/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/aom_scale_rtcd.h" #include "aom/aom_integer.h" #include "aom_dsp/blend.h" #include "av1/common/blockd.h" #include "av1/common/mvref_common.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/onyxc_int.h" #include "av1/common/obmc.h" #define USE_PRECOMPUTED_WEDGE_MASK 1 #define USE_PRECOMPUTED_WEDGE_SIGN 1 // This function will determine whether or not to create a warped // prediction. int av1_allow_warp(const MB_MODE_INFO *const mbmi, const WarpTypesAllowed *const warp_types, const WarpedMotionParams *const gm_params, int build_for_obmc, int x_scale, int y_scale, WarpedMotionParams *final_warp_params) { if (x_scale != SCALE_SUBPEL_SHIFTS || y_scale != SCALE_SUBPEL_SHIFTS) return 0; if (final_warp_params != NULL) *final_warp_params = default_warp_params; if (build_for_obmc) return 0; if (warp_types->local_warp_allowed && !mbmi->wm_params[0].invalid) { if (final_warp_params != NULL) memcpy(final_warp_params, &mbmi->wm_params[0], sizeof(*final_warp_params)); return 1; } else if (warp_types->global_warp_allowed && !gm_params->invalid) { if (final_warp_params != NULL) memcpy(final_warp_params, gm_params, sizeof(*final_warp_params)); return 1; } return 0; } void av1_make_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const SubpelParams *subpel_params, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane, int ref, const MB_MODE_INFO *mi, int build_for_obmc, const MACROBLOCKD *xd, int can_use_previous) { // Make sure the selected motion mode is valid for this configuration assert_motion_mode_valid(mi->motion_mode, xd->global_motion, xd, mi, can_use_previous); assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL)); WarpedMotionParams final_warp_params; const int do_warp = (w >= 8 && h >= 8 && av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]], build_for_obmc, subpel_params->xs, subpel_params->ys, &final_warp_params)); if (do_warp && xd->cur_frame_force_integer_mv == 0) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const struct buf_2d *const pre_buf = &pd->pre[ref]; av1_warp_plane(&final_warp_params, xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, pre_buf->buf0, pre_buf->width, pre_buf->height, pre_buf->stride, dst, p_col, p_row, w, h, dst_stride, pd->subsampling_x, pd->subsampling_y, conv_params); } else if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_params, sf, w, h, conv_params, interp_filters, xd->bd); } else { inter_predictor(src, src_stride, dst, dst_stride, subpel_params, sf, w, h, conv_params, interp_filters); } } #if USE_PRECOMPUTED_WEDGE_MASK static const uint8_t wedge_master_oblique_odd[MASK_MASTER_SIZE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18, 37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, }; static const uint8_t wedge_master_oblique_even[MASK_MASTER_SIZE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27, 46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, }; static const uint8_t wedge_master_vertical[MASK_MASTER_SIZE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21, 43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, }; static void shift_copy(const uint8_t *src, uint8_t *dst, int shift, int width) { if (shift >= 0) { memcpy(dst + shift, src, width - shift); memset(dst, src[0], shift); } else { shift = -shift; memcpy(dst, src + shift, width - shift); memset(dst + width - shift, src[width - 1], shift); } } #endif // USE_PRECOMPUTED_WEDGE_MASK #if USE_PRECOMPUTED_WEDGE_SIGN /* clang-format off */ DECLARE_ALIGNED(16, static uint8_t, wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]) = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used { 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, }, { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used }; /* clang-format on */ #else DECLARE_ALIGNED(16, static uint8_t, wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]); #endif // USE_PRECOMPUTED_WEDGE_SIGN // [negative][direction] DECLARE_ALIGNED( 16, static uint8_t, wedge_mask_obl[2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); // 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound // on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE. DECLARE_ALIGNED(16, static uint8_t, wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]); static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2]; static const wedge_code_type wedge_codebook_16_hgtw[16] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; static const wedge_code_type wedge_codebook_16_hltw[16] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; static const wedge_code_type wedge_codebook_16_heqw[16] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; const wedge_params_type wedge_params_lookup[BLOCK_SIZES_ALL] = { { 0, NULL, NULL, NULL }, { 0, NULL, NULL, NULL }, { 0, NULL, NULL, NULL }, { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], wedge_masks[BLOCK_8X8] }, { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], wedge_masks[BLOCK_8X16] }, { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], wedge_masks[BLOCK_16X8] }, { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], wedge_masks[BLOCK_16X16] }, { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], wedge_masks[BLOCK_16X32] }, { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], wedge_masks[BLOCK_32X16] }, { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], wedge_masks[BLOCK_32X32] }, { 0, NULL, NULL, NULL }, { 0, NULL, NULL, NULL }, { 0, NULL, NULL, NULL }, { 0, NULL, NULL, NULL }, { 0, NULL, NULL, NULL }, { 0, NULL, NULL, NULL }, { 0, NULL, NULL, NULL }, { 0, NULL, NULL, NULL }, { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], wedge_masks[BLOCK_8X32] }, { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], wedge_masks[BLOCK_32X8] }, { 0, NULL, NULL, NULL }, { 0, NULL, NULL, NULL }, }; static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg, BLOCK_SIZE sb_type) { const uint8_t *master; const int bh = block_size_high[sb_type]; const int bw = block_size_wide[sb_type]; const wedge_code_type *a = wedge_params_lookup[sb_type].codebook + wedge_index; int woff, hoff; const uint8_t wsignflip = wedge_params_lookup[sb_type].signflip[wedge_index]; assert(wedge_index >= 0 && wedge_index < (1 << get_wedge_bits_lookup(sb_type))); woff = (a->x_offset * bw) >> 3; hoff = (a->y_offset * bh) >> 3; master = wedge_mask_obl[neg ^ wsignflip][a->direction] + MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + MASK_MASTER_SIZE / 2 - woff; return master; } const uint8_t *av1_get_compound_type_mask( const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) { assert(is_masked_compound_type(comp_data->type)); (void)sb_type; switch (comp_data->type) { case COMPOUND_WEDGE: return av1_get_contiguous_soft_mask(comp_data->wedge_index, comp_data->wedge_sign, sb_type); case COMPOUND_DIFFWTD: return comp_data->seg_mask; default: assert(0); return NULL; } } static void diffwtd_mask_d16(uint8_t *mask, int which_inverse, int mask_base, const CONV_BUF_TYPE *src0, int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, ConvolveParams *conv_params, int bd) { int round = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8); int i, j, m, diff; for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]); diff = ROUND_POWER_OF_TWO(diff, round); m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; } } } void av1_build_compound_diffwtd_mask_d16_c( uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0, int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, ConvolveParams *conv_params, int bd) { switch (mask_type) { case DIFFWTD_38: diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w, conv_params, bd); break; case DIFFWTD_38_INV: diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w, conv_params, bd); break; default: assert(0); } } static void diffwtd_mask(uint8_t *mask, int which_inverse, int mask_base, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, int h, int w) { int i, j, m, diff; for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { diff = abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]); m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; } } } void av1_build_compound_diffwtd_mask_c(uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, int h, int w) { switch (mask_type) { case DIFFWTD_38: diffwtd_mask(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w); break; case DIFFWTD_38_INV: diffwtd_mask(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w); break; default: assert(0); } } static AOM_FORCE_INLINE void diffwtd_mask_highbd( uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0, int src0_stride, const uint16_t *src1, int src1_stride, int h, int w, const unsigned int bd) { assert(bd >= 8); if (bd == 8) { if (which_inverse) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; unsigned int m = negative_to_zero(mask_base + diff); m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; } src0 += src0_stride; src1 += src1_stride; mask += w; } } else { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; unsigned int m = negative_to_zero(mask_base + diff); m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); mask[j] = m; } src0 += src0_stride; src1 += src1_stride; mask += w; } } } else { const unsigned int bd_shift = bd - 8; if (which_inverse) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { int diff = (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; unsigned int m = negative_to_zero(mask_base + diff); m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; } src0 += src0_stride; src1 += src1_stride; mask += w; } } else { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { int diff = (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; unsigned int m = negative_to_zero(mask_base + diff); m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); mask[j] = m; } src0 += src0_stride; src1 += src1_stride; mask += w; } } } } void av1_build_compound_diffwtd_mask_highbd_c( uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, int h, int w, int bd) { switch (mask_type) { case DIFFWTD_38: diffwtd_mask_highbd(mask, 0, 38, CONVERT_TO_SHORTPTR(src0), src0_stride, CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd); break; case DIFFWTD_38_INV: diffwtd_mask_highbd(mask, 1, 38, CONVERT_TO_SHORTPTR(src0), src0_stride, CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd); break; default: assert(0); } } static void init_wedge_master_masks() { int i, j; const int w = MASK_MASTER_SIZE; const int h = MASK_MASTER_SIZE; const int stride = MASK_MASTER_STRIDE; // Note: index [0] stores the masters, and [1] its complement. #if USE_PRECOMPUTED_WEDGE_MASK // Generate prototype by shifting the masters int shift = h / 4; for (i = 0; i < h; i += 2) { shift_copy(wedge_master_oblique_even, &wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride], shift, MASK_MASTER_SIZE); shift--; shift_copy(wedge_master_oblique_odd, &wedge_mask_obl[0][WEDGE_OBLIQUE63][(i + 1) * stride], shift, MASK_MASTER_SIZE); memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][i * stride], wedge_master_vertical, MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][(i + 1) * stride], wedge_master_vertical, MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); } #else static const double smoother_param = 2.85; const int a[2] = { 2, 1 }; const double asqrt = sqrt(a[0] * a[0] + a[1] * a[1]); for (i = 0; i < h; i++) { for (j = 0; j < w; ++j) { int x = (2 * j + 1 - w); int y = (2 * i + 1 - h); double d = (a[0] * x + a[1] * y) / asqrt; const int msk = (int)rint((1.0 + tanh(d / smoother_param)) * 32); wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j] = msk; const int mskx = (int)rint((1.0 + tanh(x / smoother_param)) * 32); wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j] = mskx; } } #endif // USE_PRECOMPUTED_WEDGE_MASK for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { const int msk = wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j]; wedge_mask_obl[0][WEDGE_OBLIQUE27][j * stride + i] = msk; wedge_mask_obl[0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = wedge_mask_obl[0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = (1 << WEDGE_WEIGHT_BITS) - msk; wedge_mask_obl[1][WEDGE_OBLIQUE63][i * stride + j] = wedge_mask_obl[1][WEDGE_OBLIQUE27][j * stride + i] = (1 << WEDGE_WEIGHT_BITS) - msk; wedge_mask_obl[1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = wedge_mask_obl[1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk; const int mskx = wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j]; wedge_mask_obl[0][WEDGE_HORIZONTAL][j * stride + i] = mskx; wedge_mask_obl[1][WEDGE_VERTICAL][i * stride + j] = wedge_mask_obl[1][WEDGE_HORIZONTAL][j * stride + i] = (1 << WEDGE_WEIGHT_BITS) - mskx; } } } #if !USE_PRECOMPUTED_WEDGE_SIGN // If the signs for the wedges for various blocksizes are // inconsistent flip the sign flag. Do it only once for every // wedge codebook. static void init_wedge_signs() { BLOCK_SIZE sb_type; memset(wedge_signflip_lookup, 0, sizeof(wedge_signflip_lookup)); for (sb_type = BLOCK_4X4; sb_type < BLOCK_SIZES_ALL; ++sb_type) { const int bw = block_size_wide[sb_type]; const int bh = block_size_high[sb_type]; const wedge_params_type wedge_params = wedge_params_lookup[sb_type]; const int wbits = wedge_params.bits; const int wtypes = 1 << wbits; int i, w; if (wbits) { for (w = 0; w < wtypes; ++w) { // Get the mask master, i.e. index [0] const uint8_t *mask = get_wedge_mask_inplace(w, 0, sb_type); int avg = 0; for (i = 0; i < bw; ++i) avg += mask[i]; for (i = 1; i < bh; ++i) avg += mask[i * MASK_MASTER_STRIDE]; avg = (avg + (bw + bh - 1) / 2) / (bw + bh - 1); // Default sign of this wedge is 1 if the average < 32, 0 otherwise. // If default sign is 1: // If sign requested is 0, we need to flip the sign and return // the complement i.e. index [1] instead. If sign requested is 1 // we need to flip the sign and return index [0] instead. // If default sign is 0: // If sign requested is 0, we need to return index [0] the master // if sign requested is 1, we need to return the complement index [1] // instead. wedge_params.signflip[w] = (avg < 32); } } } } #endif // !USE_PRECOMPUTED_WEDGE_SIGN static void init_wedge_masks() { uint8_t *dst = wedge_mask_buf; BLOCK_SIZE bsize; memset(wedge_masks, 0, sizeof(wedge_masks)); for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) { const uint8_t *mask; const int bw = block_size_wide[bsize]; const int bh = block_size_high[bsize]; const wedge_params_type *wedge_params = &wedge_params_lookup[bsize]; const int wbits = wedge_params->bits; const int wtypes = 1 << wbits; int w; if (wbits == 0) continue; for (w = 0; w < wtypes; ++w) { mask = get_wedge_mask_inplace(w, 0, bsize); aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, bh); wedge_params->masks[0][w] = dst; dst += bw * bh; mask = get_wedge_mask_inplace(w, 1, bsize); aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, bh); wedge_params->masks[1][w] = dst; dst += bw * bh; } assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf)); } } // Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0 void av1_init_wedge_masks() { init_wedge_master_masks(); #if !USE_PRECOMPUTED_WEDGE_SIGN init_wedge_signs(); #endif // !USE_PRECOMPUTED_WEDGE_SIGN init_wedge_masks(); } static void build_masked_compound_no_round( uint8_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, int w, ConvolveParams *conv_params, MACROBLOCKD *xd) { // Derive subsampling from h and w passed in. May be refactored to // pass in subsampling factors directly. const int subh = (2 << mi_size_high_log2[sb_type]) == h; const int subw = (2 << mi_size_wide_log2[sb_type]) == w; const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, block_size_wide[sb_type], w, h, subw, subh, conv_params, xd->bd); else aom_lowbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, block_size_wide[sb_type], w, h, subw, subh, conv_params); } static void build_masked_compound( uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, int w) { // Derive subsampling from h and w passed in. May be refactored to // pass in subsampling factors directly. const int subh = (2 << mi_size_high_log2[sb_type]) == h; const int subw = (2 << mi_size_wide_log2[sb_type]) == w; const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, block_size_wide[sb_type], w, h, subw, subh); } static void build_masked_compound_highbd( uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride, const uint8_t *src1_8, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, int w, int bd) { // Derive subsampling from h and w passed in. May be refactored to // pass in subsampling factors directly. const int subh = (2 << mi_size_high_log2[sb_type]) == h; const int subw = (2 << mi_size_wide_log2[sb_type]) == w; const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); // const uint8_t *mask = // av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type); aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8, src1_stride, mask, block_size_wide[sb_type], w, h, subw, subh, bd); } void av1_make_masked_inter_predictor( const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride, const SubpelParams *subpel_params, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, int plane, const WarpTypesAllowed *warp_types, int p_col, int p_row, int ref, MACROBLOCKD *xd, int can_use_previous) { MB_MODE_INFO *mi = xd->mi[0]; (void)dst; (void)dst_stride; mi->interinter_comp.seg_mask = xd->seg_mask; const INTERINTER_COMPOUND_DATA *comp_data = &mi->interinter_comp; // We're going to call av1_make_inter_predictor to generate a prediction into // a temporary buffer, then will blend that temporary buffer with that from // the other reference. // #define INTER_PRED_BYTES_PER_PIXEL 2 DECLARE_ALIGNED(32, uint8_t, tmp_buf[INTER_PRED_BYTES_PER_PIXEL * MAX_SB_SQUARE]); #undef INTER_PRED_BYTES_PER_PIXEL uint8_t *tmp_dst = get_buf_by_bd(xd, tmp_buf); const int tmp_buf_stride = MAX_SB_SIZE; CONV_BUF_TYPE *org_dst = conv_params->dst; int org_dst_stride = conv_params->dst_stride; CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf; conv_params->dst = tmp_buf16; conv_params->dst_stride = tmp_buf_stride; assert(conv_params->do_average == 0); // This will generate a prediction in tmp_buf for the second reference av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_params, sf, w, h, conv_params, interp_filters, warp_types, p_col, p_row, plane, ref, mi, 0, xd, can_use_previous); if (!plane && comp_data->type == COMPOUND_DIFFWTD) { av1_build_compound_diffwtd_mask_d16( comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride, tmp_buf16, tmp_buf_stride, h, w, conv_params, xd->bd); } build_masked_compound_no_round(dst, dst_stride, org_dst, org_dst_stride, tmp_buf16, tmp_buf_stride, comp_data, mi->sb_type, h, w, conv_params, xd); } // TODO(sarahparker) av1_highbd_build_inter_predictor and // av1_build_inter_predictor should be combined with // av1_make_inter_predictor void av1_highbd_build_inter_predictor( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, InterpFilters interp_filters, const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane, enum mv_precision precision, int x, int y, const MACROBLOCKD *xd, int can_use_previous) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = av1_scale_mv(&mv_q4, x, y, sf); mv.col += SCALE_EXTRA_OFF; mv.row += SCALE_EXTRA_OFF; const SubpelParams subpel_params = { sf->x_step_q4, sf->y_step_q4, mv.col & SCALE_SUBPEL_MASK, mv.row & SCALE_SUBPEL_MASK }; ConvolveParams conv_params = get_conv_params(ref, 0, plane, xd->bd); src += (mv.row >> SCALE_SUBPEL_BITS) * src_stride + (mv.col >> SCALE_SUBPEL_BITS); av1_make_inter_predictor(src, src_stride, dst, dst_stride, &subpel_params, sf, w, h, &conv_params, interp_filters, warp_types, p_col, p_row, plane, ref, xd->mi[0], 0, xd, can_use_previous); } void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane, int ref, enum mv_precision precision, int x, int y, const MACROBLOCKD *xd, int can_use_previous) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = av1_scale_mv(&mv_q4, x, y, sf); mv.col += SCALE_EXTRA_OFF; mv.row += SCALE_EXTRA_OFF; const SubpelParams subpel_params = { sf->x_step_q4, sf->y_step_q4, mv.col & SCALE_SUBPEL_MASK, mv.row & SCALE_SUBPEL_MASK }; src += (mv.row >> SCALE_SUBPEL_BITS) * src_stride + (mv.col >> SCALE_SUBPEL_BITS); av1_make_inter_predictor(src, src_stride, dst, dst_stride, &subpel_params, sf, w, h, conv_params, interp_filters, warp_types, p_col, p_row, plane, ref, xd->mi[0], 0, xd, can_use_previous); } void av1_jnt_comp_weight_assign(const AV1_COMMON *cm, const MB_MODE_INFO *mbmi, int order_idx, int *fwd_offset, int *bck_offset, int *use_jnt_comp_avg, int is_compound) { assert(fwd_offset != NULL && bck_offset != NULL); if (!is_compound || mbmi->compound_idx) { *use_jnt_comp_avg = 0; return; } *use_jnt_comp_avg = 1; const int bck_idx = cm->frame_refs[mbmi->ref_frame[0] - LAST_FRAME].idx; const int fwd_idx = cm->frame_refs[mbmi->ref_frame[1] - LAST_FRAME].idx; const int cur_frame_index = cm->cur_frame->cur_frame_offset; int bck_frame_index = 0, fwd_frame_index = 0; if (bck_idx >= 0) { bck_frame_index = cm->buffer_pool->frame_bufs[bck_idx].cur_frame_offset; } if (fwd_idx >= 0) { fwd_frame_index = cm->buffer_pool->frame_bufs[fwd_idx].cur_frame_offset; } int d0 = clamp(abs(get_relative_dist(cm, fwd_frame_index, cur_frame_index)), 0, MAX_FRAME_DISTANCE); int d1 = clamp(abs(get_relative_dist(cm, cur_frame_index, bck_frame_index)), 0, MAX_FRAME_DISTANCE); const int order = d0 <= d1; if (d0 == 0 || d1 == 0) { *fwd_offset = quant_dist_lookup_table[order_idx][3][order]; *bck_offset = quant_dist_lookup_table[order_idx][3][1 - order]; return; } int i; for (i = 0; i < 3; ++i) { int c0 = quant_dist_weight[i][order]; int c1 = quant_dist_weight[i][!order]; int d0_c0 = d0 * c0; int d1_c1 = d1 * c1; if ((d0 > d1 && d0_c0 < d1_c1) || (d0 <= d1 && d0_c0 > d1_c1)) break; } *fwd_offset = quant_dist_lookup_table[order_idx][i][order]; *bck_offset = quant_dist_lookup_table[order_idx][i][1 - order]; } static INLINE void calc_subpel_params( MACROBLOCKD *xd, const struct scale_factors *const sf, const MV mv, int plane, const int pre_x, const int pre_y, int x, int y, struct buf_2d *const pre_buf, uint8_t **pre, SubpelParams *subpel_params, int bw, int bh) { struct macroblockd_plane *const pd = &xd->plane[plane]; const int is_scaled = av1_is_scaled(sf); if (is_scaled) { int ssx = pd->subsampling_x; int ssy = pd->subsampling_y; int orig_pos_y = (pre_y + y) << SUBPEL_BITS; orig_pos_y += mv.row * (1 << (1 - ssy)); int orig_pos_x = (pre_x + x) << SUBPEL_BITS; orig_pos_x += mv.col * (1 << (1 - ssx)); int pos_y = sf->scale_value_y(orig_pos_y, sf); int pos_x = sf->scale_value_x(orig_pos_x, sf); pos_x += SCALE_EXTRA_OFF; pos_y += SCALE_EXTRA_OFF; const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; pos_y = clamp(pos_y, top, bottom); pos_x = clamp(pos_x, left, right); *pre = pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + (pos_x >> SCALE_SUBPEL_BITS); subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK; subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK; subpel_params->xs = sf->x_step_q4; subpel_params->ys = sf->y_step_q4; } else { const MV mv_q4 = clamp_mv_to_umv_border_sb( xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS; subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; *pre = pre_buf->buf + (y + (mv_q4.row >> SUBPEL_BITS)) * pre_buf->stride + (x + (mv_q4.col >> SUBPEL_BITS)); } } static INLINE void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, int build_for_obmc, int bw, int bh, int mi_x, int mi_y) { struct macroblockd_plane *const pd = &xd->plane[plane]; int is_compound = has_second_ref(mi); int ref; const int is_intrabc = is_intrabc_block(mi); assert(IMPLIES(is_intrabc, !is_compound)); int is_global[2] = { 0, 0 }; for (ref = 0; ref < 1 + is_compound; ++ref) { const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; is_global[ref] = is_global_mv_block(mi, wm->wmtype); } const BLOCK_SIZE bsize = mi->sb_type; const int ss_x = pd->subsampling_x; const int ss_y = pd->subsampling_y; int sub8x8_inter = (block_size_wide[bsize] < 8 && ss_x) || (block_size_high[bsize] < 8 && ss_y); if (is_intrabc) sub8x8_inter = 0; // For sub8x8 chroma blocks, we may be covering more than one luma block's // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for // the top-left corner of the prediction source - the correct top-left corner // is at (pre_x, pre_y). const int row_start = (block_size_high[bsize] == 4) && ss_y && !build_for_obmc ? -1 : 0; const int col_start = (block_size_wide[bsize] == 4) && ss_x && !build_for_obmc ? -1 : 0; const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; sub8x8_inter = sub8x8_inter && !build_for_obmc; if (sub8x8_inter) { for (int row = row_start; row <= 0 && sub8x8_inter; ++row) { for (int col = col_start; col <= 0; ++col) { const MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; if (!is_inter_block(this_mbmi)) sub8x8_inter = 0; if (is_intrabc_block(this_mbmi)) sub8x8_inter = 0; } } } if (sub8x8_inter) { // block size const int b4_w = block_size_wide[bsize] >> ss_x; const int b4_h = block_size_high[bsize] >> ss_y; const BLOCK_SIZE plane_bsize = scale_chroma_bsize(bsize, ss_x, ss_y); const int b8_w = block_size_wide[plane_bsize] >> ss_x; const int b8_h = block_size_high[plane_bsize] >> ss_y; assert(!is_compound); const struct buf_2d orig_pred_buf[2] = { pd->pre[0], pd->pre[1] }; int row = row_start; for (int y = 0; y < b8_h; y += b4_h) { int col = col_start; for (int x = 0; x < b8_w; x += b4_w) { MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; is_compound = has_second_ref(this_mbmi); DECLARE_ALIGNED(32, CONV_BUF_TYPE, tmp_dst[8 * 8]); int tmp_dst_stride = 8; assert(bw < 8 || bh < 8); ConvolveParams conv_params = get_conv_params_no_round( 0, 0, plane, tmp_dst, tmp_dst_stride, is_compound, xd->bd); conv_params.use_jnt_comp_avg = 0; struct buf_2d *const dst_buf = &pd->dst; uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x; ref = 0; const RefBuffer *ref_buf = &cm->frame_refs[this_mbmi->ref_frame[ref] - LAST_FRAME]; pd->pre[ref].buf0 = (plane == 1) ? ref_buf->buf->u_buffer : ref_buf->buf->v_buffer; pd->pre[ref].buf = pd->pre[ref].buf0 + scaled_buffer_offset(pre_x, pre_y, ref_buf->buf->uv_stride, &ref_buf->sf); pd->pre[ref].width = ref_buf->buf->uv_crop_width; pd->pre[ref].height = ref_buf->buf->uv_crop_height; pd->pre[ref].stride = ref_buf->buf->uv_stride; const struct scale_factors *const sf = is_intrabc ? &cm->sf_identity : &ref_buf->sf; struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; const MV mv = this_mbmi->mv[ref].as_mv; uint8_t *pre; SubpelParams subpel_params; WarpTypesAllowed warp_types; warp_types.global_warp_allowed = is_global[ref]; warp_types.local_warp_allowed = this_mbmi->motion_mode == WARPED_CAUSAL; calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, x, y, pre_buf, &pre, &subpel_params, bw, bh); conv_params.ref = ref; conv_params.do_average = ref; if (is_masked_compound_type(mi->interinter_comp.type)) { // masked compound type has its own average mechanism conv_params.do_average = 0; } av1_make_inter_predictor( pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf, b4_w, b4_h, &conv_params, this_mbmi->interp_filters, &warp_types, (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, plane, ref, mi, build_for_obmc, xd, cm->allow_warped_motion); ++col; } ++row; } for (ref = 0; ref < 2; ++ref) pd->pre[ref] = orig_pred_buf[ref]; return; } { DECLARE_ALIGNED(32, uint16_t, tmp_dst[MAX_SB_SIZE * MAX_SB_SIZE]); ConvolveParams conv_params = get_conv_params_no_round( 0, 0, plane, tmp_dst, MAX_SB_SIZE, is_compound, xd->bd); av1_jnt_comp_weight_assign(cm, mi, 0, &conv_params.fwd_offset, &conv_params.bck_offset, &conv_params.use_jnt_comp_avg, is_compound); struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf; for (ref = 0; ref < 1 + is_compound; ++ref) { const struct scale_factors *const sf = is_intrabc ? &cm->sf_identity : &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; const MV mv = mi->mv[ref].as_mv; uint8_t *pre; SubpelParams subpel_params; calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, 0, 0, pre_buf, &pre, &subpel_params, bw, bh); WarpTypesAllowed warp_types; warp_types.global_warp_allowed = is_global[ref]; warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; conv_params.ref = ref; if (ref && is_masked_compound_type(mi->interinter_comp.type)) { // masked compound type has its own average mechanism conv_params.do_average = 0; av1_make_masked_inter_predictor( pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf, bw, bh, &conv_params, mi->interp_filters, plane, &warp_types, mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, ref, xd, cm->allow_warped_motion); } else { conv_params.do_average = ref; av1_make_inter_predictor( pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf, bw, bh, &conv_params, mi->interp_filters, &warp_types, mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, plane, ref, mi, build_for_obmc, xd, cm->allow_warped_motion); } } } } static void build_inter_predictors_for_planes(const AV1_COMMON *cm, MACROBLOCKD *xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int plane_from, int plane_to) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; for (plane = plane_from; plane <= plane_to; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = pd->width; const int bh = pd->height; if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, pd->subsampling_y)) continue; build_inter_predictors(cm, xd, plane, xd->mi[0], 0, bw, bh, mi_x, mi_y); } } void av1_build_inter_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 0, 0); if (is_interintra_pred(xd->mi[0])) { BUFFER_SET default_ctx = { { xd->plane[0].dst.buf, NULL, NULL }, { xd->plane[0].dst.stride, 0, 0 } }; if (!ctx) ctx = &default_ctx; av1_build_interintra_predictors_sbp(cm, xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride, ctx, 0, bsize); } } void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 1, MAX_MB_PLANE - 1); if (is_interintra_pred(xd->mi[0])) { BUFFER_SET default_ctx = { { NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf }, { 0, xd->plane[1].dst.stride, xd->plane[2].dst.stride } }; if (!ctx) ctx = &default_ctx; av1_build_interintra_predictors_sbuv( cm, xd, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[1].dst.stride, xd->plane[2].dst.stride, ctx, bsize); } } void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize) { const int num_planes = av1_num_planes(cm); av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, ctx, bsize); if (num_planes > 1) av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, ctx, bsize); } void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const int plane_start, const int plane_end) { // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet // the static analysis warnings. for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) { struct macroblockd_plane *const pd = &planes[i]; const int is_uv = i > 0; setup_pred_plane(&pd->dst, bsize, src->buffers[i], src->crop_widths[is_uv], src->crop_heights[is_uv], src->strides[is_uv], mi_row, mi_col, NULL, pd->subsampling_x, pd->subsampling_y); } } void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const struct scale_factors *sf, const int num_planes) { if (src != NULL) { // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet // the static analysis warnings. for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) { struct macroblockd_plane *const pd = &xd->plane[i]; const int is_uv = i > 0; setup_pred_plane(&pd->pre[idx], xd->mi[0]->sb_type, src->buffers[i], src->crop_widths[is_uv], src->crop_heights[is_uv], src->strides[is_uv], mi_row, mi_col, sf, pd->subsampling_x, pd->subsampling_y); } } } // obmc_mask_N[overlap_position] static const uint8_t obmc_mask_1[1] = { 64 }; static const uint8_t obmc_mask_2[2] = { 45, 64 }; static const uint8_t obmc_mask_4[4] = { 39, 50, 59, 64 }; static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 }; static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54, 56, 58, 60, 61, 64, 64, 64, 64 }; static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 60, 61, 62, 64, 64, 64, 64, 64, 64, 64, 64 }; static const uint8_t obmc_mask_64[64] = { 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44, 45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56, 56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, }; const uint8_t *av1_get_obmc_mask(int length) { switch (length) { case 1: return obmc_mask_1; case 2: return obmc_mask_2; case 4: return obmc_mask_4; case 8: return obmc_mask_8; case 16: return obmc_mask_16; case 32: return obmc_mask_32; case 64: return obmc_mask_64; default: assert(0); return NULL; } } static INLINE void increment_int_ptr(MACROBLOCKD *xd, int rel_mi_rc, uint8_t mi_hw, MB_MODE_INFO *mi, void *fun_ctxt, const int num_planes) { (void)xd; (void)rel_mi_rc; (void)mi_hw; (void)mi; ++*(int *)fun_ctxt; (void)num_planes; } void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col) { MB_MODE_INFO *mbmi = xd->mi[0]; mbmi->overlappable_neighbors[0] = 0; mbmi->overlappable_neighbors[1] = 0; if (!is_motion_variation_allowed_bsize(mbmi->sb_type)) return; foreach_overlappable_nb_above(cm, xd, mi_col, INT_MAX, increment_int_ptr, &mbmi->overlappable_neighbors[0]); foreach_overlappable_nb_left(cm, xd, mi_row, INT_MAX, increment_int_ptr, &mbmi->overlappable_neighbors[1]); } // HW does not support < 4x4 prediction. To limit the bandwidth requirement, if // block-size of current plane is smaller than 8x8, always only blend with the // left neighbor(s) (skip blending with the above side). #define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize, const struct macroblockd_plane *pd, int dir) { assert(is_motion_variation_allowed_bsize(bsize)); const BLOCK_SIZE bsize_plane = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); switch (bsize_plane) { #if DISABLE_CHROMA_U8X8_OBMC case BLOCK_4X4: case BLOCK_8X4: case BLOCK_4X8: return 1; break; #else case BLOCK_4X4: case BLOCK_8X4: case BLOCK_4X8: return dir == 0; break; #endif default: return 0; } } void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) { mbmi->ref_frame[1] = NONE_FRAME; mbmi->interinter_comp.type = COMPOUND_AVERAGE; return; } struct obmc_inter_pred_ctxt { uint8_t **adjacent; int *adjacent_stride; }; static INLINE void build_obmc_inter_pred_above(MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, MB_MODE_INFO *above_mi, void *fun_ctxt, const int num_planes) { (void)above_mi; struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; const BLOCK_SIZE bsize = xd->mi[0]->sb_type; const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; const int overlap = AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1; for (int plane = 0; plane < num_planes; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x; const int bh = overlap >> pd->subsampling_y; const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x; if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; const int dst_stride = pd->dst.stride; uint8_t *const dst = &pd->dst.buf[plane_col]; const int tmp_stride = ctxt->adjacent_stride[plane]; const uint8_t *const tmp = &ctxt->adjacent[plane][plane_col]; const uint8_t *const mask = av1_get_obmc_mask(bh); if (is_hbd) aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bw, bh, xd->bd); else aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bw, bh); } } static INLINE void build_obmc_inter_pred_left(MACROBLOCKD *xd, int rel_mi_row, uint8_t left_mi_height, MB_MODE_INFO *left_mi, void *fun_ctxt, const int num_planes) { (void)left_mi; struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; const BLOCK_SIZE bsize = xd->mi[0]->sb_type; const int overlap = AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1; const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; for (int plane = 0; plane < num_planes; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = overlap >> pd->subsampling_x; const int bh = (left_mi_height * MI_SIZE) >> pd->subsampling_y; const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y; if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; const int dst_stride = pd->dst.stride; uint8_t *const dst = &pd->dst.buf[plane_row * dst_stride]; const int tmp_stride = ctxt->adjacent_stride[plane]; const uint8_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride]; const uint8_t *const mask = av1_get_obmc_mask(bw); if (is_hbd) aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bw, bh, xd->bd); else aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bw, bh); } } // This function combines motion compensated predictions that are generated by // top/left neighboring blocks' inter predictors with the regular inter // prediction. We assume the original prediction (bmc) is stored in // xd->plane[].dst.buf void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *above[MAX_MB_PLANE], int above_stride[MAX_MB_PLANE], uint8_t *left[MAX_MB_PLANE], int left_stride[MAX_MB_PLANE]) { const BLOCK_SIZE bsize = xd->mi[0]->sb_type; // handle above row struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride }; foreach_overlappable_nb_above(cm, xd, mi_col, max_neighbor_obmc[mi_size_wide_log2[bsize]], build_obmc_inter_pred_above, &ctxt_above); // handle left column struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride }; foreach_overlappable_nb_left(cm, xd, mi_row, max_neighbor_obmc[mi_size_high_log2[bsize]], build_obmc_inter_pred_left, &ctxt_left); } void av1_setup_build_prediction_by_above_pred( MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt, const int num_planes) { const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->sb_type); const int above_mi_col = ctxt->mi_col + rel_mi_col; av1_modify_neighbor_predictor_for_obmc(above_mbmi); for (int j = 0; j < num_planes; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, a_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j], ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col, NULL, pd->subsampling_x, pd->subsampling_y); } const int num_refs = 1 + has_second_ref(above_mbmi); for (int ref = 0; ref < num_refs; ++ref) { const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref]; const RefBuffer *const ref_buf = &ctxt->cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, ctxt->mi_row, above_mi_col, &ref_buf->sf, num_planes); } xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col); xd->mb_to_right_edge = ctxt->mb_to_far_edge + (xd->n8_w - rel_mi_col - above_mi_width) * MI_SIZE * 8; } static INLINE void build_prediction_by_above_pred( MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) { struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; const int above_mi_col = ctxt->mi_col + rel_mi_col; int mi_x, mi_y; MB_MODE_INFO backup_mbmi = *above_mbmi; av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, above_mi_width, above_mbmi, ctxt, num_planes); mi_x = above_mi_col << MI_SIZE_LOG2; mi_y = ctxt->mi_row << MI_SIZE_LOG2; const BLOCK_SIZE bsize = xd->mi[0]->sb_type; for (int j = 0; j < num_planes; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x; int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4, block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1)); if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; build_inter_predictors(ctxt->cm, xd, j, above_mbmi, 1, bw, bh, mi_x, mi_y); } *above_mbmi = backup_mbmi; } void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { if (!xd->up_available) return; // Adjust mb_to_bottom_edge to have the correct value for the OBMC // prediction block. This is half the height of the original block, // except for 128-wide blocks, where we only use a height of 32. int this_height = xd->n8_h * MI_SIZE; int pred_height = AOMMIN(this_height / 2, 32); xd->mb_to_bottom_edge += (this_height - pred_height) * 8; struct build_prediction_ctxt ctxt = { cm, mi_row, mi_col, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_right_edge }; BLOCK_SIZE bsize = xd->mi[0]->sb_type; foreach_overlappable_nb_above(cm, xd, mi_col, max_neighbor_obmc[mi_size_wide_log2[bsize]], build_prediction_by_above_pred, &ctxt); xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); xd->mb_to_right_edge = ctxt.mb_to_far_edge; xd->mb_to_bottom_edge -= (this_height - pred_height) * 8; } void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row, uint8_t left_mi_height, MB_MODE_INFO *left_mbmi, struct build_prediction_ctxt *ctxt, const int num_planes) { const BLOCK_SIZE l_bsize = AOMMAX(BLOCK_8X8, left_mbmi->sb_type); const int left_mi_row = ctxt->mi_row + rel_mi_row; av1_modify_neighbor_predictor_for_obmc(left_mbmi); for (int j = 0; j < num_planes; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, l_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j], ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0, NULL, pd->subsampling_x, pd->subsampling_y); } const int num_refs = 1 + has_second_ref(left_mbmi); for (int ref = 0; ref < num_refs; ++ref) { const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref]; const RefBuffer *const ref_buf = &ctxt->cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, left_mi_row, ctxt->mi_col, &ref_buf->sf, num_planes); } xd->mb_to_top_edge = 8 * MI_SIZE * (-left_mi_row); xd->mb_to_bottom_edge = ctxt->mb_to_far_edge + (xd->n8_h - rel_mi_row - left_mi_height) * MI_SIZE * 8; } static INLINE void build_prediction_by_left_pred( MACROBLOCKD *xd, int rel_mi_row, uint8_t left_mi_height, MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) { struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; const int left_mi_row = ctxt->mi_row + rel_mi_row; int mi_x, mi_y; MB_MODE_INFO backup_mbmi = *left_mbmi; av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, left_mi_height, left_mbmi, ctxt, num_planes); mi_x = ctxt->mi_col << MI_SIZE_LOG2; mi_y = left_mi_row << MI_SIZE_LOG2; const BLOCK_SIZE bsize = xd->mi[0]->sb_type; for (int j = 0; j < num_planes; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4, block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1)); int bh = (left_mi_height << MI_SIZE_LOG2) >> pd->subsampling_y; if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; build_inter_predictors(ctxt->cm, xd, j, left_mbmi, 1, bw, bh, mi_x, mi_y); } *left_mbmi = backup_mbmi; } void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { if (!xd->left_available) return; // Adjust mb_to_right_edge to have the correct value for the OBMC // prediction block. This is half the width of the original block, // except for 128-wide blocks, where we only use a width of 32. int this_width = xd->n8_w * MI_SIZE; int pred_width = AOMMIN(this_width / 2, 32); xd->mb_to_right_edge += (this_width - pred_width) * 8; struct build_prediction_ctxt ctxt = { cm, mi_row, mi_col, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_bottom_edge }; BLOCK_SIZE bsize = xd->mi[0]->sb_type; foreach_overlappable_nb_left(cm, xd, mi_row, max_neighbor_obmc[mi_size_high_log2[bsize]], build_prediction_by_left_pred, &ctxt); xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); xd->mb_to_right_edge -= (this_width - pred_width) * 8; xd->mb_to_bottom_edge = ctxt.mb_to_far_edge; } void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col) { const int num_planes = av1_num_planes(cm); DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int len = sizeof(uint16_t); dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len); dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len); dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len); dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len); } else { dst_buf1[0] = tmp_buf1; dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE; dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2; dst_buf2[0] = tmp_buf2; dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE; dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2; } av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1, dst_width1, dst_height1, dst_stride1); av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2, dst_width2, dst_height2, dst_stride2); av1_setup_dst_planes(xd->plane, xd->mi[0]->sb_type, get_frame_new_buffer(cm), mi_row, mi_col, 0, num_planes); av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1, dst_buf2, dst_stride2); } /* clang-format off */ static const uint8_t ii_weights1d[MAX_SB_SIZE] = { 60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16, 16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = { 32, 16, 16, 16, 8, 8, 8, 4, 4, 4, 2, 2, 2, 1, 1, 1, 8, 8, 4, 4, 2, 2 }; /* clang-format on */ static void build_smooth_interintra_mask(uint8_t *mask, int stride, BLOCK_SIZE plane_bsize, INTERINTRA_MODE mode) { int i, j; const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; const int size_scale = ii_size_scales[plane_bsize]; switch (mode) { case II_V_PRED: for (i = 0; i < bh; ++i) { memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0])); mask += stride; } break; case II_H_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale]; mask += stride; } break; case II_SMOOTH_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[(i < j ? i : j) * size_scale]; mask += stride; } break; case II_DC_PRED: default: for (i = 0; i < bh; ++i) { memset(mask, 32, bw * sizeof(mask[0])); mask += stride; } break; } } static void combine_interintra(INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index, int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, uint8_t *comppred, int compstride, const uint8_t *interpred, int interstride, const uint8_t *intrapred, int intrastride) { const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; if (use_wedge_interintra) { if (is_interintra_wedge_used(bsize)) { const uint8_t *mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); const int subw = 2 * mi_size_wide[bsize] == bw; const int subh = 2 * mi_size_high[bsize] == bh; aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, interpred, interstride, mask, block_size_wide[bsize], bw, bh, subw, subh); } return; } uint8_t mask[MAX_SB_SQUARE]; build_smooth_interintra_mask(mask, bw, plane_bsize, mode); aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, interpred, interstride, mask, bw, bw, bh, 0, 0); } static void combine_interintra_highbd( INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index, int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, uint8_t *comppred8, int compstride, const uint8_t *interpred8, int interstride, const uint8_t *intrapred8, int intrastride, int bd) { const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; if (use_wedge_interintra) { if (is_interintra_wedge_used(bsize)) { const uint8_t *mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); const int subh = 2 * mi_size_high[bsize] == bh; const int subw = 2 * mi_size_wide[bsize] == bw; aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, interpred8, interstride, mask, block_size_wide[bsize], bw, bh, subw, subh, bd); } return; } uint8_t mask[MAX_SB_SQUARE]; build_smooth_interintra_mask(mask, bw, plane_bsize, mode); aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, interpred8, interstride, mask, bw, bw, bh, 0, 0, bd); } void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm, MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, BUFFER_SET *ctx, uint8_t *dst, int dst_stride) { struct macroblockd_plane *const pd = &xd->plane[plane]; const int ssx = xd->plane[plane].subsampling_x; const int ssy = xd->plane[plane].subsampling_y; BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy); PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode]; assert(xd->mi[0]->angle_delta[PLANE_TYPE_Y] == 0); assert(xd->mi[0]->angle_delta[PLANE_TYPE_UV] == 0); assert(xd->mi[0]->filter_intra_mode_info.use_filter_intra == 0); assert(xd->mi[0]->use_intrabc == 0); av1_predict_intra_block(cm, xd, pd->width, pd->height, max_txsize_rect_lookup[plane_bsize], mode, 0, 0, FILTER_INTRA_MODES, ctx->plane[plane], ctx->stride[plane], dst, dst_stride, 0, 0, plane); } void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, const uint8_t *inter_pred, int inter_stride, const uint8_t *intra_pred, int intra_stride) { const int ssx = xd->plane[plane].subsampling_x; const int ssy = xd->plane[plane].subsampling_y; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy); if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { combine_interintra_highbd( xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra, xd->mi[0]->interintra_wedge_index, xd->mi[0]->interintra_wedge_sign, bsize, plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred, intra_stride, xd->bd); return; } combine_interintra( xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra, xd->mi[0]->interintra_wedge_index, xd->mi[0]->interintra_wedge_sign, bsize, plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred, intra_stride); } // build interintra_predictors for one plane void av1_build_interintra_predictors_sbp(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *pred, int stride, BUFFER_SET *ctx, int plane, BLOCK_SIZE bsize) { if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]); av1_build_intra_predictors_for_interintra( cm, xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); av1_combine_interintra(xd, bsize, plane, pred, stride, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); } else { DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]); av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx, intrapredictor, MAX_SB_SIZE); av1_combine_interintra(xd, bsize, plane, pred, stride, intrapredictor, MAX_SB_SIZE); } } void av1_build_interintra_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *upred, uint8_t *vpred, int ustride, int vstride, BUFFER_SET *ctx, BLOCK_SIZE bsize) { av1_build_interintra_predictors_sbp(cm, xd, upred, ustride, ctx, 1, bsize); av1_build_interintra_predictors_sbp(cm, xd, vpred, vstride, ctx, 2, bsize); } void av1_build_interintra_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *ypred, uint8_t *upred, uint8_t *vpred, int ystride, int ustride, int vstride, BUFFER_SET *ctx, BLOCK_SIZE bsize) { av1_build_interintra_predictors_sbp(cm, xd, ypred, ystride, ctx, 0, bsize); av1_build_interintra_predictors_sbuv(cm, xd, upred, vpred, ustride, vstride, ctx, bsize); } // Builds the inter-predictor for the single ref case // for use in the encoder to search the wedges efficiently. static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane, int bw, int bh, int x, int y, int w, int h, int mi_x, int mi_y, int ref, uint8_t *const ext_dst, int ext_dst_stride, int can_use_previous) { struct macroblockd_plane *const pd = &xd->plane[plane]; const MB_MODE_INFO *mi = xd->mi[0]; const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; uint8_t *const dst = get_buf_by_bd(xd, ext_dst) + ext_dst_stride * y + x; const MV mv = mi->mv[ref].as_mv; ConvolveParams conv_params = get_conv_params(ref, 0, plane, xd->bd); WarpTypesAllowed warp_types; const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; warp_types.global_warp_allowed = is_global_mv_block(mi, wm->wmtype); warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; const int pre_x = (mi_x) >> pd->subsampling_x; const int pre_y = (mi_y) >> pd->subsampling_y; uint8_t *pre; SubpelParams subpel_params; calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, x, y, pre_buf, &pre, &subpel_params, bw, bh); av1_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride, &subpel_params, sf, w, h, &conv_params, mi->interp_filters, &warp_types, pre_x + x, pre_y + y, plane, ref, mi, 0, xd, can_use_previous); } void av1_build_inter_predictors_for_planes_single_buf( MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row, int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3], int can_use_previous) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; for (plane = plane_from; plane <= plane_to; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size( bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; build_inter_predictors_single_buf(xd, plane, bw, bh, 0, 0, bw, bh, mi_x, mi_y, ref, ext_dst[plane], ext_dst_stride[plane], can_use_previous); } } static void build_wedge_inter_predictor_from_buf( MACROBLOCKD *xd, int plane, int x, int y, int w, int h, uint8_t *ext_dst0, int ext_dst_stride0, uint8_t *ext_dst1, int ext_dst_stride1) { MB_MODE_INFO *const mbmi = xd->mi[0]; const int is_compound = has_second_ref(mbmi); MACROBLOCKD_PLANE *const pd = &xd->plane[plane]; struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; mbmi->interinter_comp.seg_mask = xd->seg_mask; const INTERINTER_COMPOUND_DATA *comp_data = &mbmi->interinter_comp; if (is_compound && is_masked_compound_type(comp_data->type)) { if (!plane && comp_data->type == COMPOUND_DIFFWTD) { if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) av1_build_compound_diffwtd_mask_highbd( comp_data->seg_mask, comp_data->mask_type, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, h, w, xd->bd); else av1_build_compound_diffwtd_mask( comp_data->seg_mask, comp_data->mask_type, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, h, w); } if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_highbd( dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, comp_data, mbmi->sb_type, h, w, xd->bd); else build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, comp_data, mbmi->sb_type, h, w); } else { if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) aom_highbd_convolve_copy(CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, dst, dst_buf->stride, NULL, 0, NULL, 0, w, h, xd->bd); else aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, NULL, 0, NULL, 0, w, h); } } void av1_build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, uint8_t *ext_dst0[3], int ext_dst_stride0[3], uint8_t *ext_dst1[3], int ext_dst_stride1[3]) { int plane; for (plane = plane_from; plane <= plane_to; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size( bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; build_wedge_inter_predictor_from_buf( xd, plane, 0, 0, bw, bh, ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane], ext_dst_stride1[plane]); } }