/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/common/common.h" #include "av1/common/pred_common.h" #include "av1/common/reconinter.h" #if CONFIG_EXT_INTRA #include "av1/common/reconintra.h" #endif // CONFIG_EXT_INTRA #include "av1/common/seg_common.h" // Returns a context number for the given MB prediction signal #if CONFIG_DUAL_FILTER static InterpFilter get_ref_filter_type(const MODE_INFO *mi, const MACROBLOCKD *xd, int dir, MV_REFERENCE_FRAME ref_frame) { InterpFilter ref_type = SWITCHABLE_FILTERS; const MB_MODE_INFO *ref_mbmi = &mi->mbmi; int use_subpel[2] = { has_subpel_mv_component(mi, xd, dir), has_subpel_mv_component(mi, xd, dir + 2), }; if (ref_mbmi->ref_frame[0] == ref_frame && use_subpel[0]) ref_type = ref_mbmi->interp_filter[(dir & 0x01)]; else if (ref_mbmi->ref_frame[1] == ref_frame && use_subpel[1]) ref_type = ref_mbmi->interp_filter[(dir & 0x01) + 2]; return ref_type; } int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) { const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const int ctx_offset = (mbmi->ref_frame[1] > INTRA_FRAME) * INTER_FILTER_COMP_OFFSET; MV_REFERENCE_FRAME ref_frame = (dir < 2) ? mbmi->ref_frame[0] : mbmi->ref_frame[1]; // Note: // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET; int left_type = SWITCHABLE_FILTERS; int above_type = SWITCHABLE_FILTERS; if (xd->left_available) left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame); if (xd->up_available) above_type = get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame); if (left_type == above_type) { filter_type_ctx += left_type; } else if (left_type == SWITCHABLE_FILTERS) { assert(above_type != SWITCHABLE_FILTERS); filter_type_ctx += above_type; } else if (above_type == SWITCHABLE_FILTERS) { assert(left_type != SWITCHABLE_FILTERS); filter_type_ctx += left_type; } else { filter_type_ctx += SWITCHABLE_FILTERS; } return filter_type_ctx; } #else int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd) { // Note: // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int left_type = xd->left_available && is_inter_block(left_mbmi) ? left_mbmi->interp_filter : SWITCHABLE_FILTERS; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const int above_type = xd->up_available && is_inter_block(above_mbmi) ? above_mbmi->interp_filter : SWITCHABLE_FILTERS; if (left_type == above_type) { return left_type; } else if (left_type == SWITCHABLE_FILTERS) { assert(above_type != SWITCHABLE_FILTERS); return above_type; } else if (above_type == SWITCHABLE_FILTERS) { assert(left_type != SWITCHABLE_FILTERS); return left_type; } else { return SWITCHABLE_FILTERS; } } #endif #if CONFIG_EXT_INTRA #if CONFIG_INTRA_INTERP // Obtain the reference filter type from the above/left neighbor blocks. static INTRA_FILTER get_ref_intra_filter(const MB_MODE_INFO *ref_mbmi) { INTRA_FILTER ref_type = INTRA_FILTERS; if (ref_mbmi->sb_type >= BLOCK_8X8) { const PREDICTION_MODE mode = ref_mbmi->mode; if (is_inter_block(ref_mbmi)) { #if CONFIG_DUAL_FILTER switch (ref_mbmi->interp_filter[0]) { #else switch (ref_mbmi->interp_filter) { #endif case EIGHTTAP_REGULAR: ref_type = INTRA_FILTER_8TAP; break; case EIGHTTAP_SMOOTH: ref_type = INTRA_FILTER_8TAP_SMOOTH; break; case MULTITAP_SHARP: ref_type = INTRA_FILTER_8TAP_SHARP; break; case BILINEAR: ref_type = INTRA_FILTERS; break; default: break; } } else { if (av1_is_directional_mode(mode, ref_mbmi->sb_type)) { const int p_angle = mode_to_angle_map[mode] + ref_mbmi->angle_delta[0] * ANGLE_STEP; if (av1_is_intra_filter_switchable(p_angle)) { ref_type = ref_mbmi->intra_filter; } } } } return ref_type; } int av1_get_pred_context_intra_interp(const MACROBLOCKD *xd) { int left_type = INTRA_FILTERS, above_type = INTRA_FILTERS; if (xd->left_available) left_type = get_ref_intra_filter(xd->left_mbmi); if (xd->up_available) above_type = get_ref_intra_filter(xd->above_mbmi); if (left_type == above_type) return left_type; else if (left_type == INTRA_FILTERS && above_type != INTRA_FILTERS) return above_type; else if (left_type != INTRA_FILTERS && above_type == INTRA_FILTERS) return left_type; else return INTRA_FILTERS; } #endif // CONFIG_INTRA_INTERP #endif // CONFIG_EXT_INTRA #if CONFIG_PALETTE && CONFIG_PALETTE_DELTA_ENCODING int av1_get_palette_cache(const MODE_INFO *above_mi, const MODE_INFO *left_mi, int plane, uint16_t *cache) { int above_n = 0, left_n = 0; if (above_mi) above_n = above_mi->mbmi.palette_mode_info.palette_size[plane != 0]; if (left_mi) left_n = left_mi->mbmi.palette_mode_info.palette_size[plane != 0]; if (above_n == 0 && left_n == 0) return 0; int above_idx = plane * PALETTE_MAX_SIZE; int left_idx = plane * PALETTE_MAX_SIZE; int n = 0; const uint16_t *above_colors = above_mi->mbmi.palette_mode_info.palette_colors; const uint16_t *left_colors = left_mi->mbmi.palette_mode_info.palette_colors; // Merge the sorted lists of base colors from above and left to get // combined sorted color cache. while (above_n > 0 && left_n > 0) { uint16_t v_above = above_colors[above_idx]; uint16_t v_left = left_colors[left_idx]; if (v_left < v_above) { if (n == 0 || v_left != cache[n - 1]) cache[n++] = v_left; ++left_idx, --left_n; } else { if (n == 0 || v_above != cache[n - 1]) cache[n++] = v_above; ++above_idx, --above_n; if (v_left == v_above) ++left_idx, --left_n; } } while (above_n-- > 0) { uint16_t val = above_colors[above_idx++]; if (n == 0 || val != cache[n - 1]) cache[n++] = val; } while (left_n-- > 0) { uint16_t val = left_colors[left_idx++]; if (n == 0 || val != cache[n - 1]) cache[n++] = val; } assert(n <= 2 * PALETTE_MAX_SIZE); return n; } #endif // CONFIG_PALETTE && CONFIG_PALETTE_DELTA_ENCODING // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. // 0 - inter/inter, inter/--, --/inter, --/-- // 1 - intra/inter, inter/intra // 2 - intra/--, --/intra // 3 - intra/intra int av1_get_intra_inter_context(const MACROBLOCKD *xd) { const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int has_above = xd->up_available; const int has_left = xd->left_available; if (has_above && has_left) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); return left_intra && above_intra ? 3 : left_intra || above_intra; } else if (has_above || has_left) { // one edge available return 2 * !is_inter_block(has_above ? above_mbmi : left_mbmi); } else { return 0; } } #if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF // The compound/single mode info data structure has one element border above and // to the left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. // 0 - single/single // 1 - single/--, --/single, --/-- // 2 - single/comp, comp/single // 3 - comp/comp, comp/--, --/comp int av1_get_inter_mode_context(const MACROBLOCKD *xd) { const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int has_above = xd->up_available; const int has_left = xd->left_available; if (has_above && has_left) { // both edges available (0/2/3) const int above_inter_comp_mode = is_inter_compound_mode(above_mbmi->mode); const int left_inter_comp_mode = is_inter_compound_mode(left_mbmi->mode); return (above_inter_comp_mode && left_inter_comp_mode) ? 3 : (above_inter_comp_mode || left_inter_comp_mode) * 2; } else if (has_above || has_left) { // one edge available (1/3) const MB_MODE_INFO *const edge_mbmi = has_above ? above_mbmi : left_mbmi; return is_inter_compound_mode(edge_mbmi->mode) ? 3 : 1; } else { // no edge available (1) return 1; } } #endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF #if CONFIG_EXT_REFS #define CHECK_BACKWARD_REFS(ref_frame) \ (((ref_frame) >= BWDREF_FRAME) && ((ref_frame) <= ALTREF_FRAME)) #define IS_BACKWARD_REF_FRAME(ref_frame) CHECK_BACKWARD_REFS(ref_frame) #else #define IS_BACKWARD_REF_FRAME(ref_frame) ((ref_frame) == cm->comp_fixed_ref) #endif // CONFIG_EXT_REFS int av1_get_reference_mode_context(const AV1_COMMON *cm, const MACROBLOCKD *xd) { int ctx; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int has_above = xd->up_available; const int has_left = xd->left_available; #if CONFIG_EXT_REFS (void)cm; #endif // CONFIG_EXT_REFS // Note: // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. if (has_above && has_left) { // both edges available if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi)) // neither edge uses comp pred (0/1) ctx = IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ^ IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]); else if (!has_second_ref(above_mbmi)) // one of two edges uses comp pred (2/3) ctx = 2 + (IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) || !is_inter_block(above_mbmi)); else if (!has_second_ref(left_mbmi)) // one of two edges uses comp pred (2/3) ctx = 2 + (IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]) || !is_inter_block(left_mbmi)); else // both edges use comp pred (4) ctx = 4; } else if (has_above || has_left) { // one edge available const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; if (!has_second_ref(edge_mbmi)) // edge does not use comp pred (0/1) ctx = IS_BACKWARD_REF_FRAME(edge_mbmi->ref_frame[0]); else // edge uses comp pred (3) ctx = 3; } else { // no edges available (1) ctx = 1; } assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS); return ctx; } #if CONFIG_EXT_REFS // TODO(zoeliu): Future work will be conducted to optimize the context design // for the coding of the reference frames. #define CHECK_LAST_OR_LAST2(ref_frame) \ ((ref_frame == LAST_FRAME) || (ref_frame == LAST2_FRAME)) #define CHECK_GOLDEN_OR_LAST3(ref_frame) \ ((ref_frame == GOLDEN_FRAME) || (ref_frame == LAST3_FRAME)) // Returns a context number for the given MB prediction signal // Signal the first reference frame for a compound mode be either // GOLDEN/LAST3, or LAST/LAST2. // // NOTE(zoeliu): The probability of ref_frame[0] is either // GOLDEN_FRAME or LAST3_FRAME. #if CONFIG_ONE_SIDED_COMPOUND int av1_get_pred_context_comp_ref_p(UNUSED const AV1_COMMON *cm, const MACROBLOCKD *xd) { #else int av1_get_pred_context_comp_ref_p(const AV1_COMMON *cm, const MACROBLOCKD *xd) { #endif int pred_context; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int above_in_image = xd->up_available; const int left_in_image = xd->left_available; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. #if CONFIG_ONE_SIDED_COMPOUND // No change to bitstream // Code seems to assume that signbias of cm->comp_bwd_ref[0] is always 1 const int bwd_ref_sign_idx = 1; #else const int bwd_ref_sign_idx = cm->ref_frame_sign_bias[cm->comp_bwd_ref[0]]; #endif const int fwd_ref_sign_idx = !bwd_ref_sign_idx; if (above_in_image && left_in_image) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra (2) pred_context = 2; } else if (above_intra || left_intra) { // intra/inter const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) // single pred (1/3) pred_context = 1 + 2 * (!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0])); else // comp pred (1/3) pred_context = 1 + 2 * (!CHECK_GOLDEN_OR_LAST3( edge_mbmi->ref_frame[fwd_ref_sign_idx])); } else { // inter/inter const int l_sg = !has_second_ref(left_mbmi); const int a_sg = !has_second_ref(above_mbmi); const MV_REFERENCE_FRAME frfa = a_sg ? above_mbmi->ref_frame[0] : above_mbmi->ref_frame[fwd_ref_sign_idx]; const MV_REFERENCE_FRAME frfl = l_sg ? left_mbmi->ref_frame[0] : left_mbmi->ref_frame[fwd_ref_sign_idx]; if (frfa == frfl && CHECK_GOLDEN_OR_LAST3(frfa)) { pred_context = 0; } else if (l_sg && a_sg) { // single/single if ((CHECK_BACKWARD_REFS(frfa) && CHECK_LAST_OR_LAST2(frfl)) || (CHECK_BACKWARD_REFS(frfl) && CHECK_LAST_OR_LAST2(frfa))) { pred_context = 4; } else if (CHECK_GOLDEN_OR_LAST3(frfa) || CHECK_GOLDEN_OR_LAST3(frfl)) { pred_context = 1; } else { pred_context = 3; } } else if (l_sg || a_sg) { // single/comp const MV_REFERENCE_FRAME frfc = l_sg ? frfa : frfl; const MV_REFERENCE_FRAME rfs = a_sg ? frfa : frfl; if (CHECK_GOLDEN_OR_LAST3(frfc) && !CHECK_GOLDEN_OR_LAST3(rfs)) pred_context = 1; else if (CHECK_GOLDEN_OR_LAST3(rfs) && !CHECK_GOLDEN_OR_LAST3(frfc)) pred_context = 2; else pred_context = 4; } else { // comp/comp if ((CHECK_LAST_OR_LAST2(frfa) && CHECK_LAST_OR_LAST2(frfl))) { pred_context = 4; } else { // NOTE(zoeliu): Following assert may be removed once confirmed. assert(CHECK_GOLDEN_OR_LAST3(frfa) || CHECK_GOLDEN_OR_LAST3(frfl)); pred_context = 2; } } } } else if (above_in_image || left_in_image) { // one edge available const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi)) { pred_context = 2; } else { if (has_second_ref(edge_mbmi)) pred_context = 4 * (!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[fwd_ref_sign_idx])); else pred_context = 3 * (!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0])); } } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // Returns a context number for the given MB prediction signal // Signal the first reference frame for a compound mode be LAST, // conditioning on that it is known either LAST/LAST2. // // NOTE(zoeliu): The probability of ref_frame[0] is LAST_FRAME, // conditioning on it is either LAST_FRAME or LAST2_FRAME. #if CONFIG_ONE_SIDED_COMPOUND int av1_get_pred_context_comp_ref_p1(UNUSED const AV1_COMMON *cm, const MACROBLOCKD *xd) { #else int av1_get_pred_context_comp_ref_p1(const AV1_COMMON *cm, const MACROBLOCKD *xd) { #endif int pred_context; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int above_in_image = xd->up_available; const int left_in_image = xd->left_available; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. #if CONFIG_ONE_SIDED_COMPOUND // No change to bitstream // Code seems to assume that signbias of cm->comp_bwd_ref[0] is always 1 const int bwd_ref_sign_idx = 1; #else const int bwd_ref_sign_idx = cm->ref_frame_sign_bias[cm->comp_bwd_ref[0]]; #endif const int fwd_ref_sign_idx = !bwd_ref_sign_idx; if (above_in_image && left_in_image) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra (2) pred_context = 2; } else if (above_intra || left_intra) { // intra/inter const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) // single pred (1/3) pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != LAST_FRAME); else // comp pred (1/3) pred_context = 1 + 2 * (edge_mbmi->ref_frame[fwd_ref_sign_idx] != LAST_FRAME); } else { // inter/inter const int l_sg = !has_second_ref(left_mbmi); const int a_sg = !has_second_ref(above_mbmi); const MV_REFERENCE_FRAME frfa = a_sg ? above_mbmi->ref_frame[0] : above_mbmi->ref_frame[fwd_ref_sign_idx]; const MV_REFERENCE_FRAME frfl = l_sg ? left_mbmi->ref_frame[0] : left_mbmi->ref_frame[fwd_ref_sign_idx]; if (frfa == frfl && frfa == LAST_FRAME) pred_context = 0; else if (l_sg && a_sg) { // single/single if (frfa == LAST_FRAME || frfl == LAST_FRAME) pred_context = 1; else if (CHECK_GOLDEN_OR_LAST3(frfa) || CHECK_GOLDEN_OR_LAST3(frfl)) pred_context = 2 + (frfa != frfl); else if (frfa == frfl || (CHECK_BACKWARD_REFS(frfa) && CHECK_BACKWARD_REFS(frfl))) pred_context = 3; else pred_context = 4; } else if (l_sg || a_sg) { // single/comp const MV_REFERENCE_FRAME frfc = l_sg ? frfa : frfl; const MV_REFERENCE_FRAME rfs = a_sg ? frfa : frfl; if (frfc == LAST_FRAME && rfs != LAST_FRAME) pred_context = 1; else if (rfs == LAST_FRAME && frfc != LAST_FRAME) pred_context = 2; else pred_context = 3 + (frfc == LAST2_FRAME || CHECK_GOLDEN_OR_LAST3(rfs)); } else { // comp/comp if (frfa == LAST_FRAME || frfl == LAST_FRAME) pred_context = 2; else pred_context = 3 + (CHECK_GOLDEN_OR_LAST3(frfa) || CHECK_GOLDEN_OR_LAST3(frfl)); } } } else if (above_in_image || left_in_image) { // one edge available const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi)) { pred_context = 2; } else { if (has_second_ref(edge_mbmi)) { pred_context = 4 * (edge_mbmi->ref_frame[fwd_ref_sign_idx] != LAST_FRAME); } else { if (edge_mbmi->ref_frame[0] == LAST_FRAME) pred_context = 0; else pred_context = 2 + CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0]); } } } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // Returns a context number for the given MB prediction signal // Signal the first reference frame for a compound mode be GOLDEN, // conditioning on that it is known either GOLDEN or LAST3. // // NOTE(zoeliu): The probability of ref_frame[0] is GOLDEN_FRAME, // conditioning on it is either GOLDEN or LAST3. #if CONFIG_ONE_SIDED_COMPOUND int av1_get_pred_context_comp_ref_p2(UNUSED const AV1_COMMON *cm, const MACROBLOCKD *xd) { #else int av1_get_pred_context_comp_ref_p2(const AV1_COMMON *cm, const MACROBLOCKD *xd) { #endif int pred_context; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int above_in_image = xd->up_available; const int left_in_image = xd->left_available; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. #if CONFIG_ONE_SIDED_COMPOUND // No change to bitstream // Code seems to assume that signbias of cm->comp_bwd_ref[0] is always 1 const int bwd_ref_sign_idx = 1; #else const int bwd_ref_sign_idx = cm->ref_frame_sign_bias[cm->comp_bwd_ref[0]]; #endif const int fwd_ref_sign_idx = !bwd_ref_sign_idx; if (above_in_image && left_in_image) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra (2) pred_context = 2; } else if (above_intra || left_intra) { // intra/inter const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) // single pred (1/3) pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != GOLDEN_FRAME); else // comp pred (1/3) pred_context = 1 + 2 * (edge_mbmi->ref_frame[fwd_ref_sign_idx] != GOLDEN_FRAME); } else { // inter/inter const int l_sg = !has_second_ref(left_mbmi); const int a_sg = !has_second_ref(above_mbmi); const MV_REFERENCE_FRAME frfa = a_sg ? above_mbmi->ref_frame[0] : above_mbmi->ref_frame[fwd_ref_sign_idx]; const MV_REFERENCE_FRAME frfl = l_sg ? left_mbmi->ref_frame[0] : left_mbmi->ref_frame[fwd_ref_sign_idx]; if (frfa == frfl && frfa == GOLDEN_FRAME) pred_context = 0; else if (l_sg && a_sg) { // single/single if (frfa == GOLDEN_FRAME || frfl == GOLDEN_FRAME) pred_context = 1; else if (CHECK_LAST_OR_LAST2(frfa) || CHECK_LAST_OR_LAST2(frfl)) pred_context = 2 + (frfa != frfl); else if (frfa == frfl || (CHECK_BACKWARD_REFS(frfa) && CHECK_BACKWARD_REFS(frfl))) pred_context = 3; else pred_context = 4; } else if (l_sg || a_sg) { // single/comp const MV_REFERENCE_FRAME frfc = l_sg ? frfa : frfl; const MV_REFERENCE_FRAME rfs = a_sg ? frfa : frfl; if (frfc == GOLDEN_FRAME && rfs != GOLDEN_FRAME) pred_context = 1; else if (rfs == GOLDEN_FRAME && frfc != GOLDEN_FRAME) pred_context = 2; else pred_context = 3 + (frfc == LAST3_FRAME || CHECK_LAST_OR_LAST2(rfs)); } else { // comp/comp if (frfa == GOLDEN_FRAME || frfl == GOLDEN_FRAME) pred_context = 2; else pred_context = 3 + (CHECK_LAST_OR_LAST2(frfa) || CHECK_LAST_OR_LAST2(frfl)); } } } else if (above_in_image || left_in_image) { // one edge available const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi)) { pred_context = 2; } else { if (has_second_ref(edge_mbmi)) { pred_context = 4 * (edge_mbmi->ref_frame[fwd_ref_sign_idx] != GOLDEN_FRAME); } else { if (edge_mbmi->ref_frame[0] == GOLDEN_FRAME) pred_context = 0; else pred_context = 2 + CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]); } } } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // Returns a context number for the given MB prediction signal #if CONFIG_ONE_SIDED_COMPOUND int av1_get_pred_context_comp_bwdref_p(UNUSED const AV1_COMMON *cm, const MACROBLOCKD *xd) { #else int av1_get_pred_context_comp_bwdref_p(const AV1_COMMON *cm, const MACROBLOCKD *xd) { #endif int pred_context; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int above_in_image = xd->up_available; const int left_in_image = xd->left_available; // Note: // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. #if CONFIG_ONE_SIDED_COMPOUND // No change to bitstream // Code seems to assume that signbias of cm->comp_bwd_ref[0] is always 1 const int bwd_ref_sign_idx = 1; #else const int bwd_ref_sign_idx = cm->ref_frame_sign_bias[cm->comp_bwd_ref[0]]; #endif const int fwd_ref_sign_idx = !bwd_ref_sign_idx; if (above_in_image && left_in_image) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra (2) pred_context = 2; } else if (above_intra || left_intra) { // intra/inter const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) // single pred (1/3) pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != cm->comp_bwd_ref[1]); else // comp pred (1/3) pred_context = 1 + 2 * (edge_mbmi->ref_frame[bwd_ref_sign_idx] != cm->comp_bwd_ref[1]); } else { // inter/inter const int l_comp = has_second_ref(left_mbmi); const int a_comp = has_second_ref(above_mbmi); const MV_REFERENCE_FRAME l_brf = l_comp ? left_mbmi->ref_frame[bwd_ref_sign_idx] : NONE_FRAME; const MV_REFERENCE_FRAME a_brf = a_comp ? above_mbmi->ref_frame[bwd_ref_sign_idx] : NONE_FRAME; const MV_REFERENCE_FRAME l_frf = !l_comp ? left_mbmi->ref_frame[0] : left_mbmi->ref_frame[fwd_ref_sign_idx]; const MV_REFERENCE_FRAME a_frf = !a_comp ? above_mbmi->ref_frame[0] : above_mbmi->ref_frame[fwd_ref_sign_idx]; if (l_comp && a_comp) { // comp/comp if (l_brf == a_brf && l_brf == cm->comp_bwd_ref[1]) { pred_context = 0; } else if (l_brf == cm->comp_bwd_ref[1] || a_brf == cm->comp_bwd_ref[1]) { pred_context = 1; } else { // NOTE: Backward ref should be either BWDREF or ALTREF. assert(l_brf == a_brf && l_brf != cm->comp_bwd_ref[1]); pred_context = 3; } } else if (!l_comp && !a_comp) { // single/single if (l_frf == a_frf && l_frf == cm->comp_bwd_ref[1]) { pred_context = 0; } else if (l_frf == cm->comp_bwd_ref[1] || a_frf == cm->comp_bwd_ref[1]) { pred_context = 1; } else if (l_frf == a_frf) { pred_context = 3; } else { assert(l_frf != a_frf && l_frf != cm->comp_bwd_ref[1] && a_frf != cm->comp_bwd_ref[1]); pred_context = 4; } } else { // comp/single assert((l_comp && !a_comp) || (!l_comp && a_comp)); if ((l_comp && l_brf == cm->comp_bwd_ref[1] && a_frf == cm->comp_bwd_ref[1]) || (a_comp && a_brf == cm->comp_bwd_ref[1] && l_frf == cm->comp_bwd_ref[1])) { pred_context = 1; } else if ((l_comp && l_brf == cm->comp_bwd_ref[1]) || (a_comp && a_brf == cm->comp_bwd_ref[1]) || (!l_comp && l_frf == cm->comp_bwd_ref[1]) || (!a_comp && a_frf == cm->comp_bwd_ref[1])) { pred_context = 2; } else { pred_context = 4; } } } } else if (above_in_image || left_in_image) { // one edge available const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi)) { pred_context = 2; } else { if (has_second_ref(edge_mbmi)) { pred_context = 4 * (edge_mbmi->ref_frame[bwd_ref_sign_idx] != cm->comp_bwd_ref[1]); } else { pred_context = 3 * (edge_mbmi->ref_frame[0] != cm->comp_bwd_ref[1]); } } } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } #else // CONFIG_EXT_REFS // Returns a context number for the given MB prediction signal int av1_get_pred_context_comp_ref_p(const AV1_COMMON *cm, const MACROBLOCKD *xd) { int pred_context; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int above_in_image = xd->up_available; const int left_in_image = xd->left_available; // Note: // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; const int var_ref_idx = !fix_ref_idx; if (above_in_image && left_in_image) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra (2) pred_context = 2; } else if (above_intra || left_intra) { // intra/inter const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) // single pred (1/3) pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]); else // comp pred (1/3) pred_context = 1 + 2 * (edge_mbmi->ref_frame[var_ref_idx] != cm->comp_var_ref[1]); } else { // inter/inter const int l_sg = !has_second_ref(left_mbmi); const int a_sg = !has_second_ref(above_mbmi); const MV_REFERENCE_FRAME vrfa = a_sg ? above_mbmi->ref_frame[0] : above_mbmi->ref_frame[var_ref_idx]; const MV_REFERENCE_FRAME vrfl = l_sg ? left_mbmi->ref_frame[0] : left_mbmi->ref_frame[var_ref_idx]; if (vrfa == vrfl && cm->comp_var_ref[1] == vrfa) { pred_context = 0; } else if (l_sg && a_sg) { // single/single if ((vrfa == cm->comp_fixed_ref && vrfl == cm->comp_var_ref[0]) || (vrfl == cm->comp_fixed_ref && vrfa == cm->comp_var_ref[0])) pred_context = 4; else if (vrfa == vrfl) pred_context = 3; else pred_context = 1; } else if (l_sg || a_sg) { // single/comp const MV_REFERENCE_FRAME vrfc = l_sg ? vrfa : vrfl; const MV_REFERENCE_FRAME rfs = a_sg ? vrfa : vrfl; if (vrfc == cm->comp_var_ref[1] && rfs != cm->comp_var_ref[1]) pred_context = 1; else if (rfs == cm->comp_var_ref[1] && vrfc != cm->comp_var_ref[1]) pred_context = 2; else pred_context = 4; } else if (vrfa == vrfl) { // comp/comp pred_context = 4; } else { pred_context = 2; } } } else if (above_in_image || left_in_image) { // one edge available const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi)) { pred_context = 2; } else { if (has_second_ref(edge_mbmi)) pred_context = 4 * (edge_mbmi->ref_frame[var_ref_idx] != cm->comp_var_ref[1]); else pred_context = 3 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]); } } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } #endif // CONFIG_EXT_REFS #if CONFIG_EXT_REFS // For the bit to signal whether the single reference is a ALTREF_FRAME // or a BWDREF_FRAME. // // NOTE(zoeliu): The probability of ref_frame[0] is ALTREF/BWDREF. int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) { int pred_context; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int has_above = xd->up_available; const int has_left = xd->left_available; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. if (has_above && has_left) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra pred_context = 2; } else if (above_intra || left_intra) { // intra/inter or inter/intra const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) // single pred_context = 4 * (!CHECK_BACKWARD_REFS(edge_mbmi->ref_frame[0])); else // comp pred_context = 2; } else { // inter/inter const int above_has_second = has_second_ref(above_mbmi); const int left_has_second = has_second_ref(left_mbmi); const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; if (above_has_second && left_has_second) { // comp/comp pred_context = 2; } else if (above_has_second || left_has_second) { // single/comp const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; pred_context = (!CHECK_BACKWARD_REFS(rfs)) ? 4 : 1; } else { // single/single pred_context = 2 * (!CHECK_BACKWARD_REFS(above0)) + 2 * (!CHECK_BACKWARD_REFS(left0)); } } } else if (has_above || has_left) { // one edge available const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi)) { // intra pred_context = 2; } else { // inter if (!has_second_ref(edge_mbmi)) // single pred_context = 4 * (!CHECK_BACKWARD_REFS(edge_mbmi->ref_frame[0])); else // comp pred_context = 2; } } else { // no edges available pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // For the bit to signal whether the single reference is ALTREF_FRAME or // BWDREF_FRAME, knowing that it shall be either of these 2 choices. // // NOTE(zoeliu): The probability of ref_frame[0] is ALTREF_FRAME, conditioning // on it is either ALTREF_FRAME/BWDREF_FRAME. int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) { int pred_context; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int has_above = xd->up_available; const int has_left = xd->left_available; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. if (has_above && has_left) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra pred_context = 2; } else if (above_intra || left_intra) { // intra/inter or inter/intra const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) { // single if (!CHECK_BACKWARD_REFS(edge_mbmi->ref_frame[0])) pred_context = 3; else pred_context = 4 * (edge_mbmi->ref_frame[0] == BWDREF_FRAME); } else { // comp pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] == BWDREF_FRAME || edge_mbmi->ref_frame[1] == BWDREF_FRAME); } } else { // inter/inter const int above_has_second = has_second_ref(above_mbmi); const int left_has_second = has_second_ref(left_mbmi); const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1]; const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1]; if (above_has_second && left_has_second) { // comp/comp if (above0 == left0 && above1 == left1) pred_context = 3 * (above0 == BWDREF_FRAME || above1 == BWDREF_FRAME || left0 == BWDREF_FRAME || left1 == BWDREF_FRAME); else pred_context = 2; } else if (above_has_second || left_has_second) { // single/comp const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; if (rfs == BWDREF_FRAME) pred_context = 3 + (crf1 == BWDREF_FRAME || crf2 == BWDREF_FRAME); else if (rfs == ALTREF_FRAME) pred_context = (crf1 == BWDREF_FRAME || crf2 == BWDREF_FRAME); else pred_context = 1 + 2 * (crf1 == BWDREF_FRAME || crf2 == BWDREF_FRAME); } else { // single/single if (!CHECK_BACKWARD_REFS(above0) && !CHECK_BACKWARD_REFS(left0)) { pred_context = 2 + (above0 == left0); } else if (!CHECK_BACKWARD_REFS(above0) || !CHECK_BACKWARD_REFS(left0)) { const MV_REFERENCE_FRAME edge0 = !CHECK_BACKWARD_REFS(above0) ? left0 : above0; pred_context = 4 * (edge0 == BWDREF_FRAME); } else { pred_context = 2 * (above0 == BWDREF_FRAME) + 2 * (left0 == BWDREF_FRAME); } } } } else if (has_above || has_left) { // one edge available const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi) || (!CHECK_BACKWARD_REFS(edge_mbmi->ref_frame[0]) && !has_second_ref(edge_mbmi))) pred_context = 2; else if (!has_second_ref(edge_mbmi)) // single pred_context = 4 * (edge_mbmi->ref_frame[0] == BWDREF_FRAME); else // comp pred_context = 3 * (edge_mbmi->ref_frame[0] == BWDREF_FRAME || edge_mbmi->ref_frame[1] == BWDREF_FRAME); } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // For the bit to signal whether the single reference is LAST3/GOLDEN or // LAST2/LAST, knowing that it shall be either of these 2 choices. // // NOTE(zoeliu): The probability of ref_frame[0] is LAST3/GOLDEN, conditioning // on it is either LAST3/GOLDEN/LAST2/LAST. int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd) { int pred_context; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int has_above = xd->up_available; const int has_left = xd->left_available; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. if (has_above && has_left) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra pred_context = 2; } else if (above_intra || left_intra) { // intra/inter or inter/intra const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) { // single if (CHECK_BACKWARD_REFS(edge_mbmi->ref_frame[0])) pred_context = 3; else pred_context = 4 * CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]); } else { // comp pred_context = 1 + 2 * (CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]) || CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[1])); } } else { // inter/inter const int above_has_second = has_second_ref(above_mbmi); const int left_has_second = has_second_ref(left_mbmi); const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1]; const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1]; if (above_has_second && left_has_second) { // comp/comp if (above0 == left0 && above1 == left1) pred_context = 3 * (CHECK_LAST_OR_LAST2(above0) || CHECK_LAST_OR_LAST2(above1) || CHECK_LAST_OR_LAST2(left0) || CHECK_LAST_OR_LAST2(left1)); else pred_context = 2; } else if (above_has_second || left_has_second) { // single/comp const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; if (CHECK_LAST_OR_LAST2(rfs)) pred_context = 3 + (CHECK_LAST_OR_LAST2(crf1) || CHECK_LAST_OR_LAST2(crf2)); else if (CHECK_GOLDEN_OR_LAST3(rfs)) pred_context = (CHECK_LAST_OR_LAST2(crf1) || CHECK_LAST_OR_LAST2(crf2)); else pred_context = 1 + 2 * (CHECK_LAST_OR_LAST2(crf1) || CHECK_LAST_OR_LAST2(crf2)); } else { // single/single if (CHECK_BACKWARD_REFS(above0) && CHECK_BACKWARD_REFS(left0)) { pred_context = 2 + (above0 == left0); } else if (CHECK_BACKWARD_REFS(above0) || CHECK_BACKWARD_REFS(left0)) { const MV_REFERENCE_FRAME edge0 = CHECK_BACKWARD_REFS(above0) ? left0 : above0; pred_context = 4 * CHECK_LAST_OR_LAST2(edge0); } else { pred_context = 2 * CHECK_LAST_OR_LAST2(above0) + 2 * CHECK_LAST_OR_LAST2(left0); } } } } else if (has_above || has_left) { // one edge available const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi) || (CHECK_BACKWARD_REFS(edge_mbmi->ref_frame[0]) && !has_second_ref(edge_mbmi))) pred_context = 2; else if (!has_second_ref(edge_mbmi)) // single pred_context = 4 * (CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0])); else // comp pred_context = 3 * (CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]) || CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[1])); } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // For the bit to signal whether the single reference is LAST2_FRAME or // LAST_FRAME, knowing that it shall be either of these 2 choices. // // NOTE(zoeliu): The probability of ref_frame[0] is LAST2_FRAME, conditioning // on it is either LAST2_FRAME/LAST_FRAME. int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd) { int pred_context; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int has_above = xd->up_available; const int has_left = xd->left_available; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. if (has_above && has_left) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra pred_context = 2; } else if (above_intra || left_intra) { // intra/inter or inter/intra const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) { // single if (!CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0])) pred_context = 3; else pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME); } else { // comp pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] == LAST_FRAME || edge_mbmi->ref_frame[1] == LAST_FRAME); } } else { // inter/inter const int above_has_second = has_second_ref(above_mbmi); const int left_has_second = has_second_ref(left_mbmi); const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1]; const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1]; if (above_has_second && left_has_second) { // comp/comp if (above0 == left0 && above1 == left1) pred_context = 3 * (above0 == LAST_FRAME || above1 == LAST_FRAME || left0 == LAST_FRAME || left1 == LAST_FRAME); else pred_context = 2; } else if (above_has_second || left_has_second) { // single/comp const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; if (rfs == LAST_FRAME) pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME); else if (rfs == LAST2_FRAME) pred_context = (crf1 == LAST_FRAME || crf2 == LAST_FRAME); else pred_context = 1 + 2 * (crf1 == LAST_FRAME || crf2 == LAST_FRAME); } else { // single/single if (!CHECK_LAST_OR_LAST2(above0) && !CHECK_LAST_OR_LAST2(left0)) { pred_context = 2 + (above0 == left0); } else if (!CHECK_LAST_OR_LAST2(above0) || !CHECK_LAST_OR_LAST2(left0)) { const MV_REFERENCE_FRAME edge0 = !CHECK_LAST_OR_LAST2(above0) ? left0 : above0; pred_context = 4 * (edge0 == LAST_FRAME); } else { pred_context = 2 * (above0 == LAST_FRAME) + 2 * (left0 == LAST_FRAME); } } } } else if (has_above || has_left) { // one edge available const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi) || (!CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]) && !has_second_ref(edge_mbmi))) pred_context = 2; else if (!has_second_ref(edge_mbmi)) // single pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME); else // comp pred_context = 3 * (edge_mbmi->ref_frame[0] == LAST_FRAME || edge_mbmi->ref_frame[1] == LAST_FRAME); } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // For the bit to signal whether the single reference is GOLDEN_FRAME or // LAST3_FRAME, knowing that it shall be either of these 2 choices. // // NOTE(zoeliu): The probability of ref_frame[0] is GOLDEN_FRAME, conditioning // on it is either GOLDEN_FRAME/LAST3_FRAME. int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd) { int pred_context; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int has_above = xd->up_available; const int has_left = xd->left_available; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. if (has_above && has_left) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra pred_context = 2; } else if (above_intra || left_intra) { // intra/inter or inter/intra const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) { // single if (!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0])) pred_context = 3; else pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST3_FRAME); } else { // comp pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] == LAST3_FRAME || edge_mbmi->ref_frame[1] == LAST3_FRAME); } } else { // inter/inter const int above_has_second = has_second_ref(above_mbmi); const int left_has_second = has_second_ref(left_mbmi); const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1]; const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1]; if (above_has_second && left_has_second) { // comp/comp if (above0 == left0 && above1 == left1) pred_context = 3 * (above0 == LAST3_FRAME || above1 == LAST3_FRAME || left0 == LAST3_FRAME || left1 == LAST3_FRAME); else pred_context = 2; } else if (above_has_second || left_has_second) { // single/comp const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; if (rfs == LAST3_FRAME) pred_context = 3 + (crf1 == LAST3_FRAME || crf2 == LAST3_FRAME); else if (rfs == GOLDEN_FRAME) pred_context = (crf1 == LAST3_FRAME || crf2 == LAST3_FRAME); else pred_context = 1 + 2 * (crf1 == LAST3_FRAME || crf2 == LAST3_FRAME); } else { // single/single if (!CHECK_GOLDEN_OR_LAST3(above0) && !CHECK_GOLDEN_OR_LAST3(left0)) { pred_context = 2 + (above0 == left0); } else if (!CHECK_GOLDEN_OR_LAST3(above0) || !CHECK_GOLDEN_OR_LAST3(left0)) { const MV_REFERENCE_FRAME edge0 = !CHECK_GOLDEN_OR_LAST3(above0) ? left0 : above0; pred_context = 4 * (edge0 == LAST3_FRAME); } else { pred_context = 2 * (above0 == LAST3_FRAME) + 2 * (left0 == LAST3_FRAME); } } } } else if (has_above || has_left) { // one edge available const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi) || (!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0]) && !has_second_ref(edge_mbmi))) pred_context = 2; else if (!has_second_ref(edge_mbmi)) // single pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST3_FRAME); else // comp pred_context = 3 * (edge_mbmi->ref_frame[0] == LAST3_FRAME || edge_mbmi->ref_frame[1] == LAST3_FRAME); } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } #else // CONFIG_EXT_REFS int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) { int pred_context; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int has_above = xd->up_available; const int has_left = xd->left_available; // Note: // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. if (has_above && has_left) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra pred_context = 2; } else if (above_intra || left_intra) { // intra/inter or inter/intra const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME); else pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME || edge_mbmi->ref_frame[1] == LAST_FRAME); } else { // inter/inter const int above_has_second = has_second_ref(above_mbmi); const int left_has_second = has_second_ref(left_mbmi); const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1]; const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1]; if (above_has_second && left_has_second) { pred_context = 1 + (above0 == LAST_FRAME || above1 == LAST_FRAME || left0 == LAST_FRAME || left1 == LAST_FRAME); } else if (above_has_second || left_has_second) { const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; if (rfs == LAST_FRAME) pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME); else pred_context = (crf1 == LAST_FRAME || crf2 == LAST_FRAME); } else { pred_context = 2 * (above0 == LAST_FRAME) + 2 * (left0 == LAST_FRAME); } } } else if (has_above || has_left) { // one edge available const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi)) { // intra pred_context = 2; } else { // inter if (!has_second_ref(edge_mbmi)) pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME); else pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME || edge_mbmi->ref_frame[1] == LAST_FRAME); } } else { // no edges available pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) { int pred_context; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int has_above = xd->up_available; const int has_left = xd->left_available; // Note: // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. if (has_above && has_left) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra pred_context = 2; } else if (above_intra || left_intra) { // intra/inter or inter/intra const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) { if (edge_mbmi->ref_frame[0] == LAST_FRAME) pred_context = 3; else pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME); } else { pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME || edge_mbmi->ref_frame[1] == GOLDEN_FRAME); } } else { // inter/inter const int above_has_second = has_second_ref(above_mbmi); const int left_has_second = has_second_ref(left_mbmi); const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1]; const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1]; if (above_has_second && left_has_second) { if (above0 == left0 && above1 == left1) pred_context = 3 * (above0 == GOLDEN_FRAME || above1 == GOLDEN_FRAME || left0 == GOLDEN_FRAME || left1 == GOLDEN_FRAME); else pred_context = 2; } else if (above_has_second || left_has_second) { const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; if (rfs == GOLDEN_FRAME) pred_context = 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); else if (rfs != GOLDEN_FRAME && rfs != LAST_FRAME) pred_context = crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME; else pred_context = 1 + 2 * (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); } else { if (above0 == LAST_FRAME && left0 == LAST_FRAME) { pred_context = 3; } else if (above0 == LAST_FRAME || left0 == LAST_FRAME) { const MV_REFERENCE_FRAME edge0 = (above0 == LAST_FRAME) ? left0 : above0; pred_context = 4 * (edge0 == GOLDEN_FRAME); } else { pred_context = 2 * (above0 == GOLDEN_FRAME) + 2 * (left0 == GOLDEN_FRAME); } } } } else if (has_above || has_left) { // one edge available const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi) || (edge_mbmi->ref_frame[0] == LAST_FRAME && !has_second_ref(edge_mbmi))) pred_context = 2; else if (!has_second_ref(edge_mbmi)) pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME); else pred_context = 3 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME || edge_mbmi->ref_frame[1] == GOLDEN_FRAME); } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } #endif // CONFIG_EXT_REFS