/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "./av1_rtcd.h" #include "./cdef_simd.h" #include "./od_dering.h" /* partial A is a 16-bit vector of the form: [x8 x7 x6 x5 x4 x3 x2 x1] and partial B has the form: [0 y1 y2 y3 y4 y5 y6 y7]. This function computes (x1^2+y1^2)*C1 + (x2^2+y2^2)*C2 + ... (x7^2+y2^7)*C7 + (x8^2+0^2)*C8 where the C1..C8 constants are in const1 and const2. */ static INLINE v128 fold_mul_and_sum(v128 partiala, v128 partialb, v128 const1, v128 const2) { v128 tmp; /* Reverse partial B. */ partialb = v128_shuffle_8( partialb, v128_from_32(0x0f0e0100, 0x03020504, 0x07060908, 0x0b0a0d0c)); /* Interleave the x and y values of identical indices and pair x8 with 0. */ tmp = partiala; partiala = v128_ziplo_16(partialb, partiala); partialb = v128_ziphi_16(partialb, tmp); /* Square and add the corresponding x and y values. */ partiala = v128_madd_s16(partiala, partiala); partialb = v128_madd_s16(partialb, partialb); /* Multiply by constant. */ partiala = v128_mullo_s32(partiala, const1); partialb = v128_mullo_s32(partialb, const2); /* Sum all results. */ partiala = v128_add_32(partiala, partialb); return partiala; } static INLINE v128 hsum4(v128 x0, v128 x1, v128 x2, v128 x3) { v128 t0, t1, t2, t3; t0 = v128_ziplo_32(x1, x0); t1 = v128_ziplo_32(x3, x2); t2 = v128_ziphi_32(x1, x0); t3 = v128_ziphi_32(x3, x2); x0 = v128_ziplo_64(t1, t0); x1 = v128_ziphi_64(t1, t0); x2 = v128_ziplo_64(t3, t2); x3 = v128_ziphi_64(t3, t2); return v128_add_32(v128_add_32(x0, x1), v128_add_32(x2, x3)); } /* Computes cost for directions 0, 5, 6 and 7. We can call this function again to compute the remaining directions. */ static INLINE v128 compute_directions(v128 lines[8], int32_t tmp_cost1[4]) { v128 partial4a, partial4b, partial5a, partial5b, partial7a, partial7b; v128 partial6; v128 tmp; /* Partial sums for lines 0 and 1. */ partial4a = v128_shl_n_byte(lines[0], 14); partial4b = v128_shr_n_byte(lines[0], 2); partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[1], 12)); partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[1], 4)); tmp = v128_add_16(lines[0], lines[1]); partial5a = v128_shl_n_byte(tmp, 10); partial5b = v128_shr_n_byte(tmp, 6); partial7a = v128_shl_n_byte(tmp, 4); partial7b = v128_shr_n_byte(tmp, 12); partial6 = tmp; /* Partial sums for lines 2 and 3. */ partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[2], 10)); partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[2], 6)); partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[3], 8)); partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[3], 8)); tmp = v128_add_16(lines[2], lines[3]); partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 8)); partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 8)); partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 6)); partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 10)); partial6 = v128_add_16(partial6, tmp); /* Partial sums for lines 4 and 5. */ partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[4], 6)); partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[4], 10)); partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[5], 4)); partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[5], 12)); tmp = v128_add_16(lines[4], lines[5]); partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 6)); partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 10)); partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 8)); partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 8)); partial6 = v128_add_16(partial6, tmp); /* Partial sums for lines 6 and 7. */ partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[6], 2)); partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[6], 14)); partial4a = v128_add_16(partial4a, lines[7]); tmp = v128_add_16(lines[6], lines[7]); partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 4)); partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 12)); partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 10)); partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 6)); partial6 = v128_add_16(partial6, tmp); /* Compute costs in terms of partial sums. */ partial4a = fold_mul_and_sum(partial4a, partial4b, v128_from_32(210, 280, 420, 840), v128_from_32(105, 120, 140, 168)); partial7a = fold_mul_and_sum(partial7a, partial7b, v128_from_32(210, 420, 0, 0), v128_from_32(105, 105, 105, 140)); partial5a = fold_mul_and_sum(partial5a, partial5b, v128_from_32(210, 420, 0, 0), v128_from_32(105, 105, 105, 140)); partial6 = v128_madd_s16(partial6, partial6); partial6 = v128_mullo_s32(partial6, v128_dup_32(105)); partial4a = hsum4(partial4a, partial5a, partial6, partial7a); v128_store_unaligned(tmp_cost1, partial4a); return partial4a; } /* transpose and reverse the order of the lines -- equivalent to a 90-degree counter-clockwise rotation of the pixels. */ static INLINE void array_reverse_transpose_8x8(v128 *in, v128 *res) { const v128 tr0_0 = v128_ziplo_16(in[1], in[0]); const v128 tr0_1 = v128_ziplo_16(in[3], in[2]); const v128 tr0_2 = v128_ziphi_16(in[1], in[0]); const v128 tr0_3 = v128_ziphi_16(in[3], in[2]); const v128 tr0_4 = v128_ziplo_16(in[5], in[4]); const v128 tr0_5 = v128_ziplo_16(in[7], in[6]); const v128 tr0_6 = v128_ziphi_16(in[5], in[4]); const v128 tr0_7 = v128_ziphi_16(in[7], in[6]); const v128 tr1_0 = v128_ziplo_32(tr0_1, tr0_0); const v128 tr1_1 = v128_ziplo_32(tr0_5, tr0_4); const v128 tr1_2 = v128_ziphi_32(tr0_1, tr0_0); const v128 tr1_3 = v128_ziphi_32(tr0_5, tr0_4); const v128 tr1_4 = v128_ziplo_32(tr0_3, tr0_2); const v128 tr1_5 = v128_ziplo_32(tr0_7, tr0_6); const v128 tr1_6 = v128_ziphi_32(tr0_3, tr0_2); const v128 tr1_7 = v128_ziphi_32(tr0_7, tr0_6); res[7] = v128_ziplo_64(tr1_1, tr1_0); res[6] = v128_ziphi_64(tr1_1, tr1_0); res[5] = v128_ziplo_64(tr1_3, tr1_2); res[4] = v128_ziphi_64(tr1_3, tr1_2); res[3] = v128_ziplo_64(tr1_5, tr1_4); res[2] = v128_ziphi_64(tr1_5, tr1_4); res[1] = v128_ziplo_64(tr1_7, tr1_6); res[0] = v128_ziphi_64(tr1_7, tr1_6); } int SIMD_FUNC(od_dir_find8)(const od_dering_in *img, int stride, int32_t *var, int coeff_shift) { int i; int32_t cost[8]; int32_t best_cost = 0; int best_dir = 0; v128 lines[8]; for (i = 0; i < 8; i++) { lines[i] = v128_load_unaligned(&img[i * stride]); lines[i] = v128_sub_16(v128_shr_s16(lines[i], coeff_shift), v128_dup_16(128)); } #if defined(__SSE4_1__) /* Compute "mostly vertical" directions. */ __m128i dir47 = compute_directions(lines, cost + 4); array_reverse_transpose_8x8(lines, lines); /* Compute "mostly horizontal" directions. */ __m128i dir03 = compute_directions(lines, cost); __m128i max = _mm_max_epi32(dir03, dir47); max = _mm_max_epi32(max, _mm_shuffle_epi32(max, _MM_SHUFFLE(1, 0, 3, 2))); max = _mm_max_epi32(max, _mm_shuffle_epi32(max, _MM_SHUFFLE(2, 3, 0, 1))); best_cost = _mm_cvtsi128_si32(max); __m128i t = _mm_packs_epi32(_mm_cmpeq_epi32(max, dir03), _mm_cmpeq_epi32(max, dir47)); best_dir = _mm_movemask_epi8(_mm_packs_epi16(t, t)); best_dir = get_msb(best_dir ^ (best_dir - 1)); // Count trailing zeros #else /* Compute "mostly vertical" directions. */ compute_directions(lines, cost + 4); array_reverse_transpose_8x8(lines, lines); /* Compute "mostly horizontal" directions. */ compute_directions(lines, cost); for (i = 0; i < 8; i++) { if (cost[i] > best_cost) { best_cost = cost[i]; best_dir = i; } } #endif /* Difference between the optimal variance and the variance along the orthogonal direction. Again, the sum(x^2) terms cancel out. */ *var = best_cost - cost[(best_dir + 4) & 7]; /* We'd normally divide by 840, but dividing by 1024 is close enough for what we're going to do with this. */ *var >>= 10; return best_dir; } void SIMD_FUNC(od_filter_dering_direction_4x4)(uint16_t *y, int ystride, const uint16_t *in, int threshold, int dir, int damping) { int i; v128 p0, p1, sum, row, res; int o1 = OD_DIRECTION_OFFSETS_TABLE[dir][0]; int o2 = OD_DIRECTION_OFFSETS_TABLE[dir][1]; if (threshold) damping -= get_msb(threshold); for (i = 0; i < 4; i += 2) { sum = v128_zero(); row = v128_from_v64(v64_load_aligned(&in[i * OD_FILT_BSTRIDE]), v64_load_aligned(&in[(i + 1) * OD_FILT_BSTRIDE])); // p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping) p0 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE + o1]), v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE + o1])); p0 = constrain16(p0, row, threshold, damping); // p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping) p1 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE - o1]), v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE - o1])); p1 = constrain16(p1, row, threshold, damping); // sum += 4 * (p0 + p1) sum = v128_add_16(sum, v128_shl_n_16(v128_add_16(p0, p1), 2)); // p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping) p0 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE + o2]), v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE + o2])); p0 = constrain16(p0, row, threshold, damping); // p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping) p1 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE - o2]), v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE - o2])); p1 = constrain16(p1, row, threshold, damping); // sum += 1 * (p0 + p1) sum = v128_add_16(sum, v128_add_16(p0, p1)); // res = row + ((sum + 8) >> 4) res = v128_add_16(sum, v128_dup_16(8)); res = v128_shr_n_s16(res, 4); res = v128_add_16(row, res); v64_store_aligned(&y[i * ystride], v128_high_v64(res)); v64_store_aligned(&y[(i + 1) * ystride], v128_low_v64(res)); } } void SIMD_FUNC(od_filter_dering_direction_8x8)(uint16_t *y, int ystride, const uint16_t *in, int threshold, int dir, int damping) { int i; v128 sum, p0, p1, row, res; int o1 = OD_DIRECTION_OFFSETS_TABLE[dir][0]; int o2 = OD_DIRECTION_OFFSETS_TABLE[dir][1]; int o3 = OD_DIRECTION_OFFSETS_TABLE[dir][2]; if (threshold) damping -= get_msb(threshold); for (i = 0; i < 8; i++) { sum = v128_zero(); row = v128_load_aligned(&in[i * OD_FILT_BSTRIDE]); // p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping) p0 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE + o1]); p0 = constrain16(p0, row, threshold, damping); // p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping) p1 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE - o1]); p1 = constrain16(p1, row, threshold, damping); // sum += 3 * (p0 + p1) p0 = v128_add_16(p0, p1); p0 = v128_add_16(p0, v128_shl_n_16(p0, 1)); sum = v128_add_16(sum, p0); // p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping) p0 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE + o2]); p0 = constrain16(p0, row, threshold, damping); // p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping) p1 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE - o2]); p1 = constrain16(p1, row, threshold, damping); // sum += 2 * (p0 + p1) p0 = v128_shl_n_16(v128_add_16(p0, p1), 1); sum = v128_add_16(sum, p0); // p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping) p0 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE + o3]); p0 = constrain16(p0, row, threshold, damping); // p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping) p1 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE - o3]); p1 = constrain16(p1, row, threshold, damping); // sum += (p0 + p1) p0 = v128_add_16(p0, p1); sum = v128_add_16(sum, p0); // res = row + ((sum + 8) >> 4) res = v128_add_16(sum, v128_dup_16(8)); res = v128_shr_n_s16(res, 4); res = v128_add_16(row, res); v128_store_unaligned(&y[i * ystride], res); } } void SIMD_FUNC(copy_8x8_16bit_to_8bit)(uint8_t *dst, int dstride, const uint16_t *src, int sstride) { int i; for (i = 0; i < 8; i++) { v128 row = v128_load_unaligned(&src[i * sstride]); row = v128_pack_s16_u8(row, row); v64_store_unaligned(&dst[i * dstride], v128_low_v64(row)); } } void SIMD_FUNC(copy_4x4_16bit_to_8bit)(uint8_t *dst, int dstride, const uint16_t *src, int sstride) { int i; for (i = 0; i < 4; i++) { v128 row = v128_load_unaligned(&src[i * sstride]); row = v128_pack_s16_u8(row, row); u32_store_unaligned(&dst[i * dstride], v128_low_u32(row)); } } void SIMD_FUNC(copy_8x8_16bit_to_16bit)(uint16_t *dst, int dstride, const uint16_t *src, int sstride) { int i; for (i = 0; i < 8; i++) { v128 row = v128_load_unaligned(&src[i * sstride]); v128_store_unaligned(&dst[i * dstride], row); } } void SIMD_FUNC(copy_4x4_16bit_to_16bit)(uint16_t *dst, int dstride, const uint16_t *src, int sstride) { int i; for (i = 0; i < 4; i++) { v64 row = v64_load_unaligned(&src[i * sstride]); v64_store_unaligned(&dst[i * dstride], row); } } void SIMD_FUNC(copy_rect8_8bit_to_16bit)(uint16_t *dst, int dstride, const uint8_t *src, int sstride, int v, int h) { int i, j; for (i = 0; i < v; i++) { for (j = 0; j < (h & ~0x7); j += 8) { v64 row = v64_load_unaligned(&src[i * sstride + j]); v128_store_unaligned(&dst[i * dstride + j], v128_unpack_u8_s16(row)); } for (; j < h; j++) { dst[i * dstride + j] = src[i * sstride + j]; } } } void SIMD_FUNC(copy_rect8_16bit_to_16bit)(uint16_t *dst, int dstride, const uint16_t *src, int sstride, int v, int h) { int i, j; for (i = 0; i < v; i++) { for (j = 0; j < (h & ~0x7); j += 8) { v128 row = v128_load_unaligned(&src[i * sstride + j]); v128_store_unaligned(&dst[i * dstride + j], row); } for (; j < h; j++) { dst[i * dstride + j] = src[i * sstride + j]; } } }