/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/common/cfl.h" #include "av1/common/common_data.h" #include "av1/common/onyxc_int.h" #include "aom/internal/aom_codec_internal.h" void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm) { if (!((cm->subsampling_x == 0 && cm->subsampling_y == 0) || (cm->subsampling_x == 1 && cm->subsampling_y == 1))) { aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Only 4:4:4 and 4:2:0 are currently supported by CfL"); } memset(&cfl->y_pix, 0, sizeof(uint8_t) * MAX_SB_SQUARE); cfl->subsampling_x = cm->subsampling_x; cfl->subsampling_y = cm->subsampling_y; cfl->are_parameters_computed = 0; } // Load from the CfL pixel buffer into output static void cfl_load(CFL_CTX *cfl, int row, int col, int width, int height) { const int sub_x = cfl->subsampling_x; const int sub_y = cfl->subsampling_y; const int off_log2 = tx_size_wide_log2[0]; // TODO(ltrudeau) convert to uint16 to add HBD support const uint8_t *y_pix; // TODO(ltrudeau) convert to uint16 to add HBD support uint8_t *output = cfl->y_down_pix; int pred_row_offset = 0; int output_row_offset = 0; // TODO(ltrudeau) should be faster to downsample when we store the values // TODO(ltrudeau) add support for 4:2:2 if (sub_y == 0 && sub_x == 0) { y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << off_log2]; for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { // In 4:4:4, pixels match 1 to 1 output[output_row_offset + i] = y_pix[pred_row_offset + i]; } pred_row_offset += MAX_SB_SIZE; output_row_offset += MAX_SB_SIZE; } } else if (sub_y == 1 && sub_x == 1) { y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << (off_log2 + sub_y)]; for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { int top_left = (pred_row_offset + i) << sub_y; int bot_left = top_left + MAX_SB_SIZE; // In 4:2:0, average pixels in 2x2 grid output[output_row_offset + i] = OD_SHR_ROUND( y_pix[top_left] + y_pix[top_left + 1] // Top row + y_pix[bot_left] + y_pix[bot_left + 1] // Bottom row , 2); } pred_row_offset += MAX_SB_SIZE; output_row_offset += MAX_SB_SIZE; } } else { assert(0); // Unsupported chroma subsampling } // Due to frame boundary issues, it is possible that the total area of // covered by Chroma exceeds that of Luma. When this happens, we write over // the broken data by repeating the last columns and/or rows. // // Note that in order to manage the case where both rows and columns // overrun, // we apply rows first. This way, when the rows overrun the bottom of the // frame, the columns will be copied over them. const int uv_width = (col << off_log2) + width; const int uv_height = (row << off_log2) + height; const int diff_width = uv_width - (cfl->y_width >> sub_x); const int diff_height = uv_height - (cfl->y_height >> sub_y); if (diff_width > 0) { int last_pixel; output_row_offset = width - diff_width; for (int j = 0; j < height; j++) { last_pixel = output_row_offset - 1; for (int i = 0; i < diff_width; i++) { output[output_row_offset + i] = output[last_pixel]; } output_row_offset += MAX_SB_SIZE; } } if (diff_height > 0) { output_row_offset = (height - diff_height) * MAX_SB_SIZE; const int last_row_offset = output_row_offset - MAX_SB_SIZE; for (int j = 0; j < diff_height; j++) { for (int i = 0; i < width; i++) { output[output_row_offset + i] = output[last_row_offset + i]; } output_row_offset += MAX_SB_SIZE; } } } // CfL computes its own block-level DC_PRED. This is required to compute both // alpha_cb and alpha_cr before the prediction are computed. static void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) { const struct macroblockd_plane *const pd_u = &xd->plane[AOM_PLANE_U]; const struct macroblockd_plane *const pd_v = &xd->plane[AOM_PLANE_V]; const uint8_t *const dst_u = pd_u->dst.buf; const uint8_t *const dst_v = pd_v->dst.buf; const int dst_u_stride = pd_u->dst.stride; const int dst_v_stride = pd_v->dst.stride; CFL_CTX *const cfl = xd->cfl; // Compute DC_PRED until block boundary. We can't assume the neighbor will use // the same transform size. const int width = max_block_wide(xd, plane_bsize, AOM_PLANE_U) << tx_size_wide_log2[0]; const int height = max_block_high(xd, plane_bsize, AOM_PLANE_U) << tx_size_high_log2[0]; // Number of pixel on the top and left borders. const int num_pel = width + height; int sum_u = 0; int sum_v = 0; // Match behavior of build_intra_predictors (reconintra.c) at superblock // boundaries: // // 127 127 127 .. 127 127 127 127 127 127 // 129 A B .. Y Z // 129 C D .. W X // 129 E F .. U V // 129 G H .. S T T T T T // .. #if CONFIG_CHROMA_SUB8X8 if (xd->chroma_up_available && xd->mb_to_right_edge >= 0) { #else if (xd->up_available && xd->mb_to_right_edge >= 0) { #endif // TODO(ltrudeau) replace this with DC_PRED assembly for (int i = 0; i < width; i++) { sum_u += dst_u[-dst_u_stride + i]; sum_v += dst_v[-dst_v_stride + i]; } } else { sum_u = width * 127; sum_v = width * 127; } #if CONFIG_CHROMA_SUB8X8 if (xd->chroma_left_available && xd->mb_to_bottom_edge >= 0) { #else if (xd->left_available && xd->mb_to_bottom_edge >= 0) { #endif for (int i = 0; i < height; i++) { sum_u += dst_u[i * dst_u_stride - 1]; sum_v += dst_v[i * dst_v_stride - 1]; } } else { sum_u += height * 129; sum_v += height * 129; } // TODO(ltrudeau) Because of max_block_wide and max_block_high, num_pel will // not be a power of two. So these divisions will have to use a lookup table. cfl->dc_pred[CFL_PRED_U] = (sum_u + (num_pel >> 1)) / num_pel; cfl->dc_pred[CFL_PRED_V] = (sum_v + (num_pel >> 1)) / num_pel; } static void cfl_compute_averages(CFL_CTX *cfl, TX_SIZE tx_size) { const int width = cfl->uv_width; const int height = cfl->uv_height; const int tx_height = tx_size_high[tx_size]; const int tx_width = tx_size_wide[tx_size]; const int stride = width >> tx_size_wide_log2[tx_size]; const int block_row_stride = MAX_SB_SIZE << tx_size_high_log2[tx_size]; const int num_pel_log2 = (tx_size_high_log2[tx_size] + tx_size_wide_log2[tx_size]); // TODO(ltrudeau) Convert to uint16 for HBD support const uint8_t *y_pix = cfl->y_down_pix; // TODO(ltrudeau) Convert to uint16 for HBD support const uint8_t *t_y_pix; int *averages_q3 = cfl->y_averages_q3; cfl_load(cfl, 0, 0, width, height); int a = 0; for (int b_j = 0; b_j < height; b_j += tx_height) { for (int b_i = 0; b_i < width; b_i += tx_width) { int sum = 0; t_y_pix = y_pix; for (int t_j = 0; t_j < tx_height; t_j++) { for (int t_i = b_i; t_i < b_i + tx_width; t_i++) { sum += t_y_pix[t_i]; } t_y_pix += MAX_SB_SIZE; } averages_q3[a++] = ((sum << 3) + (1 << (num_pel_log2 - 1))) >> num_pel_log2; // Loss is never more than 1/2 (in Q3) assert(fabs((double)averages_q3[a - 1] - (sum / ((double)(1 << num_pel_log2))) * (1 << 3)) <= 0.5); } assert(a % stride == 0); y_pix += block_row_stride; } cfl->y_averages_stride = stride; assert(a <= MAX_NUM_TXB); } static INLINE int cfl_idx_to_alpha(int alpha_idx, CFL_SIGN_TYPE alpha_sign, CFL_PRED_TYPE pred_type) { const int mag_idx = cfl_alpha_codes[alpha_idx][pred_type]; const int abs_alpha_q3 = cfl_alpha_mags_q3[mag_idx]; if (alpha_sign == CFL_SIGN_POS) { return abs_alpha_q3; } else { assert(abs_alpha_q3 != 0); assert(cfl_alpha_mags_q3[mag_idx + 1] == -abs_alpha_q3); return -abs_alpha_q3; } } // Predict the current transform block using CfL. void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride, int row, int col, TX_SIZE tx_size, int plane) { CFL_CTX *const cfl = xd->cfl; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; // CfL parameters must be computed before prediction can be done. assert(cfl->are_parameters_computed == 1); const int width = tx_size_wide[tx_size]; const int height = tx_size_high[tx_size]; // TODO(ltrudeau) Convert to uint16 to support HBD const uint8_t *y_pix = cfl->y_down_pix; const int dc_pred = cfl->dc_pred[plane - 1]; const int alpha_q3 = cfl_idx_to_alpha( mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs[plane - 1], plane - 1); const int avg_row = (row << tx_size_wide_log2[0]) >> tx_size_wide_log2[tx_size]; const int avg_col = (col << tx_size_high_log2[0]) >> tx_size_high_log2[tx_size]; const int avg_q3 = cfl->y_averages_q3[cfl->y_averages_stride * avg_row + avg_col]; cfl_load(cfl, row, col, width, height); for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { // TODO(ltrudeau) add support for HBD. dst[i] = clip_pixel(get_scaled_luma_q0(alpha_q3, y_pix[i], avg_q3) + dc_pred); } dst += dst_stride; y_pix += MAX_SB_SIZE; } } void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row, int col, TX_SIZE tx_size, BLOCK_SIZE bsize) { const int tx_width = tx_size_wide[tx_size]; const int tx_height = tx_size_high[tx_size]; const int tx_off_log2 = tx_size_wide_log2[0]; #if CONFIG_CHROMA_SUB8X8 if (bsize < BLOCK_8X8) { // Transform cannot be smaller than assert(tx_width >= 4); assert(tx_height >= 4); const int bw = block_size_wide[bsize]; const int bh = block_size_high[bsize]; // For chroma_sub8x8, the CfL prediction for prediction blocks smaller than // 8X8 uses non chroma reference reconstructed luma pixels. To do so, we // combine the 4X4 non chroma reference into the CfL pixel buffers based on // their row and column index. // The following code is adapted from the is_chroma_reference() function. if ((cfl->mi_row & 0x01) // Increment the row index for odd indexed 4X4 blocks && (bh == 4) // But not for 4X8 blocks && cfl->subsampling_y) { // And only when chroma is subsampled assert(row == 0); row++; } if ((cfl->mi_col & 0x01) // Increment the col index for odd indexed 4X4 blocks && (bw == 4) // But not for 8X4 blocks && cfl->subsampling_x) { // And only when chroma is subsampled assert(col == 0); col++; } } #else (void)bsize; #endif // Invalidate current parameters cfl->are_parameters_computed = 0; // Store the surface of the pixel buffer that was written to, this way we // can manage chroma overrun (e.g. when the chroma surfaces goes beyond the // frame boundary) if (col == 0 && row == 0) { cfl->y_width = tx_width; cfl->y_height = tx_height; } else { cfl->y_width = OD_MAXI((col << tx_off_log2) + tx_width, cfl->y_width); cfl->y_height = OD_MAXI((row << tx_off_log2) + tx_height, cfl->y_height); } // Check that we will remain inside the pixel buffer. assert((row << tx_off_log2) + tx_height <= MAX_SB_SIZE); assert((col << tx_off_log2) + tx_width <= MAX_SB_SIZE); // Store the input into the CfL pixel buffer uint8_t *y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << tx_off_log2]; // TODO(ltrudeau) Speedup possible by moving the downsampling to cfl_store for (int j = 0; j < tx_height; j++) { for (int i = 0; i < tx_width; i++) { y_pix[i] = input[i]; } y_pix += MAX_SB_SIZE; input += input_stride; } } void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) { CFL_CTX *const cfl = xd->cfl; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; // Do not call cfl_compute_parameters multiple time on the same values. assert(cfl->are_parameters_computed == 0); #if CONFIG_CHROMA_SUB8X8 const BLOCK_SIZE plane_bsize = AOMMAX( BLOCK_4X4, get_plane_block_size(mbmi->sb_type, &xd->plane[AOM_PLANE_U])); #else const BLOCK_SIZE plane_bsize = get_plane_block_size(mbmi->sb_type, &xd->plane[AOM_PLANE_U]); #endif // AOM_PLANE_U is used, but both planes will have the same sizes. cfl->uv_width = max_intra_block_width(xd, plane_bsize, AOM_PLANE_U, tx_size); cfl->uv_height = max_intra_block_height(xd, plane_bsize, AOM_PLANE_U, tx_size); #if CONFIG_DEBUG if (mbmi->sb_type >= BLOCK_8X8) { assert(cfl->y_width <= cfl->uv_width << cfl->subsampling_x); assert(cfl->y_height <= cfl->uv_height << cfl->subsampling_y); } #endif // Compute block-level DC_PRED for both chromatic planes. // DC_PRED replaces beta in the linear model. cfl_dc_pred(xd, plane_bsize); // Compute transform-level average on reconstructed luma input. cfl_compute_averages(cfl, tx_size); cfl->are_parameters_computed = 1; }