/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "aom_ports/system_state.h" #include "av1/common/blockd.h" #include "av1/common/onyxc_int.h" PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi) { if (!left_mi) return DC_PRED; assert(!is_inter_block(left_mi) || is_intrabc_block(left_mi)); return left_mi->mode; } PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi) { if (!above_mi) return DC_PRED; assert(!is_inter_block(above_mi) || is_intrabc_block(above_mi)); return above_mi->mode; } void av1_foreach_transformed_block_in_plane( const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane, foreach_transformed_block_visitor visit, void *arg) { const struct macroblockd_plane *const pd = &xd->plane[plane]; // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 // transform size varies per plane, look it up in a common way. const TX_SIZE tx_size = av1_get_tx_size(plane, xd); const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); const uint8_t txw_unit = tx_size_wide_unit[tx_size]; const uint8_t txh_unit = tx_size_high_unit[tx_size]; const int step = txw_unit * txh_unit; int i = 0, r, c; // If mb_to_right_edge is < 0 we are in a situation in which // the current block size extends into the UMV and we won't // visit the sub blocks that are wholly within the UMV. const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); const int max_blocks_high = max_block_high(xd, plane_bsize, plane); int blk_row, blk_col; const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y); int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); // Keep track of the row and column of the blocks we use so that we know // if we are in the unrestricted motion border. for (r = 0; r < max_blocks_high; r += mu_blocks_high) { const int unit_height = AOMMIN(mu_blocks_high + r, max_blocks_high); // Skip visiting the sub blocks that are wholly within the UMV. for (c = 0; c < max_blocks_wide; c += mu_blocks_wide) { const int unit_width = AOMMIN(mu_blocks_wide + c, max_blocks_wide); for (blk_row = r; blk_row < unit_height; blk_row += txh_unit) { for (blk_col = c; blk_col < unit_width; blk_col += txw_unit) { visit(plane, i, blk_row, blk_col, plane_bsize, tx_size, arg); i += step; } } } } } void av1_foreach_transformed_block(const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int mi_row, int mi_col, foreach_transformed_block_visitor visit, void *arg, const int num_planes) { for (int plane = 0; plane < num_planes; ++plane) { if (!is_chroma_reference(mi_row, mi_col, bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y)) continue; av1_foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg); } } void av1_set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd, int plane, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, int has_eob, int aoff, int loff) { ENTROPY_CONTEXT *const a = pd->above_context + aoff; ENTROPY_CONTEXT *const l = pd->left_context + loff; const int txs_wide = tx_size_wide_unit[tx_size]; const int txs_high = tx_size_high_unit[tx_size]; // above if (has_eob && xd->mb_to_right_edge < 0) { const int blocks_wide = max_block_wide(xd, plane_bsize, plane); const int above_contexts = AOMMIN(txs_wide, blocks_wide - aoff); memset(a, has_eob, sizeof(*a) * above_contexts); memset(a + above_contexts, 0, sizeof(*a) * (txs_wide - above_contexts)); } else { memset(a, has_eob, sizeof(*a) * txs_wide); } // left if (has_eob && xd->mb_to_bottom_edge < 0) { const int blocks_high = max_block_high(xd, plane_bsize, plane); const int left_contexts = AOMMIN(txs_high, blocks_high - loff); memset(l, has_eob, sizeof(*l) * left_contexts); memset(l + left_contexts, 0, sizeof(*l) * (txs_high - left_contexts)); } else { memset(l, has_eob, sizeof(*l) * txs_high); } } void av1_reset_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize, const int num_planes) { int i; int nplanes; int chroma_ref; chroma_ref = is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); nplanes = 1 + (num_planes - 1) * chroma_ref; for (i = 0; i < nplanes; i++) { struct macroblockd_plane *const pd = &xd->plane[i]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); const int txs_wide = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; const int txs_high = block_size_high[plane_bsize] >> tx_size_high_log2[0]; memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * txs_wide); memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * txs_high); } } void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes) { xd->delta_lf_from_base = 0; const int frame_lf_count = num_planes > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) xd->delta_lf[lf_id] = 0; } void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes) { for (int p = 0; p < num_planes; ++p) { set_default_wiener(xd->wiener_info + p); set_default_sgrproj(xd->sgrproj_info + p); } } void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y, const int num_planes) { int i; for (i = 0; i < num_planes; i++) { xd->plane[i].plane_type = get_plane_type(i); xd->plane[i].subsampling_x = i ? ss_x : 0; xd->plane[i].subsampling_y = i ? ss_y : 0; } } const int16_t dr_intra_derivative[90] = { // More evenly spread out angles and limited to 10-bit // Values that are 0 will never be used // Approx angle 0, 0, 0, // 1023, 0, 0, // 3, ... 547, 0, 0, // 6, ... 372, 0, 0, 0, 0, // 9, ... 273, 0, 0, // 14, ... 215, 0, 0, // 17, ... 178, 0, 0, // 20, ... 151, 0, 0, // 23, ... (113 & 203 are base angles) 132, 0, 0, // 26, ... 116, 0, 0, // 29, ... 102, 0, 0, 0, // 32, ... 90, 0, 0, // 36, ... 80, 0, 0, // 39, ... 71, 0, 0, // 42, ... 64, 0, 0, // 45, ... (45 & 135 are base angles) 57, 0, 0, // 48, ... 51, 0, 0, // 51, ... 45, 0, 0, 0, // 54, ... 40, 0, 0, // 58, ... 35, 0, 0, // 61, ... 31, 0, 0, // 64, ... 27, 0, 0, // 67, ... (67 & 157 are base angles) 23, 0, 0, // 70, ... 19, 0, 0, // 73, ... 15, 0, 0, 0, 0, // 76, ... 11, 0, 0, // 81, ... 7, 0, 0, // 84, ... 3, 0, 0, // 87, ... };