/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AV1_COMMON_MV_H_ #define AV1_COMMON_MV_H_ #include "av1/common/common.h" #include "av1/common/common_data.h" #include "aom_dsp/aom_filter.h" #ifdef __cplusplus extern "C" { #endif typedef struct mv { int16_t row; int16_t col; } MV; typedef union int_mv { uint32_t as_int; MV as_mv; } int_mv; /* facilitates faster equality tests and copies */ typedef struct mv32 { int32_t row; int32_t col; } MV32; #if (CONFIG_WARPED_MOTION || CONFIG_MOTION_VAR) && CONFIG_GLOBAL_MOTION #define SEPARATE_GLOBAL_MOTION 1 #endif // (CONFIG_WARPED_MOTION || CONFIG_MOTION_VAR) && CONFIG_GLOBAL_MOTION #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION // Bits of precision used for the model #define WARPEDMODEL_PREC_BITS 16 #define WARPEDMODEL_ROW3HOMO_PREC_BITS 16 #define WARPEDMODEL_TRANS_CLAMP (128 << WARPEDMODEL_PREC_BITS) #define WARPEDMODEL_DIAGAFFINE_CLAMP (1 << (WARPEDMODEL_PREC_BITS + 1)) #define WARPEDMODEL_NONDIAGAFFINE_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 1)) #define WARPEDMODEL_ROW3HOMO_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 1)) // Bits of subpel precision for warped interpolation #define WARPEDPIXEL_PREC_BITS 6 #define WARPEDPIXEL_PREC_SHIFTS (1 << WARPEDPIXEL_PREC_BITS) // Taps for ntap filter #define WARPEDPIXEL_FILTER_TAPS 6 // Precision of filter taps #define WARPEDPIXEL_FILTER_BITS 7 // Precision bits reduction after horizontal shear #define HORSHEAR_REDUCE_PREC_BITS 5 #define VERSHEAR_REDUCE_PREC_BITS \ (2 * WARPEDPIXEL_FILTER_BITS - HORSHEAR_REDUCE_PREC_BITS) #define WARPEDDIFF_PREC_BITS (WARPEDMODEL_PREC_BITS - WARPEDPIXEL_PREC_BITS) /* clang-format off */ typedef enum { IDENTITY = 0, // identity transformation, 0-parameter TRANSLATION = 1, // translational motion 2-parameter ROTZOOM = 2, // simplified affine with rotation + zoom only, 4-parameter AFFINE = 3, // affine, 6-parameter HORTRAPEZOID = 4, // constrained homography, hor trapezoid, 6-parameter VERTRAPEZOID = 5, // constrained homography, ver trapezoid, 6-parameter HOMOGRAPHY = 6, // homography, 8-parameter TRANS_TYPES = 7, } TransformationType; /* clang-format on */ // Number of types used for global motion (must be >= 3 and <= TRANS_TYPES) // The following can be useful: // GLOBAL_TRANS_TYPES 3 - up to rotation-zoom // GLOBAL_TRANS_TYPES 4 - up to affine // GLOBAL_TRANS_TYPES 6 - up to hor/ver trapezoids // GLOBAL_TRANS_TYPES 7 - up to full homography #define GLOBAL_TRANS_TYPES 4 typedef struct { #if CONFIG_GLOBAL_MOTION int global_warp_allowed; #endif // CONFIG_GLOBAL_MOTION #if CONFIG_WARPED_MOTION int local_warp_allowed; #endif // CONFIG_WARPED_MOTION } WarpTypesAllowed; // number of parameters used by each transformation in TransformationTypes static const int trans_model_params[TRANS_TYPES] = { 0, 2, 4, 6, 6, 6, 8 }; // The order of values in the wmmat matrix below is best described // by the homography: // [x' (m2 m3 m0 [x // z . y' = m4 m5 m1 * y // 1] m6 m7 1) 1] typedef struct { TransformationType wmtype; int32_t wmmat[8]; int16_t alpha, beta, gamma, delta; } WarpedMotionParams; static INLINE void set_default_warp_params(WarpedMotionParams *wm) { static const int32_t default_wm_mat[8] = { 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, 0 }; memset(wm, 0, sizeof(*wm)); memcpy(wm->wmmat, default_wm_mat, sizeof(wm->wmmat)); wm->wmtype = IDENTITY; } #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_GLOBAL_MOTION // The following constants describe the various precisions // of different parameters in the global motion experiment. // // Given the general homography: // [x' (a b c [x // z . y' = d e f * y // 1] g h i) 1] // // Constants using the name ALPHA here are related to parameters // a, b, d, e. Constants using the name TRANS are related // to parameters c and f. // // Anything ending in PREC_BITS is the number of bits of precision // to maintain when converting from double to integer. // // The ABS parameters are used to create an upper and lower bound // for each parameter. In other words, after a parameter is integerized // it is clamped between -(1 << ABS_XXX_BITS) and (1 << ABS_XXX_BITS). // // XXX_PREC_DIFF and XXX_DECODE_FACTOR // are computed once here to prevent repetitive // computation on the decoder side. These are // to allow the global motion parameters to be encoded in a lower // precision than the warped model precision. This means that they // need to be changed to warped precision when they are decoded. // // XX_MIN, XX_MAX are also computed to avoid repeated computation #define SUBEXPFIN_K 3 #define GM_TRANS_PREC_BITS 6 #define GM_ABS_TRANS_BITS 12 #define GM_ABS_TRANS_ONLY_BITS (GM_ABS_TRANS_BITS - GM_TRANS_PREC_BITS + 3) #define GM_TRANS_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_TRANS_PREC_BITS) #define GM_TRANS_ONLY_PREC_DIFF (WARPEDMODEL_PREC_BITS - 3) #define GM_TRANS_DECODE_FACTOR (1 << GM_TRANS_PREC_DIFF) #define GM_TRANS_ONLY_DECODE_FACTOR (1 << GM_TRANS_ONLY_PREC_DIFF) #define GM_ALPHA_PREC_BITS 15 #define GM_ABS_ALPHA_BITS 12 #define GM_ALPHA_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_ALPHA_PREC_BITS) #define GM_ALPHA_DECODE_FACTOR (1 << GM_ALPHA_PREC_DIFF) #define GM_ROW3HOMO_PREC_BITS 16 #define GM_ABS_ROW3HOMO_BITS 11 #define GM_ROW3HOMO_PREC_DIFF \ (WARPEDMODEL_ROW3HOMO_PREC_BITS - GM_ROW3HOMO_PREC_BITS) #define GM_ROW3HOMO_DECODE_FACTOR (1 << GM_ROW3HOMO_PREC_DIFF) #define GM_TRANS_MAX (1 << GM_ABS_TRANS_BITS) #define GM_ALPHA_MAX (1 << GM_ABS_ALPHA_BITS) #define GM_ROW3HOMO_MAX (1 << GM_ABS_ROW3HOMO_BITS) #define GM_TRANS_MIN -GM_TRANS_MAX #define GM_ALPHA_MIN -GM_ALPHA_MAX #define GM_ROW3HOMO_MIN -GM_ROW3HOMO_MAX // Use global motion parameters for sub8x8 blocks #define GLOBAL_SUB8X8_USED 0 static INLINE int block_center_x(int mi_col, BLOCK_SIZE bs) { const int bw = block_size_wide[bs]; return mi_col * MI_SIZE + bw / 2 - 1; } static INLINE int block_center_y(int mi_row, BLOCK_SIZE bs) { const int bh = block_size_high[bs]; return mi_row * MI_SIZE + bh / 2 - 1; } static INLINE int convert_to_trans_prec(int allow_hp, int coor) { if (allow_hp) return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 3); else return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 2) * 2; } // Convert a global motion translation vector (which may have more bits than a // regular motion vector) into a motion vector static INLINE int_mv gm_get_motion_vector(const WarpedMotionParams *gm, int allow_hp, BLOCK_SIZE bsize, int mi_col, int mi_row, int block_idx) { const int unify_bsize = CONFIG_CB4X4; int_mv res; const int32_t *mat = gm->wmmat; int x, y, tx, ty; if (gm->wmtype == TRANSLATION) { res.as_mv.row = gm->wmmat[0] >> GM_TRANS_ONLY_PREC_DIFF; res.as_mv.col = gm->wmmat[1] >> GM_TRANS_ONLY_PREC_DIFF; return res; } if (bsize >= BLOCK_8X8 || unify_bsize) { x = block_center_x(mi_col, bsize); y = block_center_y(mi_row, bsize); } else { x = block_center_x(mi_col, bsize); y = block_center_y(mi_row, bsize); x += (block_idx & 1) * MI_SIZE / 2; y += (block_idx & 2) * MI_SIZE / 4; } if (gm->wmtype == ROTZOOM) { assert(gm->wmmat[5] == gm->wmmat[2]); assert(gm->wmmat[4] == -gm->wmmat[3]); } if (gm->wmtype > AFFINE) { int xc = (int)((int64_t)mat[2] * x + (int64_t)mat[3] * y + mat[0]); int yc = (int)((int64_t)mat[4] * x + (int64_t)mat[5] * y + mat[1]); const int Z = (int)((int64_t)mat[6] * x + (int64_t)mat[7] * y + (1 << WARPEDMODEL_ROW3HOMO_PREC_BITS)); xc *= 1 << (WARPEDMODEL_ROW3HOMO_PREC_BITS - WARPEDMODEL_PREC_BITS); yc *= 1 << (WARPEDMODEL_ROW3HOMO_PREC_BITS - WARPEDMODEL_PREC_BITS); xc = (int)(xc > 0 ? ((int64_t)xc + Z / 2) / Z : ((int64_t)xc - Z / 2) / Z); yc = (int)(yc > 0 ? ((int64_t)yc + Z / 2) / Z : ((int64_t)yc - Z / 2) / Z); tx = convert_to_trans_prec(allow_hp, xc) - (x << 3); ty = convert_to_trans_prec(allow_hp, yc) - (y << 3); } else { const int xc = (mat[2] - (1 << WARPEDMODEL_PREC_BITS)) * x + mat[3] * y + mat[0]; const int yc = mat[4] * x + (mat[5] - (1 << WARPEDMODEL_PREC_BITS)) * y + mat[1]; tx = convert_to_trans_prec(allow_hp, xc); ty = convert_to_trans_prec(allow_hp, yc); } res.as_mv.row = ty; res.as_mv.col = tx; return res; } static INLINE TransformationType get_gmtype(const WarpedMotionParams *gm) { if (gm->wmmat[6] != 0 || gm->wmmat[7] != 0) { if (!gm->wmmat[6] && !gm->wmmat[4]) return HORTRAPEZOID; if (!gm->wmmat[7] && !gm->wmmat[3]) return VERTRAPEZOID; return HOMOGRAPHY; } if (gm->wmmat[5] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[4] && gm->wmmat[2] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[3]) { return ((!gm->wmmat[1] && !gm->wmmat[0]) ? IDENTITY : TRANSLATION); } if (gm->wmmat[2] == gm->wmmat[5] && gm->wmmat[3] == -gm->wmmat[4]) return ROTZOOM; else return AFFINE; } #endif // CONFIG_GLOBAL_MOTION #if CONFIG_REF_MV typedef struct candidate_mv { int_mv this_mv; int_mv comp_mv; uint8_t pred_diff[2]; int weight; } CANDIDATE_MV; #endif static INLINE int is_zero_mv(const MV *mv) { return *((const uint32_t *)mv) == 0; } static INLINE int is_equal_mv(const MV *a, const MV *b) { return *((const uint32_t *)a) == *((const uint32_t *)b); } static INLINE void clamp_mv(MV *mv, int min_col, int max_col, int min_row, int max_row) { mv->col = clamp(mv->col, min_col, max_col); mv->row = clamp(mv->row, min_row, max_row); } static INLINE int mv_has_subpel(const MV *mv) { return (mv->row & SUBPEL_MASK) || (mv->col & SUBPEL_MASK); } #ifdef __cplusplus } // extern "C" #endif #endif // AV1_COMMON_MV_H_