/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AV1_COMMON_PRED_COMMON_H_ #define AV1_COMMON_PRED_COMMON_H_ #include "av1/common/blockd.h" #include "av1/common/onyxc_int.h" #include "aom_dsp/aom_dsp_common.h" #ifdef __cplusplus extern "C" { #endif static INLINE int get_segment_id(const AV1_COMMON *const cm, const uint8_t *segment_ids, BLOCK_SIZE bsize, int mi_row, int mi_col) { const int mi_offset = mi_row * cm->mi_cols + mi_col; const int bw = mi_size_wide[bsize]; const int bh = mi_size_high[bsize]; const int xmis = AOMMIN(cm->mi_cols - mi_col, bw); const int ymis = AOMMIN(cm->mi_rows - mi_row, bh); int x, y, segment_id = MAX_SEGMENTS; for (y = 0; y < ymis; ++y) for (x = 0; x < xmis; ++x) segment_id = AOMMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]); assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); return segment_id; } static INLINE int av1_get_pred_context_seg_id(const MACROBLOCKD *xd) { const MODE_INFO *const above_mi = xd->above_mi; const MODE_INFO *const left_mi = xd->left_mi; const int above_sip = (above_mi != NULL) ? above_mi->mbmi.seg_id_predicted : 0; const int left_sip = (left_mi != NULL) ? left_mi->mbmi.seg_id_predicted : 0; return above_sip + left_sip; } static INLINE aom_prob av1_get_pred_prob_seg_id( const struct segmentation_probs *segp, const MACROBLOCKD *xd) { return segp->pred_probs[av1_get_pred_context_seg_id(xd)]; } static INLINE int av1_get_skip_context(const MACROBLOCKD *xd) { const MODE_INFO *const above_mi = xd->above_mi; const MODE_INFO *const left_mi = xd->left_mi; const int above_skip = (above_mi != NULL) ? above_mi->mbmi.skip : 0; const int left_skip = (left_mi != NULL) ? left_mi->mbmi.skip : 0; return above_skip + left_skip; } static INLINE aom_prob av1_get_skip_prob(const AV1_COMMON *cm, const MACROBLOCKD *xd) { return cm->fc->skip_probs[av1_get_skip_context(xd)]; } #if CONFIG_DUAL_FILTER int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir); #else int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd); #endif #if CONFIG_EXT_INTRA #if CONFIG_INTRA_INTERP int av1_get_pred_context_intra_interp(const MACROBLOCKD *xd); #endif // CONFIG_INTRA_INTERP #endif // CONFIG_EXT_INTRA #if CONFIG_PALETTE && CONFIG_PALETTE_DELTA_ENCODING // Get a list of palette base colors that are used in the above and left blocks, // referred to as "color cache". The return value is the number of colors in the // cache (<= 2 * PALETTE_MAX_SIZE). The color values are stored in "cache" // in ascending order. int av1_get_palette_cache(const MODE_INFO *above_mi, const MODE_INFO *left_mi, int plane, uint16_t *cache); #endif // CONFIG_PALETTE && CONFIG_PALETTE_DELTA_ENCODING int av1_get_intra_inter_context(const MACROBLOCKD *xd); static INLINE aom_prob av1_get_intra_inter_prob(const AV1_COMMON *cm, const MACROBLOCKD *xd) { return cm->fc->intra_inter_prob[av1_get_intra_inter_context(xd)]; } int av1_get_reference_mode_context(const AV1_COMMON *cm, const MACROBLOCKD *xd); static INLINE aom_prob av1_get_reference_mode_prob(const AV1_COMMON *cm, const MACROBLOCKD *xd) { return cm->fc->comp_inter_prob[av1_get_reference_mode_context(cm, xd)]; } int av1_get_pred_context_comp_ref_p(const AV1_COMMON *cm, const MACROBLOCKD *xd); static INLINE aom_prob av1_get_pred_prob_comp_ref_p(const AV1_COMMON *cm, const MACROBLOCKD *xd) { const int pred_context = av1_get_pred_context_comp_ref_p(cm, xd); return cm->fc->comp_ref_prob[pred_context][0]; } #if CONFIG_EXT_REFS int av1_get_pred_context_comp_ref_p1(const AV1_COMMON *cm, const MACROBLOCKD *xd); static INLINE aom_prob av1_get_pred_prob_comp_ref_p1(const AV1_COMMON *cm, const MACROBLOCKD *xd) { const int pred_context = av1_get_pred_context_comp_ref_p1(cm, xd); return cm->fc->comp_ref_prob[pred_context][1]; } int av1_get_pred_context_comp_ref_p2(const AV1_COMMON *cm, const MACROBLOCKD *xd); static INLINE aom_prob av1_get_pred_prob_comp_ref_p2(const AV1_COMMON *cm, const MACROBLOCKD *xd) { const int pred_context = av1_get_pred_context_comp_ref_p2(cm, xd); return cm->fc->comp_ref_prob[pred_context][2]; } int av1_get_pred_context_comp_bwdref_p(const AV1_COMMON *cm, const MACROBLOCKD *xd); static INLINE aom_prob av1_get_pred_prob_comp_bwdref_p(const AV1_COMMON *cm, const MACROBLOCKD *xd) { const int pred_context = av1_get_pred_context_comp_bwdref_p(cm, xd); return cm->fc->comp_bwdref_prob[pred_context][0]; } #endif // CONFIG_EXT_REFS int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd); static INLINE aom_prob av1_get_pred_prob_single_ref_p1(const AV1_COMMON *cm, const MACROBLOCKD *xd) { return cm->fc->single_ref_prob[av1_get_pred_context_single_ref_p1(xd)][0]; } int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd); static INLINE aom_prob av1_get_pred_prob_single_ref_p2(const AV1_COMMON *cm, const MACROBLOCKD *xd) { return cm->fc->single_ref_prob[av1_get_pred_context_single_ref_p2(xd)][1]; } #if CONFIG_EXT_REFS int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd); static INLINE aom_prob av1_get_pred_prob_single_ref_p3(const AV1_COMMON *cm, const MACROBLOCKD *xd) { return cm->fc->single_ref_prob[av1_get_pred_context_single_ref_p3(xd)][2]; } int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd); static INLINE aom_prob av1_get_pred_prob_single_ref_p4(const AV1_COMMON *cm, const MACROBLOCKD *xd) { return cm->fc->single_ref_prob[av1_get_pred_context_single_ref_p4(xd)][3]; } int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd); static INLINE aom_prob av1_get_pred_prob_single_ref_p5(const AV1_COMMON *cm, const MACROBLOCKD *xd) { return cm->fc->single_ref_prob[av1_get_pred_context_single_ref_p5(xd)][4]; } #endif // CONFIG_EXT_REFS #if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF int av1_get_inter_mode_context(const MACROBLOCKD *xd); static INLINE aom_prob av1_get_inter_mode_prob(const AV1_COMMON *cm, const MACROBLOCKD *xd) { return cm->fc->comp_inter_mode_prob[av1_get_inter_mode_context(xd)]; } #endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF // Returns a context number for the given MB prediction signal // The mode info data structure has a one element border above and to the // left of the entries corresponding to real blocks. // The prediction flags in these dummy entries are initialized to 0. static INLINE int get_tx_size_context(const MACROBLOCKD *xd) { const int max_tx_size = max_txsize_lookup[xd->mi[0]->mbmi.sb_type]; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int has_above = xd->up_available; const int has_left = xd->left_available; int above_ctx = (has_above && !above_mbmi->skip) ? (int)txsize_sqr_map[above_mbmi->tx_size] : max_tx_size; int left_ctx = (has_left && !left_mbmi->skip) ? (int)txsize_sqr_map[left_mbmi->tx_size] : max_tx_size; if (!has_left) left_ctx = above_ctx; if (!has_above) above_ctx = left_ctx; return (above_ctx + left_ctx) > max_tx_size + TX_SIZE_LUMA_MIN; } #if CONFIG_VAR_TX static void update_tx_counts(AV1_COMMON *cm, MACROBLOCKD *xd, MB_MODE_INFO *mbmi, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, int blk_row, int blk_col, TX_SIZE max_tx_size, int ctx) { const struct macroblockd_plane *const pd = &xd->plane[0]; const BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; const int tx_row = blk_row >> (1 - pd->subsampling_y); const int tx_col = blk_col >> (1 - pd->subsampling_x); const TX_SIZE plane_tx_size = mbmi->inter_tx_size[tx_row][tx_col]; const int max_blocks_high = max_block_high(xd, plane_bsize, 0); const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; if (tx_size == plane_tx_size) { int depth; depth = tx_size_to_depth(tx_size); ++xd->counts->tx_size[max_tx_size - TX_SIZE_CTX_MIN][ctx][depth]; mbmi->tx_size = tx_size; } else { int bsl = b_width_log2_lookup[bsize]; int i; assert(bsl > 0); --bsl; for (i = 0; i < 4; ++i) { const int offsetr = blk_row + ((i >> 1) << bsl); const int offsetc = blk_col + ((i & 0x01) << bsl); if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; update_tx_counts(cm, xd, mbmi, plane_bsize, (TX_SIZE)(tx_size - 1), offsetr, offsetc, max_tx_size, ctx); } } } static INLINE void inter_block_tx_count_update(AV1_COMMON *cm, MACROBLOCKD *xd, MB_MODE_INFO *mbmi, BLOCK_SIZE plane_bsize, int ctx) { const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0]; TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize]; int bh = tx_size_wide_unit[max_tx_size]; int idx, idy; for (idy = 0; idy < mi_height; idy += bh) for (idx = 0; idx < mi_width; idx += bh) update_tx_counts(cm, xd, mbmi, plane_bsize, max_tx_size, idy, idx, max_tx_size, ctx); } #endif #ifdef __cplusplus } // extern "C" #endif #endif // AV1_COMMON_PRED_COMMON_H_