/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AV1_COMMON_CFL_H_ #define AV1_COMMON_CFL_H_ #include #include "av1/common/enums.h" // Forward declaration of AV1_COMMON, in order to avoid creating a cyclic // dependency by importing av1/common/onyxc_int.h typedef struct AV1Common AV1_COMMON; // Forward declaration of MACROBLOCK, in order to avoid creating a cyclic // dependency by importing av1/common/blockd.h typedef struct macroblockd MACROBLOCKD; typedef struct { // Pixel buffer containing the luma pixels used as prediction for chroma uint8_t y_pix[MAX_SB_SQUARE]; // Height and width of the luma prediction block currently in the pixel buffer int y_height, y_width; // Chroma subsampling int subsampling_x, subsampling_y; // CfL Performs its own block level DC_PRED for each chromatic plane double dc_pred[CFL_PRED_PLANES]; // The rate associated with each alpha codeword int costs[CFL_ALPHABET_SIZE]; // Count the number of TX blocks in a predicted block to know when you are at // the last one, so you can check for skips. // TODO(any) Is there a better way to do this? int num_tx_blk[CFL_PRED_PLANES]; } CFL_CTX; static const double cfl_alpha_mags[CFL_MAGS_SIZE] = { 0., 0.125, -0.125, 0.25, -0.25, 0.5, -0.5 }; static const int cfl_alpha_codes[CFL_ALPHABET_SIZE][CFL_PRED_PLANES] = { // barrbrain's simple 1D quant ordered by subset 3 likelihood { 0, 0 }, { 1, 1 }, { 3, 0 }, { 3, 1 }, { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 }, { 5, 3 }, { 1, 3 }, { 5, 3 }, { 3, 5 }, { 0, 3 }, { 5, 1 }, { 1, 5 }, { 0, 5 } }; void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm, int subsampling_x, int subsampling_y); void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, TX_SIZE tx_size); static INLINE double cfl_idx_to_alpha(int alpha_idx, CFL_SIGN_TYPE alpha_sign, CFL_PRED_TYPE pred_type) { const int mag_idx = cfl_alpha_codes[alpha_idx][pred_type]; const double abs_alpha = cfl_alpha_mags[mag_idx]; if (alpha_sign == CFL_SIGN_POS) { return abs_alpha; } else { assert(abs_alpha != 0.0); assert(cfl_alpha_mags[mag_idx + 1] == -abs_alpha); return -abs_alpha; } } void cfl_predict_block(const CFL_CTX *cfl, uint8_t *dst, int dst_stride, int row, int col, TX_SIZE tx_size, double dc_pred, double alpha); void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row, int col, TX_SIZE tx_size); double cfl_load(const CFL_CTX *cfl, uint8_t *output, int output_stride, int row, int col, int width, int height); #endif // AV1_COMMON_CFL_H_