/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "aom_ports/system_state.h" #include "av1/common/blockd.h" #include "av1/common/onyxc_int.h" PREDICTION_MODE av1_left_block_mode(const MODE_INFO *cur_mi, const MODE_INFO *left_mi, int b) { if (b == 0 || b == 2) { if (!left_mi || is_inter_block(&left_mi->mbmi)) return DC_PRED; return get_y_mode(left_mi, b + 1); } else { assert(b == 1 || b == 3); return cur_mi->bmi[b - 1].as_mode; } } PREDICTION_MODE av1_above_block_mode(const MODE_INFO *cur_mi, const MODE_INFO *above_mi, int b) { if (b == 0 || b == 1) { if (!above_mi || is_inter_block(&above_mi->mbmi)) return DC_PRED; return get_y_mode(above_mi, b + 2); } else { assert(b == 2 || b == 3); return cur_mi->bmi[b - 2].as_mode; } } #if CONFIG_COEF_INTERLEAVE void av1_foreach_transformed_block_interleave( const MACROBLOCKD *const xd, BLOCK_SIZE bsize, foreach_transformed_block_visitor visit, void *arg) { const struct macroblockd_plane *const pd_y = &xd->plane[0]; const struct macroblockd_plane *const pd_c = &xd->plane[1]; const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; const TX_SIZE tx_log2_y = mbmi->tx_size; const TX_SIZE tx_log2_c = get_uv_tx_size(mbmi, pd_c); const int tx_sz_y = (1 << tx_log2_y); const int tx_sz_c = (1 << tx_log2_c); const BLOCK_SIZE plane_bsize_y = get_plane_block_size(bsize, pd_y); const BLOCK_SIZE plane_bsize_c = get_plane_block_size(bsize, pd_c); const int num_4x4_w_y = num_4x4_blocks_wide_lookup[plane_bsize_y]; const int num_4x4_w_c = num_4x4_blocks_wide_lookup[plane_bsize_c]; const int num_4x4_h_y = num_4x4_blocks_high_lookup[plane_bsize_y]; const int num_4x4_h_c = num_4x4_blocks_high_lookup[plane_bsize_c]; const int step_y = 1 << (tx_log2_y << 1); const int step_c = 1 << (tx_log2_c << 1); const int max_4x4_w_y = get_max_4x4_size(num_4x4_w_y, xd->mb_to_right_edge, pd_y->subsampling_x); const int max_4x4_h_y = get_max_4x4_size(num_4x4_h_y, xd->mb_to_bottom_edge, pd_y->subsampling_y); const int extra_step_y = ((num_4x4_w_y - max_4x4_w_y) >> tx_log2_y) * step_y; const int max_4x4_w_c = get_max_4x4_size(num_4x4_w_c, xd->mb_to_right_edge, pd_c->subsampling_x); const int max_4x4_h_c = get_max_4x4_size(num_4x4_h_c, xd->mb_to_bottom_edge, pd_c->subsampling_y); const int extra_step_c = ((num_4x4_w_c - max_4x4_w_c) >> tx_log2_c) * step_c; // The max_4x4_w/h may be smaller than tx_sz under some corner cases, // i.e. when the SB is splitted by tile boundaries. const int tu_num_w_y = (max_4x4_w_y + tx_sz_y - 1) / tx_sz_y; const int tu_num_h_y = (max_4x4_h_y + tx_sz_y - 1) / tx_sz_y; const int tu_num_w_c = (max_4x4_w_c + tx_sz_c - 1) / tx_sz_c; const int tu_num_h_c = (max_4x4_h_c + tx_sz_c - 1) / tx_sz_c; const int tu_num_c = tu_num_w_c * tu_num_h_c; int tu_idx_c = 0; int offset_y, row_y, col_y; int offset_c, row_c, col_c; for (row_y = 0; row_y < tu_num_h_y; row_y++) { for (col_y = 0; col_y < tu_num_w_y; col_y++) { // luma offset_y = (row_y * tu_num_w_y + col_y) * step_y + row_y * extra_step_y; visit(0, offset_y, row_y * tx_sz_y, col_y * tx_sz_y, plane_bsize_y, tx_log2_y, arg); // chroma if (tu_idx_c < tu_num_c) { row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; offset_c = tu_idx_c * step_c + (tu_idx_c / tu_num_w_c) * extra_step_c; visit(1, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg); visit(2, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg); tu_idx_c++; } } } // In 422 case, it's possible that Chroma has more TUs than Luma while (tu_idx_c < tu_num_c) { row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; offset_c = tu_idx_c * step_c + row_c * extra_step_c; visit(1, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg); visit(2, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg); tu_idx_c++; } } #endif void av1_foreach_transformed_block_in_plane( const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane, foreach_transformed_block_visitor visit, void *arg) { const struct macroblockd_plane *const pd = &xd->plane[plane]; // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 // transform size varies per plane, look it up in a common way. const TX_SIZE tx_size = get_tx_size(plane, xd); #if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2 const BLOCK_SIZE plane_bsize = AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd)); #else const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); #endif const uint8_t txw_unit = tx_size_wide_unit[tx_size]; const uint8_t txh_unit = tx_size_high_unit[tx_size]; const int step = txw_unit * txh_unit; int i = 0, r, c; // If mb_to_right_edge is < 0 we are in a situation in which // the current block size extends into the UMV and we won't // visit the sub blocks that are wholly within the UMV. const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); const int max_blocks_high = max_block_high(xd, plane_bsize, plane); // Keep track of the row and column of the blocks we use so that we know // if we are in the unrestricted motion border. for (r = 0; r < max_blocks_high; r += txh_unit) { // Skip visiting the sub blocks that are wholly within the UMV. for (c = 0; c < max_blocks_wide; c += txw_unit) { visit(plane, i, r, c, plane_bsize, tx_size, arg); i += step; } } } #if CONFIG_LV_MAP void av1_foreach_transformed_block(const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int mi_row, int mi_col, foreach_transformed_block_visitor visit, void *arg) { int plane; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { #if CONFIG_CB4X4 if (!is_chroma_reference(mi_row, mi_col, bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y)) continue; #else (void)mi_row; (void)mi_col; #endif av1_foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg); } } #endif #if CONFIG_DAALA_DIST void av1_foreach_8x8_transformed_block_in_yplane( const MACROBLOCKD *const xd, BLOCK_SIZE bsize, foreach_transformed_block_visitor visit, foreach_transformed_block_visitor mi_visit, void *arg) { const struct macroblockd_plane *const pd = &xd->plane[0]; // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 // transform size varies per plane, look it up in a common way. const TX_SIZE tx_size = get_tx_size(0, xd); const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const uint8_t txw_unit = tx_size_wide_unit[tx_size]; const uint8_t txh_unit = tx_size_high_unit[tx_size]; const int step = txw_unit * txh_unit; int i = 0, r, c; // If mb_to_right_edge is < 0 we are in a situation in which // the current block size extends into the UMV and we won't // visit the sub blocks that are wholly within the UMV. const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); const int max_blocks_high = max_block_high(xd, plane_bsize, 0); const int skip_check_r = tx_size_high[tx_size] == 8 ? 1 : 0; const int skip_check_c = tx_size_wide[tx_size] == 8 ? 1 : 0; assert(plane_bsize >= BLOCK_8X8); assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4); // Keep track of the row and column of the blocks we use so that we know // if we are in the unrestricted motion border. for (r = 0; r < max_blocks_high; r += txh_unit) { // Skip visiting the sub blocks that are wholly within the UMV. for (c = 0; c < max_blocks_wide; c += txw_unit) { visit(0, i, r, c, plane_bsize, tx_size, arg); // Call whenever each 8x8 tx block is done if (((r & txh_unit) || skip_check_r) && ((c & txw_unit) || skip_check_c)) mi_visit(0, i, r - (1 - skip_check_r) * txh_unit, c - (1 - skip_check_c) * txw_unit, plane_bsize, tx_size, arg); i += step; } } } #endif #if !CONFIG_PVQ || CONFIG_VAR_TX void av1_set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd, int plane, TX_SIZE tx_size, int has_eob, int aoff, int loff) { ENTROPY_CONTEXT *const a = pd->above_context + aoff; ENTROPY_CONTEXT *const l = pd->left_context + loff; const int txs_wide = tx_size_wide_unit[tx_size]; const int txs_high = tx_size_high_unit[tx_size]; #if CONFIG_CB4X4 const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; #else const BLOCK_SIZE bsize = AOMMAX(xd->mi[0]->mbmi.sb_type, BLOCK_8X8); #endif const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); // above if (has_eob && xd->mb_to_right_edge < 0) { int i; const int blocks_wide = max_block_wide(xd, plane_bsize, plane); int above_contexts = txs_wide; if (above_contexts + aoff > blocks_wide) above_contexts = blocks_wide - aoff; for (i = 0; i < above_contexts; ++i) a[i] = has_eob; for (i = above_contexts; i < txs_wide; ++i) a[i] = 0; } else { memset(a, has_eob, sizeof(ENTROPY_CONTEXT) * txs_wide); } // left if (has_eob && xd->mb_to_bottom_edge < 0) { int i; const int blocks_high = max_block_high(xd, plane_bsize, plane); int left_contexts = txs_high; if (left_contexts + loff > blocks_high) left_contexts = blocks_high - loff; for (i = 0; i < left_contexts; ++i) l[i] = has_eob; for (i = left_contexts; i < txs_high; ++i) l[i] = 0; } else { memset(l, has_eob, sizeof(ENTROPY_CONTEXT) * txs_high); } } #endif void av1_reset_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { int i; int nplanes; #if CONFIG_CB4X4 int chroma_ref; chroma_ref = is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); nplanes = 1 + (MAX_MB_PLANE - 1) * chroma_ref; #else (void)mi_row; (void)mi_col; nplanes = MAX_MB_PLANE; #endif for (i = 0; i < nplanes; i++) { struct macroblockd_plane *const pd = &xd->plane[i]; #if CONFIG_CHROMA_2X2 || !CONFIG_CB4X4 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); #else const BLOCK_SIZE plane_bsize = AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd)); #endif const int txs_wide = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; const int txs_high = block_size_high[plane_bsize] >> tx_size_high_log2[0]; memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * txs_wide); memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * txs_high); } } void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y) { int i; for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].plane_type = get_plane_type(i); xd->plane[i].subsampling_x = i ? ss_x : 0; xd->plane[i].subsampling_y = i ? ss_y : 0; } } #if CONFIG_EXT_INTRA const int16_t dr_intra_derivative[90] = { 1, 14666, 7330, 4884, 3660, 2926, 2435, 2084, 1821, 1616, 1451, 1317, 1204, 1108, 1026, 955, 892, 837, 787, 743, 703, 666, 633, 603, 574, 548, 524, 502, 481, 461, 443, 426, 409, 394, 379, 365, 352, 339, 327, 316, 305, 294, 284, 274, 265, 256, 247, 238, 230, 222, 214, 207, 200, 192, 185, 179, 172, 166, 159, 153, 147, 141, 136, 130, 124, 119, 113, 108, 103, 98, 93, 88, 83, 78, 73, 68, 63, 59, 54, 49, 45, 40, 35, 31, 26, 22, 17, 13, 8, 4, }; #if CONFIG_INTRA_INTERP int av1_is_intra_filter_switchable(int angle) { assert(angle > 0 && angle < 270); if (angle % 45 == 0) return 0; if (angle > 90 && angle < 180) { return 1; } else { return ((angle < 90 ? dr_intra_derivative[angle] : dr_intra_derivative[270 - angle]) & 0xFF) > 0; } } #endif // CONFIG_INTRA_INTERP #endif // CONFIG_EXT_INTRA