(xd->n8_w, mi_size_wide[mbmi->sb_type]); if (!is_neighbor_overlappable(mbmi)) continue; #if CONFIG_EXT_INTER backup_mbmi = *mbmi; modify_neighbor_predictor_for_obmc(mbmi); #endif // CONFIG_EXT_INTER for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, AOMMAX(mbmi->sb_type, BLOCK_8X8), tmp_buf[j], tmp_width[j], tmp_height[j], tmp_stride[j], (xd->n8_h >> 1), i, NULL, pd->subsampling_x, pd->subsampling_y); } for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + (xd->n8_h >> 1), mi_col + i, &ref_buf->sf); } xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8); xd->mb_to_right_edge = mb_to_right_edge_base + (xd->n8_w - i - mi_step) * 64; mi_x = (mi_col + i) << MI_SIZE_LOG2; mi_y = (mi_row << MI_SIZE_LOG2) + xd->n8_h * 4; for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bw = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_x; bh = (num_4x4_blocks_high_lookup[bsize] << 1) >> pd->subsampling_y; if (mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) { const PARTITION_TYPE bp = BLOCK_8X8 - mbmi->sb_type; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> (!have_vsplit); const int num_4x4_h = 2 >> (!have_hsplit); const int pw = 8 >> (have_vsplit + pd->subsampling_x); int x, y; for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) { if ((bp == PARTITION_HORZ || bp == PARTITION_SPLIT) && y != 0) continue; build_inter_predictors( cm, xd, j, mi_col_offset, mi_row_offset, y * 2 + x, bw, bh, (4 * x) >> pd->subsampling_x, xd->n8_h == 1 ? (4 >> pd->subsampling_y) : 0, pw, bh, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } else { build_inter_predictors( cm, xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, 0, xd->n8_h == 1 ? (4 >> pd->subsampling_y) : 0, bw, bh, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } #if CONFIG_EXT_INTER *mbmi = backup_mbmi; #endif // CONFIG_EXT_INTER } xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); xd->mb_to_right_edge = mb_to_right_edge_base; xd->mb_to_top_edge += xd->n8_h * 32; } void av1_build_prediction_by_right_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], const int tmp_stride[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int i, j, mi_step, ref; const int ilimit = AOMMIN(xd->n8_h, cm->mi_rows - mi_row); int mb_to_bottom_edge_base = xd->mb_to_bottom_edge; if (mi_col + xd->n8_w >= tile->mi_col_end || (mi_col + xd->n8_w) % MI_SIZE == 0 || (mi_col + xd->n8_w) >= cm->mi_cols) return; xd->mb_to_left_edge -= xd->n8_w * 32; for (i = 0; i < ilimit; i += mi_step) { int mi_row_offset = i; int mi_col_offset = xd->n8_w; int mi_x, mi_y, bw, bh; MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *mbmi = &mi->mbmi; #if CONFIG_EXT_INTER MB_MODE_INFO backup_mbmi; #endif // CONFIG_EXT_INTER mi_step = AOMMIN(xd->n8_h, mi_size_high[mbmi->sb_type]); if (!is_neighbor_overlappable(mbmi)) continue; #if CONFIG_EXT_INTER backup_mbmi = *mbmi; modify_neighbor_predictor_for_obmc(mbmi); #endif // CONFIG_EXT_INTER for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, AOMMAX(mbmi->sb_type, BLOCK_8X8), tmp_buf[j], tmp_width[j], tmp_height[j], tmp_stride[j], i, xd->n8_w >> 1, NULL, pd->subsampling_x, pd->subsampling_y); } for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, mi_col + (xd->n8_w >> 1), &ref_buf->sf); } xd->mb_to_top_edge = -(((mi_row + i) * MI_SIZE) * 8); xd->mb_to_bottom_edge = mb_to_bottom_edge_base + (xd->n8_h - i - mi_step) * 64; mi_x = (mi_col << MI_SIZE_LOG2) + xd->n8_w * 4; mi_y = (mi_row + i) << MI_SIZE_LOG2; for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bw = (num_4x4_blocks_wide_lookup[bsize] << 1) >> pd->subsampling_x; bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y; if (mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) { const PARTITION_TYPE bp = BLOCK_8X8 - mbmi->sb_type; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> (!have_vsplit); const int num_4x4_h = 2 >> (!have_hsplit); const int ph = 8 >> (have_hsplit + pd->subsampling_y); int x, y; for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) { if ((bp == PARTITION_VERT || bp == PARTITION_SPLIT) && x != 0) continue; build_inter_predictors(cm, xd, j, mi_col_offset, mi_row_offset, y * 2 + x, bw, bh, xd->n8_w == 1 ? 4 >> pd->subsampling_x : 0, (4 * y) >> pd->subsampling_y, bw, ph, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } else { build_inter_predictors(cm, xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, xd->n8_w == 1 ? 4 >> pd->subsampling_x : 0, 0, bw, bh, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } #if CONFIG_EXT_INTER *mbmi = backup_mbmi; #endif // CONFIG_EXT_INTER } xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); xd->mb_to_bottom_edge = mb_to_bottom_edge_base; xd->mb_to_left_edge += xd->n8_w * 32; } // This function combines motion compensated predictions that is generated by // bottom/right neighboring blocks' inter predictors with prediction in dst // buffer. void av1_merge_dst_bottom_right_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *bottom[MAX_MB_PLANE], const int bottom_stride[MAX_MB_PLANE], uint8_t *right[MAX_MB_PLANE], const int right_stride[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int plane, i, mi_step; const int bottom_available = mi_row + xd->n8_h < tile->mi_row_end && (mi_row + xd->n8_h) % MI_SIZE != 0 && (mi_row + xd->n8_h) < cm->mi_rows; #if CONFIG_HIGHBITDEPTH int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #endif // CONFIG_HIGHBITDEPTH // handle bottom row for (i = 0; bottom_available && i < AOMMIN(xd->n8_w, cm->mi_cols - mi_col); i += mi_step) { int mi_row_offset = xd->n8_h; int mi_col_offset = i; MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *mbmi = &mi->mbmi; int overlap; mi_step = AOMMIN(xd->n8_w, mi_size_wide[mbmi->sb_type]); if (!is_neighbor_overlappable(mbmi)) continue; overlap = num_4x4_blocks_high_lookup[bsize] << 1; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = (mi_step * MI_SIZE) >> pd->subsampling_x; const int bh = overlap >> pd->subsampling_y; const int dst_stride = pd->dst.stride; uint8_t *dst = &pd->dst.buf[((i * MI_SIZE) >> pd->subsampling_x) + (((xd->n8_h * MI_SIZE - overlap) * dst_stride) >> pd->subsampling_y)]; const int tmp_stride = bottom_stride[plane]; const uint8_t *const tmp = &bottom[plane][((i * MI_SIZE) >> pd->subsampling_x) + (((xd->n8_h * MI_SIZE - overlap) * tmp_stride) >> pd->subsampling_y)]; const uint8_t *const mask = av1_get_obmc_mask_flipped(bh); #if CONFIG_HIGHBITDEPTH if (is_hbd) aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw, xd->bd); else #endif // CONFIG_HIGHBITDEPTH aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw); } } // each mi in the bottom row // handle right column if (mi_col + xd->n8_w >= tile->mi_col_end || (mi_col + xd->n8_w) % MI_SIZE == 0 || (mi_col + xd->n8_w) >= cm->mi_cols) return; for (i = 0; i < AOMMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) { int mi_row_offset = i; int mi_col_offset = xd->n8_w; int overlap; MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *mbmi = &mi->mbmi; mi_step = AOMMIN(xd->n8_h, mi_size_high[mbmi->sb_type]); if (!is_neighbor_overlappable(mbmi)) continue; overlap = num_4x4_blocks_wide_lookup[bsize] << 1; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = overlap >> pd->subsampling_x; const int bh = (mi_step * MI_SIZE) >> pd->subsampling_y; const int dst_stride = pd->dst.stride; uint8_t *dst = &pd->dst.buf[((i * MI_SIZE * dst_stride) >> pd->subsampling_y) + ((xd->n8_w * MI_SIZE - overlap) >> pd->subsampling_x)]; const int tmp_stride = right_stride[plane]; const uint8_t *const tmp = &right[plane][((i * MI_SIZE * tmp_stride) >> pd->subsampling_y) + ((xd->n8_w * MI_SIZE - overlap) >> pd->subsampling_x)]; const uint8_t *const mask = av1_get_obmc_mask_flipped(bw); #if CONFIG_HIGHBITDEPTH if (is_hbd) aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw, xd->bd); else #endif // CONFIG_HIGHBITDEPTH aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw); } } // each mi in the right column } // This function generates 4 sided obmc. (1) Prediction blocks generated by // bottom and right motion vectors are calculated. (2) Combine them with the // original prediction block (which should be pre-stored in xd->plane[].dst.buf // before calling this function). The results is updated in xd->plane[].dst.buf // (3) Call causal obmc prediction function, which will generate left and above // preds, and then merge them and xd->plane[].dst.buf. void av1_build_ncobmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col) { #if CONFIG_HIGHBITDEPTH DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); #else DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]); #endif // CONFIG_HIGHBITDEPTH uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int len = sizeof(uint16_t); dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len); dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len); dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len); dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len); } else { #endif // CONFIG_HIGHBITDEPTH dst_buf1[0] = tmp_buf1; dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE; dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2; dst_buf2[0] = tmp_buf2; dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE; dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; av1_build_prediction_by_bottom_preds(cm, xd, mi_row, mi_col, dst_buf1, dst_width1, dst_height1, dst_stride1); av1_build_prediction_by_right_preds(cm, xd, mi_row, mi_col, dst_buf2, dst_width2, dst_height2, dst_stride2); av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, mi_col); av1_merge_dst_bottom_right_preds(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1, dst_buf2, dst_stride2); av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, mi_col); av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, mi_col); } #endif // CONFIG_NCOBMC #endif // CONFIG_MOTION_VAR #if CONFIG_EXT_INTER /* clang-format off */ #if CONFIG_INTERINTRA #if CONFIG_EXT_PARTITION static const int ii_weights1d[MAX_SB_SIZE] = { 60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16, 16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; static int ii_size_scales[BLOCK_SIZES] = { #if CONFIG_CB4X4 32, 32, 32, #endif 32, 16, 16, 16, 8, 8, 8, 4, 4, 4, 2, 2, 2, 1, 1, 1, }; #else static const int ii_weights1d[MAX_SB_SIZE] = { 60, 56, 52, 48, 45, 42, 39, 37, 34, 32, 30, 28, 26, 24, 22, 21, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 10, 9, 8, 8, 7, 7, 6, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; static int ii_size_scales[BLOCK_SIZES] = { #if CONFIG_CB4X4 16, 16, 16, #endif 16, 8, 8, 8, 4, 4, 4, 2, 2, 2, 1, 1, 1, }; /* clang-format on */ #endif // CONFIG_EXT_PARTITION static void combine_interintra(INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index, int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, uint8_t *comppred, int compstride, const uint8_t *interpred, int interstride, const uint8_t *intrapred, int intrastride) { const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; const int size_scale = ii_size_scales[plane_bsize]; int i, j; if (use_wedge_interintra) { if (is_interintra_wedge_used(bsize)) { const uint8_t *mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); const int subw = 2 * num_4x4_blocks_wide_lookup[bsize] == bw; const int subh = 2 * num_4x4_blocks_high_lookup[bsize] == bh; aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, interpred, interstride, mask, block_size_wide[bsize], bh, bw, subh, subw); } return; } switch (mode) { case II_V_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[i * size_scale]; comppred[i * compstride + j] = AOM_BLEND_A64(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_H_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[j * size_scale]; comppred[i * compstride + j] = AOM_BLEND_A64(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; #if CONFIG_ALT_INTRA case II_SMOOTH_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[(i < j ? i : j) * size_scale]; comppred[i * compstride + j] = AOM_BLEND_A64(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; #endif #if !CONFIG_ALT_INTRA case II_TM_PRED: #endif case II_DC_PRED: default: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { comppred[i * compstride + j] = AOM_BLEND_AVG( intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; } } #if CONFIG_HIGHBITDEPTH static void combine_interintra_highbd( INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index, int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, uint8_t *comppred8, int compstride, const uint8_t *interpred8, int interstride, const uint8_t *intrapred8, int intrastride, int bd) { const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; const int size_scale = ii_size_scales[plane_bsize]; int i, j; uint16_t *comppred = CONVERT_TO_SHORTPTR(comppred8); const uint16_t *interpred = CONVERT_TO_SHORTPTR(interpred8); const uint16_t *intrapred = CONVERT_TO_SHORTPTR(intrapred8); if (use_wedge_interintra) { if (is_interintra_wedge_used(bsize)) { const uint8_t *mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); const int subh = 2 * num_4x4_blocks_high_lookup[bsize] == bh; const int subw = 2 * num_4x4_blocks_wide_lookup[bsize] == bw; aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, interpred8, interstride, mask, bw, bh, bw, subh, subw, bd); } return; } switch (mode) { case II_V_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[i * size_scale]; comppred[i * compstride + j] = AOM_BLEND_A64(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_H_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[j * size_scale]; comppred[i * compstride + j] = AOM_BLEND_A64(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; #if CONFIG_ALT_INTRA case II_SMOOTH_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[(i < j ? i : j) * size_scale]; comppred[i * compstride + j] = AOM_BLEND_A64(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; #endif #if !CONFIG_ALT_INTRA case II_TM_PRED: #endif case II_DC_PRED: default: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { comppred[i * compstride + j] = AOM_BLEND_AVG( interpred[i * interstride + j], intrapred[i * intrastride + j]); } } break; } } #endif // CONFIG_HIGHBITDEPTH void av1_build_intra_predictors_for_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, BUFFER_SET *ctx, uint8_t *dst, int dst_stride) { struct macroblockd_plane *const pd = &xd->plane[plane]; BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->mbmi.interintra_mode]; av1_predict_intra_block(xd, pd->width, pd->height, plane_bsize, mode, ctx->plane[plane], ctx->stride[plane], dst, dst_stride, 0, 0, plane); } void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, const uint8_t *inter_pred, int inter_stride, const uint8_t *intra_pred, int intra_stride) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { combine_interintra_highbd( xd->mi[0]->mbmi.interintra_mode, xd->mi[0]->mbmi.use_wedge_interintra, xd->mi[0]->mbmi.interintra_wedge_index, xd->mi[0]->mbmi.interintra_wedge_sign, bsize, plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred, intra_stride, xd->bd); return; } #endif // CONFIG_HIGHBITDEPTH combine_interintra(xd->mi[0]->mbmi.interintra_mode, xd->mi[0]->mbmi.use_wedge_interintra, xd->mi[0]->mbmi.interintra_wedge_index, xd->mi[0]->mbmi.interintra_wedge_sign, bsize, plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred, intra_stride); } void av1_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred, int ystride, BUFFER_SET *ctx, BLOCK_SIZE bsize) { #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]); av1_build_intra_predictors_for_interintra( xd, bsize, 0, ctx, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); av1_combine_interintra(xd, bsize, 0, ypred, ystride, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); return; } #endif // CONFIG_HIGHBITDEPTH { DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]); av1_build_intra_predictors_for_interintra(xd, bsize, 0, ctx, intrapredictor, MAX_SB_SIZE); av1_combine_interintra(xd, bsize, 0, ypred, ystride, intrapredictor, MAX_SB_SIZE); } } void av1_build_interintra_predictors_sbc(MACROBLOCKD *xd, uint8_t *upred, int ustride, BUFFER_SET *ctx, int plane, BLOCK_SIZE bsize) { #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED(16, uint16_t, uintrapredictor[MAX_SB_SQUARE]); av1_build_intra_predictors_for_interintra( xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE); av1_combine_interintra(xd, bsize, plane, upred, ustride, CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE); return; } #endif // CONFIG_HIGHBITDEPTH { DECLARE_ALIGNED(16, uint8_t, uintrapredictor[MAX_SB_SQUARE]); av1_build_intra_predictors_for_interintra(xd, bsize, plane, ctx, uintrapredictor, MAX_SB_SIZE); av1_combine_interintra(xd, bsize, plane, upred, ustride, uintrapredictor, MAX_SB_SIZE); } } void av1_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred, uint8_t *vpred, int ustride, int vstride, BUFFER_SET *ctx, BLOCK_SIZE bsize) { av1_build_interintra_predictors_sbc(xd, upred, ustride, ctx, 1, bsize); av1_build_interintra_predictors_sbc(xd, vpred, vstride, ctx, 2, bsize); } void av1_build_interintra_predictors(MACROBLOCKD *xd, uint8_t *ypred, uint8_t *upred, uint8_t *vpred, int ystride, int ustride, int vstride, BUFFER_SET *ctx, BLOCK_SIZE bsize) { av1_build_interintra_predictors_sby(xd, ypred, ystride, ctx, bsize); av1_build_interintra_predictors_sbuv(xd, upred, vpred, ustride, vstride, ctx, bsize); } #endif // CONFIG_INTERINTRA // Builds the inter-predictor for the single ref case // for use in the encoder to search the wedges efficiently. static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane, int block, int bw, int bh, int x, int y, int w, int h, int mi_x, int mi_y, int ref, uint8_t *const ext_dst, int ext_dst_stride) { struct macroblockd_plane *const pd = &xd->plane[plane]; const MODE_INFO *mi = xd->mi[0]; const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; #if CONFIG_HIGHBITDEPTH uint8_t *const dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? CONVERT_TO_BYTEPTR(ext_dst) : ext_dst) + ext_dst_stride * y + x; #else uint8_t *const dst = ext_dst + ext_dst_stride * y + x; #endif const MV mv = mi->mbmi.sb_type < BLOCK_8X8 ? average_split_mvs(pd, mi, ref, block) : mi->mbmi.mv[ref].as_mv; // TODO(jkoleszar): This clamping is done in the incorrect place for the // scaling case. It needs to be done on the scaled MV, not the pre-scaling // MV. Note however that it performs the subsampling aware scaling so // that the result is always q4. // mv_precision precision is MV_PRECISION_Q4. const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); uint8_t *pre; MV32 scaled_mv; int xs, ys, subpel_x, subpel_y; const int is_scaled = av1_is_scaled(sf); ConvolveParams conv_params = get_conv_params(0, plane); #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION WarpTypesAllowed warp_types; #if CONFIG_GLOBAL_MOTION WarpedMotionParams *const wm = &xd->global_motion[mi->mbmi.ref_frame[ref]]; warp_types.global_warp_allowed = is_global_mv_block(mi, block, wm->wmtype); #endif // CONFIG_GLOBAL_MOTION #if CONFIG_WARPED_MOTION warp_types.local_warp_allowed = mi->mbmi.motion_mode == WARPED_CAUSAL; #endif // CONFIG_WARPED_MOTION #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION if (is_scaled) { pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); scaled_mv = av1_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); xs = sf->x_step_q4; ys = sf->y_step_q4; } else { pre = pre_buf->buf + (y * pre_buf->stride + x); scaled_mv.row = mv_q4.row; scaled_mv.col = mv_q4.col; xs = ys = 16; } subpel_x = scaled_mv.col & SUBPEL_MASK; subpel_y = scaled_mv.row & SUBPEL_MASK; pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride + (scaled_mv.col >> SUBPEL_BITS); av1_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride, subpel_x, subpel_y, sf, w, h, &conv_params, mi->mbmi.interp_filter, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION &warp_types, (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, plane, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR 0, 0, #endif xs, ys, xd); } void av1_build_inter_predictors_for_planes_single_buf( MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row, int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; for (plane = plane_from; plane <= plane_to; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !CONFIG_CB4X4) { int x, y; const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; assert(bsize == BLOCK_8X8); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_inter_predictors_single_buf( xd, plane, y * 2 + x, bw, bh, 4 * x, 4 * y, 4, 4, mi_x, mi_y, ref, ext_dst[plane], ext_dst_stride[plane]); } else { build_inter_predictors_single_buf(xd, plane, 0, bw, bh, 0, 0, bw, bh, mi_x, mi_y, ref, ext_dst[plane], ext_dst_stride[plane]); } } } static void build_wedge_inter_predictor_from_buf( MACROBLOCKD *xd, int plane, int x, int y, int w, int h, #if CONFIG_SUPERTX int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX uint8_t *ext_dst0, int ext_dst_stride0, uint8_t *ext_dst1, int ext_dst_stride1) { MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const int is_compound = has_second_ref(mbmi); MACROBLOCKD_PLANE *const pd = &xd->plane[plane]; struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; const INTERINTER_COMPOUND_DATA comp_data = { #if CONFIG_WEDGE mbmi->wedge_index, mbmi->wedge_sign, #endif // CONFIG_WEDGE #if CONFIG_COMPOUND_SEGMENT mbmi->mask_type, xd->seg_mask, #endif // CONFIG_COMPOUND_SEGMENT mbmi->interinter_compound_type }; if (is_compound && is_masked_compound_type(mbmi->interinter_compound_type)) { #if CONFIG_COMPOUND_SEGMENT if (!plane && comp_data.interinter_compound_type == COMPOUND_SEG) { #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_compound_seg_mask_highbd( comp_data.seg_mask, comp_data.mask_type, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, mbmi->sb_type, h, w, xd->bd); else #endif // CONFIG_HIGHBITDEPTH build_compound_seg_mask(comp_data.seg_mask, comp_data.mask_type, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, mbmi->sb_type, h, w); } #endif // CONFIG_COMPOUND_SEGMENT #if CONFIG_SUPERTX #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_wedge_extend_highbd( dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, &comp_data, mbmi->sb_type, wedge_offset_x, wedge_offset_y, h, w, xd->bd); else #endif // CONFIG_HIGHBITDEPTH build_masked_compound_wedge_extend( dst, dst_buf->stride, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, &comp_data, mbmi->sb_type, wedge_offset_x, wedge_offset_y, h, w); #else #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_highbd( dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, &comp_data, mbmi->sb_type, h, w, xd->bd); else #endif // CONFIG_HIGHBITDEPTH build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, &comp_data, mbmi->sb_type, h, w); #endif // CONFIG_SUPERTX } else { #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) aom_highbd_convolve_copy(CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, dst, dst_buf->stride, NULL, 0, NULL, 0, w, h, xd->bd); else #endif // CONFIG_HIGHBITDEPTH aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, NULL, 0, NULL, 0, w, h); } } void av1_build_wedge_inter_predictor_from_buf( MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, #if CONFIG_SUPERTX int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX uint8_t *ext_dst0[3], int ext_dst_stride0[3], uint8_t *ext_dst1[3], int ext_dst_stride1[3]) { int plane; for (plane = plane_from; plane <= plane_to; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !CONFIG_CB4X4) { int x, y; const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; assert(bsize == BLOCK_8X8); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_wedge_inter_predictor_from_buf( xd, plane, 4 * x, 4 * y, 4, 4, #if CONFIG_SUPERTX wedge_offset_x, wedge_offset_y, #endif // CONFIG_SUPERTX ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane], ext_dst_stride1[plane]); } else { const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; build_wedge_inter_predictor_from_buf( xd, plane, 0, 0, bw, bh, #if CONFIG_SUPERTX wedge_offset_x, wedge_offset_y, #endif // CONFIG_SUPERTX ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane], ext_dst_stride1[plane]); } } } #endif // CONFIG_EXT_INTER