/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "av1/common/av1_loopfilter.h" #include "av1/common/onyxc_int.h" #include "av1/common/reconinter.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "av1/common/seg_common.h" #if CONFIG_LPF_DIRECT static void pick_filter_pixel_left(uint8_t *const src, uint8_t *const line, int *const orig_pos, int length, int row, int col, int width, int height, int pitch, int pivot, int direct) { int i; int pos = row * pitch + col; for (i = 0; i < length; ++i) { int dy = 0; switch (direct) { case VERT_HORZ: dy = 0; break; case DEGREE_45: dy = 1; break; case DEGREE_135: dy = -1; break; } col -= 1; row += dy; if (col >= 0 && col < width && row >= 0 && row < height) { pos = row * pitch + col; line[pivot - 1 - i] = src[pos]; orig_pos[pivot - 1 - i] = pos; } } } static void pick_filter_pixel_right(uint8_t *const src, uint8_t *const line, int *const orig_pos, int length, int row, int col, int width, int height, int pitch, int pivot, int direct) { int i; int pos = row * pitch + col; line[pivot] = src[pos]; orig_pos[pivot] = pos; for (i = 1; i < length; ++i) { int dy = 0; switch (direct) { case VERT_HORZ: dy = 0; break; case DEGREE_45: dy = -1; break; case DEGREE_135: dy = 1; break; } col += 1; row += dy; if (col >= 0 && col < width && row >= 0 && row < height) { pos = row * pitch + col; line[pivot + i] = src[pos]; orig_pos[pivot + i] = pos; } } } static void pick_filter_pixel_above(uint8_t *const src, uint8_t *const line, int *const orig_pos, int length, int row, int col, int width, int height, int pitch, int pivot, int direct) { int i; int pos = row * pitch + col; for (i = 0; i < length; ++i) { int dx = 0; switch (direct) { case VERT_HORZ: dx = 0; break; case DEGREE_45: dx = 1; break; case DEGREE_135: dx = -1; break; } col += dx; row -= 1; if (col >= 0 && col < width && row >= 0 && row < height) { pos = row * pitch + col; line[pivot - 1 - i] = src[pos]; orig_pos[pivot - 1 - i] = pos; } } } static void pick_filter_pixel_bot(uint8_t *const src, uint8_t *const line, int *const orig_pos, int length, int row, int col, int width, int height, int pitch, int pivot, int direct) { int i; int pos = row * pitch + col; line[pivot] = src[pos]; orig_pos[pivot] = pos; for (i = 1; i < length; ++i) { int dx = 0; switch (direct) { case VERT_HORZ: dx = 0; break; case DEGREE_45: dx = -1; break; case DEGREE_135: dx = 1; break; } col += dx; row += 1; if (col >= 0 && col < width && row >= 0 && row < height) { pos = row * pitch + col; line[pivot + i] = src[pos]; orig_pos[pivot + i] = pos; } } } static void pick_filter_block_vert(uint8_t *const src, uint8_t *const block, int *const orig_pos, int length, int row, int col, int width, int height, int pitch, int pivot, int line_length, int unit, int direct) { int i; for (i = 0; i < 8 * unit; ++i) { pick_filter_pixel_left(src, block + i * line_length, orig_pos + i * line_length, length, row + i, col, width, height, pitch, pivot, direct); pick_filter_pixel_right(src, block + i * line_length, orig_pos + i * line_length, length, row + i, col, width, height, pitch, pivot, direct); } } static void pick_filter_block_horz(uint8_t *const src, uint8_t *const block, int *const orig_pos, int length, int row, int col, int width, int height, int pitch, int pivot, int line_length, int unit, int direct) { int i, j; int num = 8 * unit; for (i = 0; i < num; ++i) { pick_filter_pixel_above(src, block + i * line_length, orig_pos + i * line_length, length, row, col + i, width, height, pitch, pivot, direct); pick_filter_pixel_bot(src, block + i * line_length, orig_pos + i * line_length, length, row, col + i, width, height, pitch, pivot, direct); } // rearrange block // TODO(chengchen): make it in-place or a stand alone function uint8_t tmp_block[256]; int tmp_pos[256]; for (i = 0; i < 256; ++i) { tmp_block[i] = 0; tmp_pos[i] = -1; } for (i = 0; i < num; ++i) { for (j = 0; j < line_length; ++j) { tmp_block[j * line_length + i] = block[i * line_length + j]; tmp_pos[j * line_length + i] = orig_pos[i * line_length + j]; } } for (i = 0; i < 256; ++i) { block[i] = tmp_block[i]; orig_pos[i] = tmp_pos[i]; } } static int compute_block_grad(uint8_t *const src, int length, int row, int col, int width, int height, int pitch, int unit, int vert_or_horz, int direct) { int i, j; int r0, c0, pos0, r1 = 0, c1 = 0, pos1; int sum_grad = 0; for (i = 0; i < 8 * unit; ++i) { // vert_or_horz: 0 vertical edge, 1 horizontal edge r0 = vert_or_horz ? row : row + i; c0 = vert_or_horz ? col + i : col; pos0 = r0 * pitch + c0; for (j = 0; j < length; ++j) { if (vert_or_horz == 0) { switch (direct) { case VERT_HORZ: r1 = r0; break; case DEGREE_45: r1 = r0 + 1; break; case DEGREE_135: r1 = r0 - 1; break; } c1 = c0 - 1; } else { r1 = r0 - 1; switch (direct) { case VERT_HORZ: c1 = c0; break; case DEGREE_45: c1 = c0 + 1; break; case DEGREE_135: c1 = c0 - 1; break; } } pos1 = r1 * pitch + c1; if (r0 >= 0 && r0 < height && c0 >= 0 && c0 < width && r1 >= 0 && r1 < height && c1 >= 0 && c1 < width) { sum_grad += abs(src[pos1] - src[pos0]); } else { sum_grad += 255; // penalize unreachable boundary } r0 = r1; c0 = c1; pos0 = pos1; } r0 = vert_or_horz ? row : row + i; c0 = vert_or_horz ? col + i : col; pos0 = r0 * pitch + c0; for (j = 0; j < length - 1; ++j) { if (vert_or_horz == 0) { switch (direct) { case VERT_HORZ: r1 = r0; break; case DEGREE_45: r1 = r0 - 1; break; case DEGREE_135: r1 = r0 + 1; break; } c1 = c0 + 1; } else { r1 = r0 + 1; switch (direct) { case VERT_HORZ: c1 = c0; break; case DEGREE_45: c1 = c0 - 1; break; case DEGREE_135: c1 = c0 + 1; break; } } pos1 = r1 * pitch + c1; if (r0 >= 0 && r0 < height && c0 >= 0 && c0 < width && r1 >= 0 && r1 < height && c1 >= 0 && c1 < width) { sum_grad += abs(src[pos1] - src[pos0]); } else { sum_grad += 255; // penalize unreachable boundary } r0 = r1; c0 = c1; pos0 = pos1; } } return sum_grad; } static int pick_min_grad_direct(uint8_t *const src, int length, int row, int col, int width, int height, int pitch, int unit, int vert_or_horz) { int direct = VERT_HORZ; int min_grad = INT_MAX, sum_grad = 0; int degree; for (degree = 0; degree < FILTER_DEGREES; ++degree) { // compute abs gradient along each line for the filter block sum_grad = compute_block_grad(src, length, row, col, width, height, pitch, unit, vert_or_horz, degree); if (sum_grad < min_grad) { min_grad = sum_grad; direct = degree; } } return direct; } #endif // CONFIG_LPF_DIRECT #define PARALLEL_DEBLOCKING_15TAPLUMAONLY 1 #define PARALLEL_DEBLOCKING_DISABLE_15TAP 0 // 64 bit masks for left transform size. Each 1 represents a position where // we should apply a loop filter across the left border of an 8x8 block // boundary. // // In the case of TX_16X16-> ( in low order byte first we end up with // a mask that looks like this // // 10101010 // 10101010 // 10101010 // 10101010 // 10101010 // 10101010 // 10101010 // 10101010 // // A loopfilter should be applied to every other 8x8 horizontally. static const uint64_t left_64x64_txform_mask[TX_SIZES] = { #if CONFIG_CHROMA_2X2 0xffffffffffffffffULL, // TX_2X2 #endif 0xffffffffffffffffULL, // TX_4X4 0xffffffffffffffffULL, // TX_8x8 0x5555555555555555ULL, // TX_16x16 0x1111111111111111ULL, // TX_32x32 #if CONFIG_TX64X64 0x0101010101010101ULL, // TX_64x64 #endif // CONFIG_TX64X64 }; // 64 bit masks for above transform size. Each 1 represents a position where // we should apply a loop filter across the top border of an 8x8 block // boundary. // // In the case of TX_32x32 -> ( in low order byte first we end up with // a mask that looks like this // // 11111111 // 00000000 // 00000000 // 00000000 // 11111111 // 00000000 // 00000000 // 00000000 // // A loopfilter should be applied to every other 4 the row vertically. static const uint64_t above_64x64_txform_mask[TX_SIZES] = { #if CONFIG_CHROMA_2X2 0xffffffffffffffffULL, // TX_4X4 #endif 0xffffffffffffffffULL, // TX_4X4 0xffffffffffffffffULL, // TX_8x8 0x00ff00ff00ff00ffULL, // TX_16x16 0x000000ff000000ffULL, // TX_32x32 #if CONFIG_TX64X64 0x00000000000000ffULL, // TX_64x64 #endif // CONFIG_TX64X64 }; // 64 bit masks for prediction sizes (left). Each 1 represents a position // where left border of an 8x8 block. These are aligned to the right most // appropriate bit, and then shifted into place. // // In the case of TX_16x32 -> ( low order byte first ) we end up with // a mask that looks like this : // // 10000000 // 10000000 // 10000000 // 10000000 // 00000000 // 00000000 // 00000000 // 00000000 static const uint64_t left_prediction_mask[BLOCK_SIZES_ALL] = { #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 0x0000000000000001ULL, // BLOCK_2X2, 0x0000000000000001ULL, // BLOCK_2X4, 0x0000000000000001ULL, // BLOCK_4X2, #endif 0x0000000000000001ULL, // BLOCK_4X4, 0x0000000000000001ULL, // BLOCK_4X8, 0x0000000000000001ULL, // BLOCK_8X4, 0x0000000000000001ULL, // BLOCK_8X8, 0x0000000000000101ULL, // BLOCK_8X16, 0x0000000000000001ULL, // BLOCK_16X8, 0x0000000000000101ULL, // BLOCK_16X16, 0x0000000001010101ULL, // BLOCK_16X32, 0x0000000000000101ULL, // BLOCK_32X16, 0x0000000001010101ULL, // BLOCK_32X32, 0x0101010101010101ULL, // BLOCK_32X64, 0x0000000001010101ULL, // BLOCK_64X32, 0x0101010101010101ULL, // BLOCK_64X64, 0x0000000000000101ULL, // BLOCK_4X16, 0x0000000000000001ULL, // BLOCK_16X4, 0x0000000001010101ULL, // BLOCK_8X32, 0x0000000000000001ULL, // BLOCK_32X8 }; // 64 bit mask to shift and set for each prediction size. static const uint64_t above_prediction_mask[BLOCK_SIZES_ALL] = { #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 0x0000000000000001ULL, // BLOCK_2X2 0x0000000000000001ULL, // BLOCK_2X4 0x0000000000000001ULL, // BLOCK_4X2 #endif 0x0000000000000001ULL, // BLOCK_4X4 0x0000000000000001ULL, // BLOCK_4X8 0x0000000000000001ULL, // BLOCK_8X4 0x0000000000000001ULL, // BLOCK_8X8 0x0000000000000001ULL, // BLOCK_8X16, 0x0000000000000003ULL, // BLOCK_16X8 0x0000000000000003ULL, // BLOCK_16X16 0x0000000000000003ULL, // BLOCK_16X32, 0x000000000000000fULL, // BLOCK_32X16, 0x000000000000000fULL, // BLOCK_32X32, 0x000000000000000fULL, // BLOCK_32X64, 0x00000000000000ffULL, // BLOCK_64X32, 0x00000000000000ffULL, // BLOCK_64X64, 0x0000000000000001ULL, // BLOCK_4X16, 0x0000000000000003ULL, // BLOCK_16X4, 0x0000000000000001ULL, // BLOCK_8X32, 0x000000000000000fULL, // BLOCK_32X8 }; // 64 bit mask to shift and set for each prediction size. A bit is set for // each 8x8 block that would be in the top left most block of the given block // size in the 64x64 block. static const uint64_t size_mask[BLOCK_SIZES_ALL] = { #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 0x0000000000000001ULL, // BLOCK_2X2 0x0000000000000001ULL, // BLOCK_2X4 0x0000000000000001ULL, // BLOCK_4X2 #endif 0x0000000000000001ULL, // BLOCK_4X4 0x0000000000000001ULL, // BLOCK_4X8 0x0000000000000001ULL, // BLOCK_8X4 0x0000000000000001ULL, // BLOCK_8X8 0x0000000000000101ULL, // BLOCK_8X16, 0x0000000000000003ULL, // BLOCK_16X8 0x0000000000000303ULL, // BLOCK_16X16 0x0000000003030303ULL, // BLOCK_16X32, 0x0000000000000f0fULL, // BLOCK_32X16, 0x000000000f0f0f0fULL, // BLOCK_32X32, 0x0f0f0f0f0f0f0f0fULL, // BLOCK_32X64, 0x00000000ffffffffULL, // BLOCK_64X32, 0xffffffffffffffffULL, // BLOCK_64X64, 0x0000000000000101ULL, // BLOCK_4X16, 0x0000000000000003ULL, // BLOCK_16X4, 0x0000000001010101ULL, // BLOCK_8X32, 0x000000000000000fULL, // BLOCK_32X8 }; // These are used for masking the left and above 32x32 borders. static const uint64_t left_border = 0x1111111111111111ULL; static const uint64_t above_border = 0x000000ff000000ffULL; // 16 bit masks for uv transform sizes. static const uint16_t left_64x64_txform_mask_uv[TX_SIZES] = { #if CONFIG_CHROMA_2X2 0xffff, // TX_2X2 #endif 0xffff, // TX_4X4 0xffff, // TX_8x8 0x5555, // TX_16x16 0x1111, // TX_32x32 #if CONFIG_TX64X64 0x0101, // TX_64x64, never used #endif // CONFIG_TX64X64 }; static const uint16_t above_64x64_txform_mask_uv[TX_SIZES] = { #if CONFIG_CHROMA_2X2 0xffff, // TX_2X2 #endif 0xffff, // TX_4X4 0xffff, // TX_8x8 0x0f0f, // TX_16x16 0x000f, // TX_32x32 #if CONFIG_TX64X64 0x0003, // TX_64x64, never used #endif // CONFIG_TX64X64 }; // 16 bit left mask to shift and set for each uv prediction size. static const uint16_t left_prediction_mask_uv[BLOCK_SIZES_ALL] = { #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 0x0001, // BLOCK_2X2, 0x0001, // BLOCK_2X4, 0x0001, // BLOCK_4X2, #endif 0x0001, // BLOCK_4X4, 0x0001, // BLOCK_4X8, 0x0001, // BLOCK_8X4, 0x0001, // BLOCK_8X8, 0x0001, // BLOCK_8X16, 0x0001, // BLOCK_16X8, 0x0001, // BLOCK_16X16, 0x0011, // BLOCK_16X32, 0x0001, // BLOCK_32X16, 0x0011, // BLOCK_32X32, 0x1111, // BLOCK_32X64 0x0011, // BLOCK_64X32, 0x1111, // BLOCK_64X64, 0x0001, // BLOCK_4X16, 0x0001, // BLOCK_16X4, 0x0011, // BLOCK_8X32, 0x0001, // BLOCK_32X8 }; // 16 bit above mask to shift and set for uv each prediction size. static const uint16_t above_prediction_mask_uv[BLOCK_SIZES_ALL] = { #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 0x0001, // BLOCK_2X2 0x0001, // BLOCK_2X4 0x0001, // BLOCK_4X2 #endif 0x0001, // BLOCK_4X4 0x0001, // BLOCK_4X8 0x0001, // BLOCK_8X4 0x0001, // BLOCK_8X8 0x0001, // BLOCK_8X16, 0x0001, // BLOCK_16X8 0x0001, // BLOCK_16X16 0x0001, // BLOCK_16X32, 0x0003, // BLOCK_32X16, 0x0003, // BLOCK_32X32, 0x0003, // BLOCK_32X64, 0x000f, // BLOCK_64X32, 0x000f, // BLOCK_64X64, 0x0001, // BLOCK_4X16, 0x0001, // BLOCK_16X4, 0x0001, // BLOCK_8X32, 0x0003, // BLOCK_32X8 }; // 64 bit mask to shift and set for each uv prediction size static const uint16_t size_mask_uv[BLOCK_SIZES_ALL] = { #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 0x0001, // BLOCK_2X2 0x0001, // BLOCK_2X4 0x0001, // BLOCK_4X2 #endif 0x0001, // BLOCK_4X4 0x0001, // BLOCK_4X8 0x0001, // BLOCK_8X4 0x0001, // BLOCK_8X8 0x0001, // BLOCK_8X16, 0x0001, // BLOCK_16X8 0x0001, // BLOCK_16X16 0x0011, // BLOCK_16X32, 0x0003, // BLOCK_32X16, 0x0033, // BLOCK_32X32, 0x3333, // BLOCK_32X64, 0x00ff, // BLOCK_64X32, 0xffff, // BLOCK_64X64, 0x0001, // BLOCK_4X16, 0x0001, // BLOCK_16X4, 0x0011, // BLOCK_8X32, 0x0003, // BLOCK_32X8 }; static const uint16_t left_border_uv = 0x1111; static const uint16_t above_border_uv = 0x000f; static const int mode_lf_lut[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES #if CONFIG_ALT_INTRA 0, #if CONFIG_SMOOTH_HV 0, 0, #endif // CONFIG_SMOOTH_HV #endif // CONFIG_ALT_INTRA 1, 1, 0, 1, // INTER_MODES (ZEROMV == 0) #if CONFIG_EXT_INTER #if CONFIG_COMPOUND_SINGLEREF // 1, 1, 1, 1, 1, // INTER_SINGLEREF_COMP_MODES // NOTE(zoeliu): Remove SR_NEAREST_NEWMV 1, 1, 1, 1, // INTER_SINGLEREF_COMP_MODES #endif // CONFIG_COMPOUND_SINGLEREF 1, 1, 1, 1, 1, 1, 0, 1 // INTER_COMPOUND_MODES (ZERO_ZEROMV == 0) #endif // CONFIG_EXT_INTER }; static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) { int lvl; // For each possible value for the loop filter fill out limits for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) { // Set loop filter parameters that control sharpness. int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4)); if (sharpness_lvl > 0) { if (block_inside_limit > (9 - sharpness_lvl)) block_inside_limit = (9 - sharpness_lvl); } if (block_inside_limit < 1) block_inside_limit = 1; memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH); memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit), SIMD_WIDTH); } } #if CONFIG_EXT_DELTA_Q static uint8_t get_filter_level(const AV1_COMMON *cm, const loop_filter_info_n *lfi_n, const MB_MODE_INFO *mbmi) { #if CONFIG_SUPERTX const int segment_id = AOMMIN(mbmi->segment_id, mbmi->segment_id_supertx); assert( IMPLIES(supertx_enabled(mbmi), mbmi->segment_id_supertx != MAX_SEGMENTS)); assert(IMPLIES(supertx_enabled(mbmi), mbmi->segment_id_supertx <= mbmi->segment_id)); #else const int segment_id = mbmi->segment_id; #endif // CONFIG_SUPERTX if (cm->delta_lf_present_flag) { int lvl_seg = clamp(mbmi->current_delta_lf_from_base + cm->lf.filter_level, 0, MAX_LOOP_FILTER); const int scale = 1 << (lvl_seg >> 5); if (segfeature_active(&cm->seg, segment_id, SEG_LVL_ALT_LF)) { const int data = get_segdata(&cm->seg, segment_id, SEG_LVL_ALT_LF); lvl_seg = clamp(cm->seg.abs_delta == SEGMENT_ABSDATA ? data : lvl_seg + data, 0, MAX_LOOP_FILTER); } if (cm->lf.mode_ref_delta_enabled) { lvl_seg += cm->lf.ref_deltas[mbmi->ref_frame[0]] * scale; if (mbmi->ref_frame[0] > INTRA_FRAME) lvl_seg += cm->lf.mode_deltas[mode_lf_lut[mbmi->mode]] * scale; lvl_seg = clamp(lvl_seg, 0, MAX_LOOP_FILTER); } return lvl_seg; } else { return lfi_n->lvl[segment_id][mbmi->ref_frame[0]][mode_lf_lut[mbmi->mode]]; } } #else static uint8_t get_filter_level(const loop_filter_info_n *lfi_n, const MB_MODE_INFO *mbmi) { #if CONFIG_SUPERTX const int segment_id = AOMMIN(mbmi->segment_id, mbmi->segment_id_supertx); assert( IMPLIES(supertx_enabled(mbmi), mbmi->segment_id_supertx != MAX_SEGMENTS)); assert(IMPLIES(supertx_enabled(mbmi), mbmi->segment_id_supertx <= mbmi->segment_id)); #else const int segment_id = mbmi->segment_id; #endif // CONFIG_SUPERTX return lfi_n->lvl[segment_id][mbmi->ref_frame[0]][mode_lf_lut[mbmi->mode]]; } #endif void av1_loop_filter_init(AV1_COMMON *cm) { assert(MB_MODE_COUNT == NELEMENTS(mode_lf_lut)); loop_filter_info_n *lfi = &cm->lf_info; struct loopfilter *lf = &cm->lf; int lvl; // init limits for given sharpness update_sharpness(lfi, lf->sharpness_level); lf->last_sharpness_level = lf->sharpness_level; // init hev threshold const vectors for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH); } void av1_loop_filter_frame_init(AV1_COMMON *cm, int default_filt_lvl) { int seg_id; // n_shift is the multiplier for lf_deltas // the multiplier is 1 for when filter_lvl is between 0 and 31; // 2 when filter_lvl is between 32 and 63 const int scale = 1 << (default_filt_lvl >> 5); loop_filter_info_n *const lfi = &cm->lf_info; struct loopfilter *const lf = &cm->lf; const struct segmentation *const seg = &cm->seg; // update limits if sharpness has changed if (lf->last_sharpness_level != lf->sharpness_level) { update_sharpness(lfi, lf->sharpness_level); lf->last_sharpness_level = lf->sharpness_level; } for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) { int lvl_seg = default_filt_lvl; if (segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) { const int data = get_segdata(seg, seg_id, SEG_LVL_ALT_LF); lvl_seg = clamp( seg->abs_delta == SEGMENT_ABSDATA ? data : default_filt_lvl + data, 0, MAX_LOOP_FILTER); } if (!lf->mode_ref_delta_enabled) { // we could get rid of this if we assume that deltas are set to // zero when not in use; encoder always uses deltas memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id])); } else { int ref, mode; const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale; lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER); for (ref = LAST_FRAME; ref < TOTAL_REFS_PER_FRAME; ++ref) { for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) { const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale + lf->mode_deltas[mode] * scale; lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER); } } } } } static void filter_selectively_vert_row2(int subsampling_factor, uint8_t *s, int pitch, unsigned int mask_16x16_l, unsigned int mask_8x8_l, unsigned int mask_4x4_l, unsigned int mask_4x4_int_l, const loop_filter_info_n *lfi_n, const uint8_t *lfl) { const int mask_shift = subsampling_factor ? 4 : 8; const int mask_cutoff = subsampling_factor ? 0xf : 0xff; const int lfl_forward = subsampling_factor ? 4 : 8; unsigned int mask_16x16_0 = mask_16x16_l & mask_cutoff; unsigned int mask_8x8_0 = mask_8x8_l & mask_cutoff; unsigned int mask_4x4_0 = mask_4x4_l & mask_cutoff; unsigned int mask_4x4_int_0 = mask_4x4_int_l & mask_cutoff; unsigned int mask_16x16_1 = (mask_16x16_l >> mask_shift) & mask_cutoff; unsigned int mask_8x8_1 = (mask_8x8_l >> mask_shift) & mask_cutoff; unsigned int mask_4x4_1 = (mask_4x4_l >> mask_shift) & mask_cutoff; unsigned int mask_4x4_int_1 = (mask_4x4_int_l >> mask_shift) & mask_cutoff; unsigned int mask; for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_4x4_int_0 | mask_16x16_1 | mask_8x8_1 | mask_4x4_1 | mask_4x4_int_1; mask; mask >>= 1) { const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl; const loop_filter_thresh *lfi1 = lfi_n->lfthr + *(lfl + lfl_forward); if (mask & 1) { if ((mask_16x16_0 | mask_16x16_1) & 1) { if ((mask_16x16_0 & mask_16x16_1) & 1) { aom_lpf_vertical_16_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr); } else if (mask_16x16_0 & 1) { aom_lpf_vertical_16(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr); } else { aom_lpf_vertical_16(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } } if ((mask_8x8_0 | mask_8x8_1) & 1) { if ((mask_8x8_0 & mask_8x8_1) & 1) { aom_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } else if (mask_8x8_0 & 1) { aom_lpf_vertical_8(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr); } else { aom_lpf_vertical_8(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } } if ((mask_4x4_0 | mask_4x4_1) & 1) { if ((mask_4x4_0 & mask_4x4_1) & 1) { aom_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } else if (mask_4x4_0 & 1) { aom_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr); } else { aom_lpf_vertical_4(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } } if ((mask_4x4_int_0 | mask_4x4_int_1) & 1) { if ((mask_4x4_int_0 & mask_4x4_int_1) & 1) { aom_lpf_vertical_4_dual(s + 4, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } else if (mask_4x4_int_0 & 1) { aom_lpf_vertical_4(s + 4, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr); } else { aom_lpf_vertical_4(s + 8 * pitch + 4, pitch, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } } } s += 8; lfl += 1; mask_16x16_0 >>= 1; mask_8x8_0 >>= 1; mask_4x4_0 >>= 1; mask_4x4_int_0 >>= 1; mask_16x16_1 >>= 1; mask_8x8_1 >>= 1; mask_4x4_1 >>= 1; mask_4x4_int_1 >>= 1; } } #if CONFIG_HIGHBITDEPTH static void highbd_filter_selectively_vert_row2( int subsampling_factor, uint16_t *s, int pitch, unsigned int mask_16x16_l, unsigned int mask_8x8_l, unsigned int mask_4x4_l, unsigned int mask_4x4_int_l, const loop_filter_info_n *lfi_n, const uint8_t *lfl, int bd) { const int mask_shift = subsampling_factor ? 4 : 8; const int mask_cutoff = subsampling_factor ? 0xf : 0xff; const int lfl_forward = subsampling_factor ? 4 : 8; unsigned int mask_16x16_0 = mask_16x16_l & mask_cutoff; unsigned int mask_8x8_0 = mask_8x8_l & mask_cutoff; unsigned int mask_4x4_0 = mask_4x4_l & mask_cutoff; unsigned int mask_4x4_int_0 = mask_4x4_int_l & mask_cutoff; unsigned int mask_16x16_1 = (mask_16x16_l >> mask_shift) & mask_cutoff; unsigned int mask_8x8_1 = (mask_8x8_l >> mask_shift) & mask_cutoff; unsigned int mask_4x4_1 = (mask_4x4_l >> mask_shift) & mask_cutoff; unsigned int mask_4x4_int_1 = (mask_4x4_int_l >> mask_shift) & mask_cutoff; unsigned int mask; for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_4x4_int_0 | mask_16x16_1 | mask_8x8_1 | mask_4x4_1 | mask_4x4_int_1; mask; mask >>= 1) { const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl; const loop_filter_thresh *lfi1 = lfi_n->lfthr + *(lfl + lfl_forward); if (mask & 1) { if ((mask_16x16_0 | mask_16x16_1) & 1) { if ((mask_16x16_0 & mask_16x16_1) & 1) { aom_highbd_lpf_vertical_16_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, bd); } else if (mask_16x16_0 & 1) { aom_highbd_lpf_vertical_16(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, bd); } else { aom_highbd_lpf_vertical_16(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } } if ((mask_8x8_0 | mask_8x8_1) & 1) { if ((mask_8x8_0 & mask_8x8_1) & 1) { aom_highbd_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } else if (mask_8x8_0 & 1) { aom_highbd_lpf_vertical_8(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, bd); } else { aom_highbd_lpf_vertical_8(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } } if ((mask_4x4_0 | mask_4x4_1) & 1) { if ((mask_4x4_0 & mask_4x4_1) & 1) { aom_highbd_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } else if (mask_4x4_0 & 1) { aom_highbd_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, bd); } else { aom_highbd_lpf_vertical_4(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } } if ((mask_4x4_int_0 | mask_4x4_int_1) & 1) { if ((mask_4x4_int_0 & mask_4x4_int_1) & 1) { aom_highbd_lpf_vertical_4_dual(s + 4, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } else if (mask_4x4_int_0 & 1) { aom_highbd_lpf_vertical_4(s + 4, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, bd); } else { aom_highbd_lpf_vertical_4(s + 8 * pitch + 4, pitch, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } } } s += 8; lfl += 1; mask_16x16_0 >>= 1; mask_8x8_0 >>= 1; mask_4x4_0 >>= 1; mask_4x4_int_0 >>= 1; mask_16x16_1 >>= 1; mask_8x8_1 >>= 1; mask_4x4_1 >>= 1; mask_4x4_int_1 >>= 1; } } #endif // CONFIG_HIGHBITDEPTH static void filter_selectively_horiz( uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int, const loop_filter_info_n *lfi_n, const uint8_t *lfl #if CONFIG_LPF_DIRECT , uint8_t *const src, int mi_row, int mi_col, int idx_r, int col_step, int width, int height, int ss_x, int ss_y #endif ) { unsigned int mask; int count; #if CONFIG_LPF_DIRECT // scale for u, v plane width >>= ss_x; height >>= ss_y; int idx_c = 0; #endif for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; mask >>= count) { const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl; count = 1; if (mask & 1) { #if CONFIG_LPF_DIRECT int i; const int line_length = 16; const int pivot = 8; const int above_filt_len = mask_16x16 & 1 ? 8 : 4; const int bot_filt_len = mask_16x16 & 1 ? 8 : 4; uint8_t block[256]; // line_length * size_of(BLOCK_8X8) * two_blocks int orig_pos[256]; int direct; assert(above_filt_len == bot_filt_len); (void)bot_filt_len; for (i = 0; i < 256; ++i) { block[i] = 0; orig_pos[i] = -1; } // actual position for current pixel const int row = (mi_row + idx_r) * MI_SIZE >> ss_y; const int col = (mi_col + idx_c) * MI_SIZE >> ss_x; // Next block's thresholds. const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1); if (mask_16x16 & 1) { if ((mask_16x16 & 3) == 3) { // Could use asymmetric length in the future direct = pick_min_grad_direct(src, above_filt_len, row, col, width, height, pitch, 2, 1); pick_filter_block_horz(src, block, orig_pos, above_filt_len, row, col, width, height, pitch, pivot, line_length, 2, direct); aom_lpf_horizontal_edge_16(block + pivot * line_length, line_length, lfi->mblim, lfi->lim, lfi->hev_thr); count = 2; } else { direct = pick_min_grad_direct(src, above_filt_len, row, col, width, height, pitch, 1, 1); pick_filter_block_horz(src, block, orig_pos, above_filt_len, row, col, width, height, pitch, pivot, line_length, 1, direct); aom_lpf_horizontal_edge_8(block + pivot * line_length, line_length, lfi->mblim, lfi->lim, lfi->hev_thr); } for (i = 0; i < 256; ++i) if (orig_pos[i] >= 0) src[orig_pos[i]] = block[i]; } else if (mask_8x8 & 1) { if ((mask_8x8 & 3) == 3) { count = 2; direct = pick_min_grad_direct(src, above_filt_len, row, col, width, height, pitch, 2, 1); pick_filter_block_horz(src, block, orig_pos, above_filt_len, row, col, width, height, pitch, pivot, line_length, 2, direct); aom_lpf_horizontal_8_dual(block + pivot * line_length, line_length, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr); for (i = 0; i < 256; ++i) if (orig_pos[i] >= 0) src[orig_pos[i]] = block[i]; if ((mask_4x4_int & 3) == 3) { for (i = 0; i < 256; ++i) { block[i] = 0; orig_pos[i] = -1; } direct = pick_min_grad_direct(src, 4, row, col, width, height, pitch, 2, 1); pick_filter_block_horz(src, block, orig_pos, 4, row + 4, col, width, height, pitch, pivot, line_length, 2, direct); aom_lpf_horizontal_4_dual(block + pivot * line_length, line_length, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr); for (i = 0; i < 256; ++i) if (orig_pos[i] >= 0) src[orig_pos[i]] = block[i]; } else { for (i = 0; i < 256; ++i) { block[i] = 0; orig_pos[i] = -1; } if (mask_4x4_int & 1) { direct = pick_min_grad_direct(src, 4, row, col, width, height, pitch, 1, 1); pick_filter_block_horz(src, block, orig_pos, 4, row + 4, col, width, height, pitch, pivot, line_length, 1, direct); aom_lpf_horizontal_4(block + pivot * line_length, line_length, lfi->mblim, lfi->lim, lfi->hev_thr); } else if (mask_4x4_int & 2) { direct = pick_min_grad_direct(src, 4, row, col, width, height, pitch, 1, 1); pick_filter_block_horz(src, block, orig_pos, 4, row + 4, col + 8, width, height, pitch, pivot, line_length, 1, direct); aom_lpf_horizontal_4(block + pivot * line_length, line_length, lfin->mblim, lfin->lim, lfin->hev_thr); } for (i = 0; i < 256; ++i) if (orig_pos[i] >= 0) src[orig_pos[i]] = block[i]; } } else { direct = pick_min_grad_direct(src, above_filt_len, row, col, width, height, pitch, 1, 1); pick_filter_block_horz(src, block, orig_pos, above_filt_len, row, col, width, height, pitch, pivot, line_length, 1, direct); aom_lpf_horizontal_8(block + pivot * line_length, line_length, lfi->mblim, lfi->lim, lfi->hev_thr); for (i = 0; i < 256; ++i) if (orig_pos[i] >= 0) src[orig_pos[i]] = block[i]; if (mask_4x4_int & 1) { for (i = 0; i < 256; ++i) { block[i] = 0; orig_pos[i] = -1; } direct = pick_min_grad_direct(src, 4, row, col, width, height, pitch, 1, 1); pick_filter_block_horz(src, block, orig_pos, 4, row + 4, col, width, height, pitch, pivot, line_length, 1, direct); aom_lpf_horizontal_4(block + pivot * line_length, line_length, lfi->mblim, lfi->lim, lfi->hev_thr); for (i = 0; i < 256; ++i) if (orig_pos[i] >= 0) src[orig_pos[i]] = block[i]; } } } else if (mask_4x4 & 1) { if ((mask_4x4 & 3) == 3) { count = 2; direct = pick_min_grad_direct(src, 4, row, col, width, height, pitch, 2, 1); pick_filter_block_horz(src, block, orig_pos, 4, row, col, width, height, pitch, pivot, line_length, 2, direct); aom_lpf_horizontal_4_dual(block + pivot * line_length, line_length, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr); for (i = 0; i < 256; ++i) if (orig_pos[i] >= 0) src[orig_pos[i]] = block[i]; if ((mask_4x4_int & 3) == 3) { for (i = 0; i < 256; ++i) { block[i] = 0; orig_pos[i] = -1; } direct = pick_min_grad_direct(src, 4, row, col, width, height, pitch, 2, 1); pick_filter_block_horz(src, block, orig_pos, 4, row + 4, col, width, height, pitch, pivot, line_length, 2, direct); aom_lpf_horizontal_4_dual(block + pivot * line_length, line_length, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr); for (i = 0; i < 256; ++i) if (orig_pos[i] >= 0) src[orig_pos[i]] = block[i]; } else { for (i = 0; i < 256; ++i) { block[i] = 0; orig_pos[i] = -1; } if (mask_4x4_int & 1) { direct = pick_min_grad_direct(src, 4, row, col, width, height, pitch, 1, 1); pick_filter_block_horz(src, block, orig_pos, 4, row + 4, col, width, height, pitch, pivot, line_length, 1, direct); aom_lpf_horizontal_4(block + pivot * line_length, line_length, lfi->mblim, lfi->lim, lfi->hev_thr); } else if (mask_4x4_int & 2) { direct = pick_min_grad_direct(src, 4, row, col, width, height, pitch, 1, 1); pick_filter_block_horz(src, block, orig_pos, 4, row + 4, col + 8, width, height, pitch, pivot, line_length, 1, direct); aom_lpf_horizontal_4(block + pivot * line_length, line_length, lfin->mblim, lfin->lim, lfin->hev_thr); } for (i = 0; i < 256; ++i) if (orig_pos[i] >= 0) src[orig_pos[i]] = block[i]; } } else { direct = pick_min_grad_direct(src, above_filt_len, row, col, width, height, pitch, 1, 1); pick_filter_block_horz(src, block, orig_pos, above_filt_len, row, col, width, height, pitch, pivot, line_length, 1, direct); aom_lpf_horizontal_4(block + pivot * line_length, line_length, lfi->mblim, lfi->lim, lfi->hev_thr); for (i = 0; i < 256; ++i) if (orig_pos[i] >= 0) src[orig_pos[i]] = block[i]; if (mask_4x4_int & 1) { for (i = 0; i < 256; ++i) { block[i] = 0; orig_pos[i] = -1; } direct = pick_min_grad_direct(src, above_filt_len, row, col, width, height, pitch, 1, 1); pick_filter_block_horz(src, block, orig_pos, 4, row + 4, col, width, height, pitch, pivot, line_length, 1, direct); aom_lpf_horizontal_4(block + pivot * line_length, line_length, lfi->mblim, lfi->lim, lfi->hev_thr); for (i = 0; i < 256; ++i) if (orig_pos[i] >= 0) src[orig_pos[i]] = block[i]; } } } else if (mask_4x4_int & 1) { direct = pick_min_grad_direct(src, 4, row, col, width, height, pitch, 1, 1); pick_filter_block_horz(src, block, orig_pos, 4, row + 4, col, width, height, pitch, pivot, line_length, 1, direct); aom_lpf_horizontal_4(block + pivot * line_length, line_length, lfi->mblim, lfi->lim, lfi->hev_thr); for (i = 0; i < 256; ++i) if (orig_pos[i] >= 0) src[orig_pos[i]] = block[i]; } #else // CONFIG_LPF_DIRECT if (mask_16x16 & 1) { if ((mask_16x16 & 3) == 3) { aom_lpf_horizontal_edge_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); count = 2; } else { aom_lpf_horizontal_edge_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); } } else if (mask_8x8 & 1) { if ((mask_8x8 & 3) == 3) { // Next block's thresholds. const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1); aom_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr); if ((mask_4x4_int & 3) == 3) { aom_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr); } else { if (mask_4x4_int & 1) aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); else if (mask_4x4_int & 2) aom_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, lfin->lim, lfin->hev_thr); } count = 2; } else { aom_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); if (mask_4x4_int & 1) aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); } } else if (mask_4x4 & 1) { if ((mask_4x4 & 3) == 3) { // Next block's thresholds. const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1); aom_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr); if ((mask_4x4_int & 3) == 3) { aom_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr); } else { if (mask_4x4_int & 1) aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); else if (mask_4x4_int & 2) aom_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, lfin->lim, lfin->hev_thr); } count = 2; } else { aom_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); if (mask_4x4_int & 1) aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); } } else if (mask_4x4_int & 1) { aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); } #endif // CONFIG_LPF_DIRECT } #if CONFIG_LPF_DIRECT idx_c += col_step * count; #endif s += 8 * count; lfl += count; mask_16x16 >>= count; mask_8x8 >>= count; mask_4x4 >>= count; mask_4x4_int >>= count; } } #if CONFIG_HIGHBITDEPTH static void highbd_filter_selectively_horiz( uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int, const loop_filter_info_n *lfi_n, const uint8_t *lfl, int bd) { unsigned int mask; int count; for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; mask >>= count) { const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl; count = 1; if (mask & 1) { if (mask_16x16 & 1) { if ((mask_16x16 & 3) == 3) { aom_highbd_lpf_horizontal_edge_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); count = 2; } else { aom_highbd_lpf_horizontal_edge_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); } } else if (mask_8x8 & 1) { if ((mask_8x8 & 3) == 3) { // Next block's thresholds. const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1); aom_highbd_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr, bd); if ((mask_4x4_int & 3) == 3) { aom_highbd_lpf_horizontal_4_dual( s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr, bd); } else { if (mask_4x4_int & 1) { aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); } else if (mask_4x4_int & 2) { aom_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, lfin->lim, lfin->hev_thr, bd); } } count = 2; } else { aom_highbd_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); if (mask_4x4_int & 1) { aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); } } } else if (mask_4x4 & 1) { if ((mask_4x4 & 3) == 3) { // Next block's thresholds. const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1); aom_highbd_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr, bd); if ((mask_4x4_int & 3) == 3) { aom_highbd_lpf_horizontal_4_dual( s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr, bd); } else { if (mask_4x4_int & 1) { aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); } else if (mask_4x4_int & 2) { aom_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, lfin->lim, lfin->hev_thr, bd); } } count = 2; } else { aom_highbd_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); if (mask_4x4_int & 1) { aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); } } } else if (mask_4x4_int & 1) { aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); } } s += 8 * count; lfl += count; mask_16x16 >>= count; mask_8x8 >>= count; mask_4x4 >>= count; mask_4x4_int >>= count; } } #endif // CONFIG_HIGHBITDEPTH // This function ors into the current lfm structure, where to do loop // filters for the specific mi we are looking at. It uses information // including the block_size_type (32x16, 32x32, etc.), the transform size, // whether there were any coefficients encoded, and the loop filter strength // block we are currently looking at. Shift is used to position the // 1's we produce. // TODO(JBB) Need another function for different resolution color.. static void build_masks(AV1_COMMON *const cm, const loop_filter_info_n *const lfi_n, const MODE_INFO *mi, const int shift_y, const int shift_uv, LOOP_FILTER_MASK *lfm) { const MB_MODE_INFO *mbmi = &mi->mbmi; const BLOCK_SIZE block_size = mbmi->sb_type; // TODO(debargha): Check if masks can be setup correctly when // rectangular transfroms are used with the EXT_TX expt. const TX_SIZE tx_size_y = txsize_sqr_map[mbmi->tx_size]; const TX_SIZE tx_size_y_left = txsize_horz_map[mbmi->tx_size]; const TX_SIZE tx_size_y_above = txsize_vert_map[mbmi->tx_size]; const TX_SIZE tx_size_uv = txsize_sqr_map[uv_txsize_lookup[block_size][mbmi->tx_size][1][1]]; const TX_SIZE tx_size_uv_left = txsize_horz_map[uv_txsize_lookup[block_size][mbmi->tx_size][1][1]]; const TX_SIZE tx_size_uv_above = txsize_vert_map[uv_txsize_lookup[block_size][mbmi->tx_size][1][1]]; #if CONFIG_EXT_DELTA_Q const int filter_level = get_filter_level(cm, lfi_n, mbmi); #else const int filter_level = get_filter_level(lfi_n, mbmi); (void)cm; #endif uint64_t *const left_y = &lfm->left_y[tx_size_y_left]; uint64_t *const above_y = &lfm->above_y[tx_size_y_above]; uint64_t *const int_4x4_y = &lfm->int_4x4_y; uint16_t *const left_uv = &lfm->left_uv[tx_size_uv_left]; uint16_t *const above_uv = &lfm->above_uv[tx_size_uv_above]; uint16_t *const int_4x4_uv = &lfm->left_int_4x4_uv; int i; // If filter level is 0 we don't loop filter. if (!filter_level) { return; } else { const int w = num_8x8_blocks_wide_lookup[block_size]; const int h = num_8x8_blocks_high_lookup[block_size]; const int row = (shift_y >> MAX_MIB_SIZE_LOG2); const int col = shift_y - (row << MAX_MIB_SIZE_LOG2); for (i = 0; i < h; i++) memset(&lfm->lfl_y[row + i][col], filter_level, w); } // These set 1 in the current block size for the block size edges. // For instance if the block size is 32x16, we'll set: // above = 1111 // 0000 // and // left = 1000 // = 1000 // NOTE : In this example the low bit is left most ( 1000 ) is stored as // 1, not 8... // // U and V set things on a 16 bit scale. // *above_y |= above_prediction_mask[block_size] << shift_y; *above_uv |= above_prediction_mask_uv[block_size] << shift_uv; *left_y |= left_prediction_mask[block_size] << shift_y; *left_uv |= left_prediction_mask_uv[block_size] << shift_uv; // If the block has no coefficients and is not intra we skip applying // the loop filter on block edges. if (mbmi->skip && is_inter_block(mbmi)) return; // Here we are adding a mask for the transform size. The transform // size mask is set to be correct for a 64x64 prediction block size. We // mask to match the size of the block we are working on and then shift it // into place.. *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y_above]) << shift_y; *above_uv |= (size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv_above]) << shift_uv; *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y_left]) << shift_y; *left_uv |= (size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv_left]) << shift_uv; // Here we are trying to determine what to do with the internal 4x4 block // boundaries. These differ from the 4x4 boundaries on the outside edge of // an 8x8 in that the internal ones can be skipped and don't depend on // the prediction block size. if (tx_size_y == TX_4X4) *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffffULL) << shift_y; if (tx_size_uv == TX_4X4) *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv; } // This function does the same thing as the one above with the exception that // it only affects the y masks. It exists because for blocks < 16x16 in size, // we only update u and v masks on the first block. static void build_y_mask(AV1_COMMON *const cm, const loop_filter_info_n *const lfi_n, const MODE_INFO *mi, const int shift_y, #if CONFIG_SUPERTX int supertx_enabled, #endif // CONFIG_SUPERTX LOOP_FILTER_MASK *lfm) { const MB_MODE_INFO *mbmi = &mi->mbmi; const TX_SIZE tx_size_y = txsize_sqr_map[mbmi->tx_size]; const TX_SIZE tx_size_y_left = txsize_horz_map[mbmi->tx_size]; const TX_SIZE tx_size_y_above = txsize_vert_map[mbmi->tx_size]; #if CONFIG_SUPERTX const BLOCK_SIZE block_size = supertx_enabled ? (BLOCK_SIZE)(3 * tx_size_y) : mbmi->sb_type; #else const BLOCK_SIZE block_size = mbmi->sb_type; #endif #if CONFIG_EXT_DELTA_Q const int filter_level = get_filter_level(cm, lfi_n, mbmi); #else const int filter_level = get_filter_level(lfi_n, mbmi); (void)cm; #endif uint64_t *const left_y = &lfm->left_y[tx_size_y_left]; uint64_t *const above_y = &lfm->above_y[tx_size_y_above]; uint64_t *const int_4x4_y = &lfm->int_4x4_y; int i; if (!filter_level) { return; } else { const int w = num_8x8_blocks_wide_lookup[block_size]; const int h = num_8x8_blocks_high_lookup[block_size]; const int row = (shift_y >> MAX_MIB_SIZE_LOG2); const int col = shift_y - (row << MAX_MIB_SIZE_LOG2); for (i = 0; i < h; i++) memset(&lfm->lfl_y[row + i][col], filter_level, w); } *above_y |= above_prediction_mask[block_size] << shift_y; *left_y |= left_prediction_mask[block_size] << shift_y; if (mbmi->skip && is_inter_block(mbmi)) return; *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y_above]) << shift_y; *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y_left]) << shift_y; if (tx_size_y == TX_4X4) *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffffULL) << shift_y; } #if CONFIG_LOOPFILTERING_ACROSS_TILES // This function update the bit masks for the entire 64x64 region represented // by mi_row, mi_col. In case one of the edge is a tile boundary, loop filtering // for that edge is disabled. This function only check the tile boundary info // for the top left corner mi to determine the boundary information for the // top and left edge of the whole super block static void update_tile_boundary_filter_mask(AV1_COMMON *const cm, const int mi_row, const int mi_col, LOOP_FILTER_MASK *lfm) { int i; MODE_INFO *const mi = cm->mi + mi_row * cm->mi_stride + mi_col; if (mi->mbmi.boundary_info & TILE_LEFT_BOUNDARY) { for (i = 0; i <= TX_32X32; i++) { lfm->left_y[i] &= 0xfefefefefefefefeULL; lfm->left_uv[i] &= 0xeeee; } } if (mi->mbmi.boundary_info & TILE_ABOVE_BOUNDARY) { for (i = 0; i <= TX_32X32; i++) { lfm->above_y[i] &= 0xffffffffffffff00ULL; lfm->above_uv[i] &= 0xfff0; } } } #endif // CONFIG_LOOPFILTERING_ACROSS_TILES // This function sets up the bit masks for the entire 64x64 region represented // by mi_row, mi_col. // TODO(JBB): This function only works for yv12. void av1_setup_mask(AV1_COMMON *const cm, const int mi_row, const int mi_col, MODE_INFO **mi, const int mode_info_stride, LOOP_FILTER_MASK *lfm) { int idx_32, idx_16, idx_8; const loop_filter_info_n *const lfi_n = &cm->lf_info; MODE_INFO **mip = mi; MODE_INFO **mip2 = mi; // These are offsets to the next mi in the 64x64 block. It is what gets // added to the mi ptr as we go through each loop. It helps us to avoid // setting up special row and column counters for each index. The last step // brings us out back to the starting position. const int offset_32[] = { 4, (mode_info_stride << 2) - 4, 4, -(mode_info_stride << 2) - 4 }; const int offset_16[] = { 2, (mode_info_stride << 1) - 2, 2, -(mode_info_stride << 1) - 2 }; const int offset[] = { 1, mode_info_stride - 1, 1, -mode_info_stride - 1 }; // Following variables represent shifts to position the current block // mask over the appropriate block. A shift of 36 to the left will move // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left // 4 rows to the appropriate spot. const int shift_32_y[] = { 0, 4, 32, 36 }; const int shift_16_y[] = { 0, 2, 16, 18 }; const int shift_8_y[] = { 0, 1, 8, 9 }; const int shift_32_uv[] = { 0, 2, 8, 10 }; const int shift_16_uv[] = { 0, 1, 4, 5 }; int i; const int max_rows = AOMMIN(cm->mi_rows - mi_row, MAX_MIB_SIZE); const int max_cols = AOMMIN(cm->mi_cols - mi_col, MAX_MIB_SIZE); #if CONFIG_EXT_PARTITION assert(0 && "Not yet updated"); #endif // CONFIG_EXT_PARTITION av1_zero(*lfm); assert(mip[0] != NULL); // TODO(jimbankoski): Try moving most of the following code into decode // loop and storing lfm in the mbmi structure so that we don't have to go // through the recursive loop structure multiple times. switch (mip[0]->mbmi.sb_type) { case BLOCK_64X64: build_masks(cm, lfi_n, mip[0], 0, 0, lfm); break; case BLOCK_64X32: build_masks(cm, lfi_n, mip[0], 0, 0, lfm); #if CONFIG_SUPERTX && CONFIG_TX64X64 if (supertx_enabled(&mip[0]->mbmi)) break; #endif // CONFIG_SUPERTX && CONFIG_TX64X64 mip2 = mip + mode_info_stride * 4; if (4 >= max_rows) break; build_masks(cm, lfi_n, mip2[0], 32, 8, lfm); break; case BLOCK_32X64: build_masks(cm, lfi_n, mip[0], 0, 0, lfm); #if CONFIG_SUPERTX && CONFIG_TX64X64 if (supertx_enabled(&mip[0]->mbmi)) break; #endif // CONFIG_SUPERTX && CONFIG_TX64X64 mip2 = mip + 4; if (4 >= max_cols) break; build_masks(cm, lfi_n, mip2[0], 4, 2, lfm); break; default: #if CONFIG_SUPERTX && CONFIG_TX64X64 if (mip[0]->mbmi.tx_size == TX_64X64) { build_masks(cm, lfi_n, mip[0], 0, 0, lfm); } else { #endif // CONFIG_SUPERTX && CONFIG_TX64X64 for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) { const int shift_y_32 = shift_32_y[idx_32]; const int shift_uv_32 = shift_32_uv[idx_32]; const int mi_32_col_offset = ((idx_32 & 1) << 2); const int mi_32_row_offset = ((idx_32 >> 1) << 2); if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows) continue; switch (mip[0]->mbmi.sb_type) { case BLOCK_32X32: build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm); break; case BLOCK_32X16: build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm); #if CONFIG_SUPERTX if (supertx_enabled(&mip[0]->mbmi)) break; #endif if (mi_32_row_offset + 2 >= max_rows) continue; mip2 = mip + mode_info_stride * 2; build_masks(cm, lfi_n, mip2[0], shift_y_32 + 16, shift_uv_32 + 4, lfm); break; case BLOCK_16X32: build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm); #if CONFIG_SUPERTX if (supertx_enabled(&mip[0]->mbmi)) break; #endif if (mi_32_col_offset + 2 >= max_cols) continue; mip2 = mip + 2; build_masks(cm, lfi_n, mip2[0], shift_y_32 + 2, shift_uv_32 + 1, lfm); break; default: #if CONFIG_SUPERTX if (mip[0]->mbmi.tx_size == TX_32X32) { build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm); break; } #endif for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) { const int shift_y_32_16 = shift_y_32 + shift_16_y[idx_16]; const int shift_uv_32_16 = shift_uv_32 + shift_16_uv[idx_16]; const int mi_16_col_offset = mi_32_col_offset + ((idx_16 & 1) << 1); const int mi_16_row_offset = mi_32_row_offset + ((idx_16 >> 1) << 1); if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows) continue; switch (mip[0]->mbmi.sb_type) { case BLOCK_16X16: build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16, lfm); break; case BLOCK_16X8: #if CONFIG_SUPERTX if (supertx_enabled(&mip[0]->mbmi)) break; #endif build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16, lfm); if (mi_16_row_offset + 1 >= max_rows) continue; mip2 = mip + mode_info_stride; build_y_mask(cm, lfi_n, mip2[0], shift_y_32_16 + 8, #if CONFIG_SUPERTX 0, #endif lfm); break; case BLOCK_8X16: #if CONFIG_SUPERTX if (supertx_enabled(&mip[0]->mbmi)) break; #endif build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16, lfm); if (mi_16_col_offset + 1 >= max_cols) continue; mip2 = mip + 1; build_y_mask(cm, lfi_n, mip2[0], shift_y_32_16 + 1, #if CONFIG_SUPERTX 0, #endif lfm); break; default: { const int shift_y_32_16_8_zero = shift_y_32_16 + shift_8_y[0]; #if CONFIG_SUPERTX if (mip[0]->mbmi.tx_size == TX_16X16) { build_masks(cm, lfi_n, mip[0], shift_y_32_16_8_zero, shift_uv_32_16, lfm); break; } #endif build_masks(cm, lfi_n, mip[0], shift_y_32_16_8_zero, shift_uv_32_16, lfm); mip += offset[0]; for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) { const int shift_y_32_16_8 = shift_y_32_16 + shift_8_y[idx_8]; const int mi_8_col_offset = mi_16_col_offset + ((idx_8 & 1)); const int mi_8_row_offset = mi_16_row_offset + ((idx_8 >> 1)); if (mi_8_col_offset >= max_cols || mi_8_row_offset >= max_rows) continue; build_y_mask(cm, lfi_n, mip[0], shift_y_32_16_8, #if CONFIG_SUPERTX supertx_enabled(&mip[0]->mbmi), #endif lfm); } break; } } } break; } } #if CONFIG_SUPERTX && CONFIG_TX64X64 } #endif // CONFIG_SUPERTX && CONFIG_TX64X64 break; } // The largest loopfilter we have is 16x16 so we use the 16x16 mask // for 32x32 transforms also. lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32]; lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32]; lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32]; lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32]; // We do at least 8 tap filter on every 32x32 even if the transform size // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and // remove it from the 4x4. lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border; lfm->left_y[TX_4X4] &= ~left_border; lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border; lfm->above_y[TX_4X4] &= ~above_border; lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv; lfm->left_uv[TX_4X4] &= ~left_border_uv; lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv; lfm->above_uv[TX_4X4] &= ~above_border_uv; // We do some special edge handling. if (mi_row + MAX_MIB_SIZE > cm->mi_rows) { const uint64_t rows = cm->mi_rows - mi_row; // Each pixel inside the border gets a 1, const uint64_t mask_y = (((uint64_t)1 << (rows << MAX_MIB_SIZE_LOG2)) - 1); const uint16_t mask_uv = (((uint16_t)1 << (((rows + 1) >> 1) << (MAX_MIB_SIZE_LOG2 - 1))) - 1); // Remove values completely outside our border. for (i = 0; i < TX_32X32; i++) { lfm->left_y[i] &= mask_y; lfm->above_y[i] &= mask_y; lfm->left_uv[i] &= mask_uv; lfm->above_uv[i] &= mask_uv; } lfm->int_4x4_y &= mask_y; lfm->above_int_4x4_uv = lfm->left_int_4x4_uv & mask_uv; // We don't apply a wide loop filter on the last uv block row. If set // apply the shorter one instead. if (rows == 1) { lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16]; lfm->above_uv[TX_16X16] = 0; } if (rows == 5) { lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00; lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00); } } else { lfm->above_int_4x4_uv = lfm->left_int_4x4_uv; } if (mi_col + MAX_MIB_SIZE > cm->mi_cols) { const uint64_t columns = cm->mi_cols - mi_col; // Each pixel inside the border gets a 1, the multiply copies the border // to where we need it. const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101ULL; const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111; // Internal edges are not applied on the last column of the image so // we mask 1 more for the internal edges const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111; // Remove the bits outside the image edge. for (i = 0; i < TX_32X32; i++) { lfm->left_y[i] &= mask_y; lfm->above_y[i] &= mask_y; lfm->left_uv[i] &= mask_uv; lfm->above_uv[i] &= mask_uv; } lfm->int_4x4_y &= mask_y; lfm->left_int_4x4_uv &= mask_uv_int; // We don't apply a wide loop filter on the last uv column. If set // apply the shorter one instead. if (columns == 1) { lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16]; lfm->left_uv[TX_16X16] = 0; } if (columns == 5) { lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc); lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc); } } // We don't apply a loop filter on the first column in the image, mask that // out. if (mi_col == 0) { for (i = 0; i < TX_32X32; i++) { lfm->left_y[i] &= 0xfefefefefefefefeULL; lfm->left_uv[i] &= 0xeeee; } } #if CONFIG_LOOPFILTERING_ACROSS_TILES if (av1_disable_loopfilter_on_tile_boundary(cm)) { update_tile_boundary_filter_mask(cm, mi_row, mi_col, lfm); } #endif // CONFIG_LOOPFILTERING_ACROSS_TILES // Assert if we try to apply 2 different loop filters at the same position. assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8])); assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4])); assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4])); assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16])); assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_8X8])); assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4])); assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4])); assert(!(lfm->left_int_4x4_uv & lfm->left_uv[TX_16X16])); assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8])); assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4])); assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4])); assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16])); assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8])); assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4])); assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4])); assert(!(lfm->above_int_4x4_uv & lfm->above_uv[TX_16X16])); } static void filter_selectively_vert( uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int, const loop_filter_info_n *lfi_n, const uint8_t *lfl #if CONFIG_LPF_DIRECT , uint8_t *const src, int mi_row, int mi_col, int idx_r, int col_step, int width, int height, int ss_x, int ss_y #endif ) { unsigned int mask; #if CONFIG_LPF_DIRECT // scale for u, v plane width >>= ss_x; height >>= ss_y; int idx_c = 0; #endif for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; mask >>= 1) { const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl; #if CONFIG_LPF_DIRECT int i; const int pivot = 8; const int left_filt_len = mask_16x16 & 1 ? 8 : 4; const int right_filt_len = mask_16x16 & 1 ? 8 : 4; const int line_length = 16; uint8_t block[128]; int orig_pos[128]; // actual position for current pixel const int row = (mi_row + idx_r) * MI_SIZE >> ss_y; const int col = (mi_col + idx_c) * MI_SIZE >> ss_x; // Could use asymmetric length in the future assert(left_filt_len == right_filt_len); (void)right_filt_len; if ((mask_16x16 & 1) || (mask_8x8 & 1) || (mask_4x4 & 1)) { for (i = 0; i < 128; ++i) { block[i] = 0; orig_pos[i] = -1; } int direct = pick_min_grad_direct(src, left_filt_len, row, col, width, height, pitch, 1, 0); pick_filter_block_vert(src, block, orig_pos, left_filt_len, row, col, width, height, pitch, pivot, line_length, 1, direct); // apply filtering if (mask_16x16 & 1) { aom_lpf_vertical_16(block + pivot, line_length, lfi->mblim, lfi->lim, lfi->hev_thr); } else if (mask_8x8 & 1) { aom_lpf_vertical_8(block + pivot, line_length, lfi->mblim, lfi->lim, lfi->hev_thr); } else if (mask_4x4 & 1) { aom_lpf_vertical_4(block + pivot, line_length, lfi->mblim, lfi->lim, lfi->hev_thr); } for (i = 0; i < 128; ++i) if (orig_pos[i] >= 0) src[orig_pos[i]] = block[i]; } // filter inner 4x4 if (mask_4x4_int & 1) { for (i = 0; i < 128; ++i) { block[i] = 0; orig_pos[i] = -1; } int direct = pick_min_grad_direct(src, 4, row, col + 4, width, height, pitch, 1, 0); pick_filter_block_vert(src, block, orig_pos, 4, row, col + 4, width, height, pitch, pivot, line_length, 1, direct); aom_lpf_vertical_4(block + pivot, line_length, lfi->mblim, lfi->lim, lfi->hev_thr); for (i = 0; i < 128; ++i) if (orig_pos[i] >= 0) src[orig_pos[i]] = block[i]; } #else if (mask & 1) { if (mask_16x16 & 1) { aom_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); } else if (mask_8x8 & 1) { aom_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); } else if (mask_4x4 & 1) { aom_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); } } if (mask_4x4_int & 1) aom_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); #endif // CONFIG_LPF_DIRECT #if CONFIG_LPF_DIRECT idx_c += col_step; #endif s += 8; lfl += 1; mask_16x16 >>= 1; mask_8x8 >>= 1; mask_4x4 >>= 1; mask_4x4_int >>= 1; } } #if CONFIG_HIGHBITDEPTH static void highbd_filter_selectively_vert( uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int, const loop_filter_info_n *lfi_n, const uint8_t *lfl, int bd) { unsigned int mask; for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; mask >>= 1) { const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl; if (mask & 1) { if (mask_16x16 & 1) { aom_highbd_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); } else if (mask_8x8 & 1) { aom_highbd_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); } else if (mask_4x4 & 1) { aom_highbd_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); } } if (mask_4x4_int & 1) aom_highbd_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); s += 8; lfl += 1; mask_16x16 >>= 1; mask_8x8 >>= 1; mask_4x4 >>= 1; mask_4x4_int >>= 1; } } #endif // CONFIG_HIGHBITDEPTH typedef struct { unsigned int m16x16; unsigned int m8x8; unsigned int m4x4; } FilterMasks; // Get filter level and masks for the given row index 'idx_r'. (Only used for // the non420 case). // Note: 'row_masks_ptr' and/or 'col_masks_ptr' can be passed NULL. static void get_filter_level_and_masks_non420( AV1_COMMON *const cm, const struct macroblockd_plane *const plane, int pl, MODE_INFO **mib, int mi_row, int mi_col, int idx_r, uint8_t *const lfl_r, unsigned int *const mask_4x4_int_r_ptr, unsigned int *const mask_4x4_int_c_ptr, FilterMasks *const row_masks_ptr, FilterMasks *const col_masks_ptr) { const int ss_x = plane->subsampling_x; const int ss_y = plane->subsampling_y; const int col_step = mi_size_wide[BLOCK_8X8] << ss_x; FilterMasks row_masks, col_masks; memset(&row_masks, 0, sizeof(row_masks)); memset(&col_masks, 0, sizeof(col_masks)); unsigned int mask_4x4_int_r = 0, mask_4x4_int_c = 0; const int r = idx_r >> mi_height_log2_lookup[BLOCK_8X8]; // Determine the vertical edges that need filtering int idx_c; for (idx_c = 0; idx_c < cm->mib_size && mi_col + idx_c < cm->mi_cols; idx_c += col_step) { const MODE_INFO *mi = mib[idx_r * cm->mi_stride + idx_c]; const MB_MODE_INFO *mbmi = &mi[0].mbmi; const BLOCK_SIZE sb_type = mbmi->sb_type; const int skip_this = mbmi->skip && is_inter_block(mbmi); // Map index to 8x8 unit const int c = idx_c >> mi_width_log2_lookup[BLOCK_8X8]; const int blk_row = r & (num_8x8_blocks_high_lookup[sb_type] - 1); const int blk_col = c & (num_8x8_blocks_wide_lookup[sb_type] - 1); // left edge of current unit is block/partition edge -> no skip const int block_edge_left = (num_4x4_blocks_wide_lookup[sb_type] > 1) ? !blk_col : 1; const int skip_this_c = skip_this && !block_edge_left; // top edge of current unit is block/partition edge -> no skip const int block_edge_above = (num_4x4_blocks_high_lookup[sb_type] > 1) ? !blk_row : 1; const int skip_this_r = skip_this && !block_edge_above; TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV) ? av1_get_uv_tx_size(mbmi, plane) : mbmi->tx_size; const int skip_border_4x4_c = ss_x && mi_col + idx_c >= cm->mi_cols - mi_size_wide[BLOCK_8X8]; const int skip_border_4x4_r = ss_y && mi_row + idx_r >= cm->mi_rows - mi_size_high[BLOCK_8X8]; int tx_size_mask = 0; const int c_step = (c >> ss_x); const int r_step = (r >> ss_y); const int col_mask = 1 << c_step; #if CONFIG_VAR_TX if (is_inter_block(mbmi) && !mbmi->skip) { const int tx_row_idx = (blk_row * mi_size_high[BLOCK_8X8] << TX_UNIT_HIGH_LOG2) >> 1; const int tx_col_idx = (blk_col * mi_size_wide[BLOCK_8X8] << TX_UNIT_WIDE_LOG2) >> 1; #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 const BLOCK_SIZE bsize = AOMMAX(BLOCK_4X4, get_plane_block_size(mbmi->sb_type, plane)); #else const BLOCK_SIZE bsize = get_plane_block_size(mbmi->sb_type, plane); #endif const TX_SIZE mb_tx_size = mbmi->inter_tx_size[tx_row_idx][tx_col_idx]; tx_size = (plane->plane_type == PLANE_TYPE_UV) ? uv_txsize_lookup[bsize][mb_tx_size][0][0] : mb_tx_size; } #endif // Filter level can vary per MI #if CONFIG_EXT_DELTA_Q if (!(lfl_r[c_step] = get_filter_level(cm, &cm->lf_info, mbmi))) continue; #else if (!(lfl_r[c_step] = get_filter_level(&cm->lf_info, mbmi))) continue; #endif #if CONFIG_VAR_TX TX_SIZE tx_size_horz_edge, tx_size_vert_edge; // filt_len_vert_edge is the length of deblocking filter for a vertical edge // The filter direction of a vertical edge is horizontal. // Thus, filt_len_vert_edge is determined as the minimum width of the two // transform block sizes on the left and right (current block) side of edge const int filt_len_vert_edge = AOMMIN( tx_size_wide[tx_size], tx_size_wide[cm->left_txfm_context[pl][((mi_row + idx_r) & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2]]); // filt_len_horz_edge is the len of deblocking filter for a horizontal edge // The filter direction of a horizontal edge is vertical. // Thus, filt_len_horz_edge is determined as the minimum height of the two // transform block sizes on the top and bottom (current block) side of edge const int filt_len_horz_edge = AOMMIN(tx_size_high[tx_size], tx_size_high[cm->top_txfm_context[pl][(mi_col + idx_c) << TX_UNIT_WIDE_LOG2]]); // transform width/height of current block const int tx_wide_cur = tx_size_wide[tx_size]; const int tx_high_cur = tx_size_high[tx_size]; // tx_size_vert_edge is square transform size for a vertical deblocking edge // It determines the type of filter applied to the vertical edge // Similarly, tx_size_horz_edge is for a horizontal deblocking edge tx_size_vert_edge = get_sqr_tx_size(filt_len_vert_edge); tx_size_horz_edge = get_sqr_tx_size(filt_len_horz_edge); memset(cm->top_txfm_context[pl] + ((mi_col + idx_c) << TX_UNIT_WIDE_LOG2), tx_size, mi_size_wide[BLOCK_8X8] << TX_UNIT_WIDE_LOG2); memset(cm->left_txfm_context[pl] + (((mi_row + idx_r) & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2), tx_size, mi_size_high[BLOCK_8X8] << TX_UNIT_HIGH_LOG2); #else // The length (or equally the square tx size) of deblocking filter is only // determined by // a) current block's width for a vertical deblocking edge // b) current block's height for a horizontal deblocking edge TX_SIZE tx_size_vert_edge = txsize_horz_map[tx_size]; TX_SIZE tx_size_horz_edge = txsize_vert_map[tx_size]; (void)pl; #endif // CONFIG_VAR_TX if (tx_size_vert_edge == TX_32X32) tx_size_mask = 3; else if (tx_size_vert_edge == TX_16X16) tx_size_mask = 1; else tx_size_mask = 0; // Build masks based on the transform size of each block // handle vertical mask if (tx_size_vert_edge == TX_32X32) { if (!skip_this_c && (c_step & tx_size_mask) == 0) { if (!skip_border_4x4_c) col_masks.m16x16 |= col_mask; else col_masks.m8x8 |= col_mask; } } else if (tx_size_vert_edge == TX_16X16) { if (!skip_this_c && (c_step & tx_size_mask) == 0) { if (!skip_border_4x4_c) col_masks.m16x16 |= col_mask; else col_masks.m8x8 |= col_mask; } } else { // force 8x8 filtering on 32x32 boundaries if (!skip_this_c && (c_step & tx_size_mask) == 0) { if (tx_size_vert_edge == TX_8X8 || (c_step & 3) == 0) col_masks.m8x8 |= col_mask; else col_masks.m4x4 |= col_mask; } #if CONFIG_VAR_TX if (!skip_this && tx_wide_cur < 8 && !skip_border_4x4_c && (c_step & tx_size_mask) == 0) #else if (!skip_this && tx_size_vert_edge < TX_8X8 && !skip_border_4x4_c && (c_step & tx_size_mask) == 0) #endif // CONFIG_VAR_TX mask_4x4_int_c |= col_mask; } if (tx_size_horz_edge == TX_32X32) tx_size_mask = 3; else if (tx_size_horz_edge == TX_16X16) tx_size_mask = 1; else tx_size_mask = 0; // set horizontal mask if (tx_size_horz_edge == TX_32X32) { if (!skip_this_r && (r_step & tx_size_mask) == 0) { if (!skip_border_4x4_r) row_masks.m16x16 |= col_mask; else row_masks.m8x8 |= col_mask; } } else if (tx_size_horz_edge == TX_16X16) { if (!skip_this_r && (r_step & tx_size_mask) == 0) { if (!skip_border_4x4_r) row_masks.m16x16 |= col_mask; else row_masks.m8x8 |= col_mask; } } else { // force 8x8 filtering on 32x32 boundaries if (!skip_this_r && (r_step & tx_size_mask) == 0) { if (tx_size_horz_edge == TX_8X8 || (r_step & 3) == 0) row_masks.m8x8 |= col_mask; else row_masks.m4x4 |= col_mask; } #if CONFIG_VAR_TX if (!skip_this && tx_high_cur < 8 && !skip_border_4x4_r && (r_step & tx_size_mask) == 0) #else if (!skip_this && tx_size_horz_edge < TX_8X8 && !skip_border_4x4_r && (r_step & tx_size_mask) == 0) #endif // CONFIG_VAR_TX mask_4x4_int_r |= col_mask; } } if (row_masks_ptr) *row_masks_ptr = row_masks; if (col_masks_ptr) *col_masks_ptr = col_masks; if (mask_4x4_int_c_ptr) *mask_4x4_int_c_ptr = mask_4x4_int_c; if (mask_4x4_int_r_ptr) *mask_4x4_int_r_ptr = mask_4x4_int_r; } void av1_filter_block_plane_non420_ver(AV1_COMMON *const cm, struct macroblockd_plane *plane, MODE_INFO **mib, int mi_row, int mi_col, int pl) { const int ss_y = plane->subsampling_y; const int row_step = mi_size_high[BLOCK_8X8] << ss_y; #if CONFIG_LPF_DIRECT const int ss_x = plane->subsampling_x; const int col_step = mi_size_wide[BLOCK_8X8] << ss_x; #endif struct buf_2d *const dst = &plane->dst; uint8_t *const dst0 = dst->buf; uint8_t lfl[MAX_MIB_SIZE][MAX_MIB_SIZE] = { { 0 } }; int idx_r; for (idx_r = 0; idx_r < cm->mib_size && mi_row + idx_r < cm->mi_rows; idx_r += row_step) { unsigned int mask_4x4_int; FilterMasks col_masks; const int r = idx_r >> mi_height_log2_lookup[BLOCK_8X8]; get_filter_level_and_masks_non420(cm, plane, pl, mib, mi_row, mi_col, idx_r, &lfl[r][0], NULL, &mask_4x4_int, NULL, &col_masks); // Disable filtering on the leftmost column or tile boundary unsigned int border_mask = ~(mi_col == 0); #if CONFIG_LOOPFILTERING_ACROSS_TILES MODE_INFO *const mi = cm->mi + (mi_row + idx_r) * cm->mi_stride + mi_col; if (av1_disable_loopfilter_on_tile_boundary(cm) && ((mi->mbmi.boundary_info & TILE_LEFT_BOUNDARY) != 0)) { border_mask = 0xfffffffe; } #endif // CONFIG_LOOPFILTERING_ACROSS_TILES #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) highbd_filter_selectively_vert( CONVERT_TO_SHORTPTR(dst->buf), dst->stride, col_masks.m16x16 & border_mask, col_masks.m8x8 & border_mask, col_masks.m4x4 & border_mask, mask_4x4_int, &cm->lf_info, &lfl[r][0], (int)cm->bit_depth); else #endif // CONFIG_HIGHBITDEPTH filter_selectively_vert( dst->buf, dst->stride, col_masks.m16x16 & border_mask, col_masks.m8x8 & border_mask, col_masks.m4x4 & border_mask, mask_4x4_int, &cm->lf_info, &lfl[r][0] #if CONFIG_LPF_DIRECT , dst->buf0, mi_row, mi_col, idx_r, col_step, cm->width, cm->height, ss_x, ss_y #endif // CONFIG_LPF_DIRECT ); dst->buf += 8 * dst->stride; } // Now do horizontal pass dst->buf = dst0; } void av1_filter_block_plane_non420_hor(AV1_COMMON *const cm, struct macroblockd_plane *plane, MODE_INFO **mib, int mi_row, int mi_col, int pl) { const int ss_y = plane->subsampling_y; const int row_step = mi_size_high[BLOCK_8X8] << ss_y; #if CONFIG_LPF_DIRECT const int ss_x = plane->subsampling_x; const int col_step = mi_size_wide[BLOCK_8X8] << ss_x; #endif struct buf_2d *const dst = &plane->dst; uint8_t *const dst0 = dst->buf; uint8_t lfl[MAX_MIB_SIZE][MAX_MIB_SIZE] = { { 0 } }; int idx_r; for (idx_r = 0; idx_r < cm->mib_size && mi_row + idx_r < cm->mi_rows; idx_r += row_step) { unsigned int mask_4x4_int; FilterMasks row_masks; const int r = idx_r >> mi_height_log2_lookup[BLOCK_8X8]; get_filter_level_and_masks_non420(cm, plane, pl, mib, mi_row, mi_col, idx_r, &lfl[r][0], &mask_4x4_int, NULL, &row_masks, NULL); #if CONFIG_LOOPFILTERING_ACROSS_TILES // Disable filtering on the abovemost row or tile boundary const MODE_INFO *mi = cm->mi + (mi_row + idx_r) * cm->mi_stride + mi_col; if ((av1_disable_loopfilter_on_tile_boundary(cm) && (mi->mbmi.boundary_info & TILE_ABOVE_BOUNDARY)) || (mi_row + idx_r == 0)) memset(&row_masks, 0, sizeof(row_masks)); #else if (mi_row + idx_r == 0) memset(&row_masks, 0, sizeof(row_masks)); #endif // CONFIG_LOOPFILTERING_ACROSS_TILES #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) highbd_filter_selectively_horiz( CONVERT_TO_SHORTPTR(dst->buf), dst->stride, row_masks.m16x16, row_masks.m8x8, row_masks.m4x4, mask_4x4_int, &cm->lf_info, &lfl[r][0], (int)cm->bit_depth); else #endif // CONFIG_HIGHBITDEPTH filter_selectively_horiz(dst->buf, dst->stride, row_masks.m16x16, row_masks.m8x8, row_masks.m4x4, mask_4x4_int, &cm->lf_info, &lfl[r][0] #if CONFIG_LPF_DIRECT , dst->buf0, mi_row, mi_col, idx_r, col_step, cm->width, cm->height, ss_x, ss_y #endif // CONFIG_LPF_DIRECT ); dst->buf += 8 * dst->stride; } dst->buf = dst0; } void av1_filter_block_plane_ss00_ver(AV1_COMMON *const cm, struct macroblockd_plane *const plane, int mi_row, LOOP_FILTER_MASK *lfm) { struct buf_2d *const dst = &plane->dst; uint8_t *const dst0 = dst->buf; int r; uint64_t mask_16x16 = lfm->left_y[TX_16X16]; uint64_t mask_8x8 = lfm->left_y[TX_8X8]; uint64_t mask_4x4 = lfm->left_y[TX_4X4]; uint64_t mask_4x4_int = lfm->int_4x4_y; assert(plane->subsampling_x == 0 && plane->subsampling_y == 0); // Vertical pass: do 2 rows at one time for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 2) { unsigned int mask_16x16_l = mask_16x16 & 0xffff; unsigned int mask_8x8_l = mask_8x8 & 0xffff; unsigned int mask_4x4_l = mask_4x4 & 0xffff; unsigned int mask_4x4_int_l = mask_4x4_int & 0xffff; // Disable filtering on the leftmost column. #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) highbd_filter_selectively_vert_row2( plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info, &lfm->lfl_y[r][0], (int)cm->bit_depth); else #endif // CONFIG_HIGHBITDEPTH filter_selectively_vert_row2( plane->subsampling_x, dst->buf, dst->stride, mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info, &lfm->lfl_y[r][0]); dst->buf += 2 * MI_SIZE * dst->stride; mask_16x16 >>= 2 * MI_SIZE; mask_8x8 >>= 2 * MI_SIZE; mask_4x4 >>= 2 * MI_SIZE; mask_4x4_int >>= 2 * MI_SIZE; } // Horizontal pass dst->buf = dst0; } void av1_filter_block_plane_ss00_hor(AV1_COMMON *const cm, struct macroblockd_plane *const plane, int mi_row, LOOP_FILTER_MASK *lfm) { struct buf_2d *const dst = &plane->dst; uint8_t *const dst0 = dst->buf; int r; uint64_t mask_16x16 = lfm->above_y[TX_16X16]; uint64_t mask_8x8 = lfm->above_y[TX_8X8]; uint64_t mask_4x4 = lfm->above_y[TX_4X4]; uint64_t mask_4x4_int = lfm->int_4x4_y; assert(plane->subsampling_x == 0 && plane->subsampling_y == 0); for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r++) { unsigned int mask_16x16_r; unsigned int mask_8x8_r; unsigned int mask_4x4_r; if (mi_row + r == 0) { mask_16x16_r = 0; mask_8x8_r = 0; mask_4x4_r = 0; } else { mask_16x16_r = mask_16x16 & 0xff; mask_8x8_r = mask_8x8 & 0xff; mask_4x4_r = mask_4x4 & 0xff; } #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) highbd_filter_selectively_horiz( CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r, mask_4x4_r, mask_4x4_int & 0xff, &cm->lf_info, &lfm->lfl_y[r][0], (int)cm->bit_depth); else #endif // CONFIG_HIGHBITDEPTH #if !CONFIG_LPF_DIRECT filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r, mask_4x4_r, mask_4x4_int & 0xff, &cm->lf_info, &lfm->lfl_y[r][0]); #endif // CONFIG_LPF_DIRECT dst->buf += MI_SIZE * dst->stride; mask_16x16 >>= MI_SIZE; mask_8x8 >>= MI_SIZE; mask_4x4 >>= MI_SIZE; mask_4x4_int >>= MI_SIZE; } // restore the buf pointer in case there is additional filter pass. dst->buf = dst0; } void av1_filter_block_plane_ss11_ver(AV1_COMMON *const cm, struct macroblockd_plane *const plane, int mi_row, LOOP_FILTER_MASK *lfm) { struct buf_2d *const dst = &plane->dst; uint8_t *const dst0 = dst->buf; int r, c; uint16_t mask_16x16 = lfm->left_uv[TX_16X16]; uint16_t mask_8x8 = lfm->left_uv[TX_8X8]; uint16_t mask_4x4 = lfm->left_uv[TX_4X4]; uint16_t mask_4x4_int = lfm->left_int_4x4_uv; assert(plane->subsampling_x == 1 && plane->subsampling_y == 1); assert(plane->plane_type == PLANE_TYPE_UV); memset(lfm->lfl_uv, 0, sizeof(lfm->lfl_uv)); // Vertical pass: do 2 rows at one time for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 4) { for (c = 0; c < (cm->mib_size >> 1); c++) { lfm->lfl_uv[r >> 1][c] = lfm->lfl_y[r][c << 1]; lfm->lfl_uv[(r + 2) >> 1][c] = lfm->lfl_y[r + 2][c << 1]; } { unsigned int mask_16x16_l = mask_16x16 & 0xff; unsigned int mask_8x8_l = mask_8x8 & 0xff; unsigned int mask_4x4_l = mask_4x4 & 0xff; unsigned int mask_4x4_int_l = mask_4x4_int & 0xff; // Disable filtering on the leftmost column. #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) highbd_filter_selectively_vert_row2( plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info, &lfm->lfl_uv[r >> 1][0], (int)cm->bit_depth); else #endif // CONFIG_HIGHBITDEPTH filter_selectively_vert_row2(plane->subsampling_x, dst->buf, dst->stride, mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info, &lfm->lfl_uv[r >> 1][0]); dst->buf += 2 * MI_SIZE * dst->stride; mask_16x16 >>= MI_SIZE; mask_8x8 >>= MI_SIZE; mask_4x4 >>= MI_SIZE; mask_4x4_int >>= MI_SIZE; } } // Horizontal pass dst->buf = dst0; } void av1_filter_block_plane_ss11_hor(AV1_COMMON *const cm, struct macroblockd_plane *const plane, int mi_row, LOOP_FILTER_MASK *lfm) { struct buf_2d *const dst = &plane->dst; uint8_t *const dst0 = dst->buf; int r, c; uint64_t mask_16x16 = lfm->above_uv[TX_16X16]; uint64_t mask_8x8 = lfm->above_uv[TX_8X8]; uint64_t mask_4x4 = lfm->above_uv[TX_4X4]; uint64_t mask_4x4_int = lfm->above_int_4x4_uv; assert(plane->subsampling_x == 1 && plane->subsampling_y == 1); memset(lfm->lfl_uv, 0, sizeof(lfm->lfl_uv)); // re-porpulate the filter level for uv, same as the code for vertical // filter in av1_filter_block_plane_ss11_ver for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 4) { for (c = 0; c < (cm->mib_size >> 1); c++) { lfm->lfl_uv[r >> 1][c] = lfm->lfl_y[r][c << 1]; lfm->lfl_uv[(r + 2) >> 1][c] = lfm->lfl_y[r + 2][c << 1]; } } for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 2) { const int skip_border_4x4_r = mi_row + r == cm->mi_rows - 1; const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : (mask_4x4_int & 0xf); unsigned int mask_16x16_r; unsigned int mask_8x8_r; unsigned int mask_4x4_r; if (mi_row + r == 0) { mask_16x16_r = 0; mask_8x8_r = 0; mask_4x4_r = 0; } else { mask_16x16_r = mask_16x16 & 0xf; mask_8x8_r = mask_8x8 & 0xf; mask_4x4_r = mask_4x4 & 0xf; } #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) highbd_filter_selectively_horiz( CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r, mask_4x4_r, mask_4x4_int_r, &cm->lf_info, &lfm->lfl_uv[r >> 1][0], (int)cm->bit_depth); else #endif // CONFIG_HIGHBITDEPTH #if !CONFIG_LPF_DIRECT filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r, mask_4x4_r, mask_4x4_int_r, &cm->lf_info, &lfm->lfl_uv[r >> 1][0]); #endif // CONFIG_LPF_DIRECT dst->buf += MI_SIZE * dst->stride; mask_16x16 >>= MI_SIZE / 2; mask_8x8 >>= MI_SIZE / 2; mask_4x4 >>= MI_SIZE / 2; mask_4x4_int >>= MI_SIZE / 2; } // restore the buf pointer in case there is additional filter pass. dst->buf = dst0; } #if CONFIG_PARALLEL_DEBLOCKING typedef enum EDGE_DIR { VERT_EDGE = 0, HORZ_EDGE = 1, NUM_EDGE_DIRS } EDGE_DIR; static const uint32_t av1_prediction_masks[NUM_EDGE_DIRS][BLOCK_SIZES_ALL] = { // mask for vertical edges filtering { #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 2 - 1, // BLOCK_2X2 2 - 1, // BLOCK_2X4 4 - 1, // BLOCK_4X2 #endif // CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 4 - 1, // BLOCK_4X4 4 - 1, // BLOCK_4X8 8 - 1, // BLOCK_8X4 8 - 1, // BLOCK_8X8 8 - 1, // BLOCK_8X16 16 - 1, // BLOCK_16X8 16 - 1, // BLOCK_16X16 16 - 1, // BLOCK_16X32 32 - 1, // BLOCK_32X16 32 - 1, // BLOCK_32X32 32 - 1, // BLOCK_32X64 64 - 1, // BLOCK_64X32 64 - 1, // BLOCK_64X64 #if CONFIG_EXT_PARTITION 64 - 1, // BLOCK_64X128 128 - 1, // BLOCK_128X64 128 - 1, // BLOCK_128X128 #endif // CONFIG_EXT_PARTITION 4 - 1, // BLOCK_4X16, 16 - 1, // BLOCK_16X4, 8 - 1, // BLOCK_8X32, 32 - 1 // BLOCK_32X8 }, // mask for horizontal edges filtering { #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 2 - 1, // BLOCK_2X2 4 - 1, // BLOCK_2X4 2 - 1, // BLOCK_4X2 #endif // CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 4 - 1, // BLOCK_4X4 8 - 1, // BLOCK_4X8 4 - 1, // BLOCK_8X4 8 - 1, // BLOCK_8X8 16 - 1, // BLOCK_8X16 8 - 1, // BLOCK_16X8 16 - 1, // BLOCK_16X16 32 - 1, // BLOCK_16X32 16 - 1, // BLOCK_32X16 32 - 1, // BLOCK_32X32 64 - 1, // BLOCK_32X64 32 - 1, // BLOCK_64X32 64 - 1, // BLOCK_64X64 #if CONFIG_EXT_PARTITION 128 - 1, // BLOCK_64X128 64 - 1, // BLOCK_128X64 128 - 1, // BLOCK_128X128 #endif // CONFIG_EXT_PARTITION 16 - 1, // BLOCK_4X16, 4 - 1, // BLOCK_16X4, 32 - 1, // BLOCK_8X32, 8 - 1 // BLOCK_32X8 }, }; static const uint32_t av1_transform_masks[NUM_EDGE_DIRS][TX_SIZES_ALL] = { { #if CONFIG_CHROMA_2X2 2 - 1, // TX_2X2 #endif 4 - 1, // TX_4X4 8 - 1, // TX_8X8 16 - 1, // TX_16X16 32 - 1, // TX_32X32 #if CONFIG_TX64X64 64 - 1, // TX_64X64 #endif // CONFIG_TX64X64 4 - 1, // TX_4X8 8 - 1, // TX_8X4 8 - 1, // TX_8X16 16 - 1, // TX_16X8 16 - 1, // TX_16X32 32 - 1, // TX_32X16 4 - 1, // TX_4X16 16 - 1, // TX_16X4 8 - 1, // TX_8X32 32 - 1 // TX_32X8 }, { #if CONFIG_CHROMA_2X2 2 - 1, // TX_2X2 #endif 4 - 1, // TX_4X4 8 - 1, // TX_8X8 16 - 1, // TX_16X16 32 - 1, // TX_32X32 #if CONFIG_TX64X64 64 - 1, // TX_64X64 #endif // CONFIG_TX64X64 8 - 1, // TX_4X8 4 - 1, // TX_8X4 16 - 1, // TX_8X16 8 - 1, // TX_16X8 32 - 1, // TX_16X32 16 - 1, // TX_32X16 16 - 1, // TX_4X16 4 - 1, // TX_16X4 32 - 1, // TX_8X32 8 - 1 // TX_32X8 } }; static TX_SIZE av1_get_transform_size(const MODE_INFO *const pCurr, const EDGE_DIR edgeDir, const int mi_row, const int mi_col, const int plane, const struct macroblockd_plane *pPlane, const uint32_t scaleHorz, const uint32_t scaleVert) { const MB_MODE_INFO *mbmi = &pCurr->mbmi; TX_SIZE tx_size = (plane == PLANE_TYPE_Y) ? mbmi->tx_size : av1_get_uv_tx_size(mbmi, pPlane); assert(tx_size < TX_SIZES_ALL); #if CONFIG_VAR_TX // mi_row and mi_col is the absolute position of the MI block. // idx_c and idx_r is the relative offset of the MI within the super block // c and r is the relative offset of the 8x8 block within the supert block // blk_row and block_col is the relative offset of the current 8x8 block // within the current partition. const int idx_c = mi_col & MAX_MIB_MASK; const int idx_r = mi_row & MAX_MIB_MASK; const int c = idx_c >> mi_width_log2_lookup[BLOCK_8X8]; const int r = idx_r >> mi_height_log2_lookup[BLOCK_8X8]; const BLOCK_SIZE sb_type = pCurr->mbmi.sb_type; const int blk_row = r & (num_8x8_blocks_high_lookup[sb_type] - 1); const int blk_col = c & (num_8x8_blocks_wide_lookup[sb_type] - 1); if (is_inter_block(mbmi) && !mbmi->skip) { const int tx_row_idx = (blk_row * mi_size_high[BLOCK_8X8] << TX_UNIT_HIGH_LOG2) >> 1; const int tx_col_idx = (blk_col * mi_size_wide[BLOCK_8X8] << TX_UNIT_WIDE_LOG2) >> 1; #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 const BLOCK_SIZE bsize = AOMMAX(BLOCK_4X4, ss_size_lookup[sb_type][scaleHorz][scaleVert]); #else const BLOCK_SIZE bsize = ss_size_lookup[sb_type][scaleHorz][scaleVert]; #endif const TX_SIZE mb_tx_size = mbmi->inter_tx_size[tx_row_idx][tx_col_idx]; assert(mb_tx_size < TX_SIZES_ALL); tx_size = (plane == PLANE_TYPE_UV) ? uv_txsize_lookup[bsize][mb_tx_size][0][0] : mb_tx_size; assert(tx_size < TX_SIZES_ALL); } #else (void)mi_row; (void)mi_col; (void)scaleHorz; (void)scaleVert; #endif // CONFIG_VAR_TX // since in case of chrominance or non-square transorm need to convert // transform size into transform size in particular direction. // for vertical edge, filter direction is horizontal, for horizontal // edge, filter direction is vertical. tx_size = (VERT_EDGE == edgeDir) ? txsize_horz_map[tx_size] : txsize_vert_map[tx_size]; return tx_size; } typedef struct AV1_DEBLOCKING_PARAMETERS { // length of the filter applied to the outer edge uint32_t filterLength; // length of the filter applied to the inner edge uint32_t filterLengthInternal; // deblocking limits const uint8_t *lim; const uint8_t *mblim; const uint8_t *hev_thr; } AV1_DEBLOCKING_PARAMETERS; static void set_lpf_parameters( AV1_DEBLOCKING_PARAMETERS *const pParams, const MODE_INFO **const ppCurr, const ptrdiff_t modeStep, const AV1_COMMON *const cm, const EDGE_DIR edgeDir, const uint32_t x, const uint32_t y, const uint32_t width, const uint32_t height, const int plane, const struct macroblockd_plane *const pPlane, const uint32_t scaleHorz, const uint32_t scaleVert) { // reset to initial values pParams->filterLength = 0; pParams->filterLengthInternal = 0; // no deblocking is required if ((width <= x) || (height <= y)) { return; } const int mi_row = (y << scaleVert) >> MI_SIZE_LOG2; const int mi_col = (x << scaleHorz) >> MI_SIZE_LOG2; const MB_MODE_INFO *mbmi = &ppCurr[0]->mbmi; { const TX_SIZE ts = av1_get_transform_size(ppCurr[0], edgeDir, mi_row, mi_col, plane, pPlane, scaleHorz, scaleVert); #if CONFIG_EXT_DELTA_Q const uint32_t currLevel = get_filter_level(cm, &cm->lf_info, mbmi); #else const uint32_t currLevel = get_filter_level(&cm->lf_info, mbmi); #endif // CONFIG_EXT_DELTA_Q const int currSkipped = mbmi->skip && is_inter_block(mbmi); const uint32_t coord = (VERT_EDGE == edgeDir) ? (x) : (y); uint32_t level = currLevel; // prepare outer edge parameters. deblock the edge if it's an edge of a TU if (coord) { #if CONFIG_LOOPFILTERING_ACROSS_TILES MODE_INFO *const mi = cm->mi + mi_row * cm->mi_stride + mi_col; if (!av1_disable_loopfilter_on_tile_boundary(cm) || ((VERT_EDGE == edgeDir) && (0 == (mi->mbmi.boundary_info & TILE_LEFT_BOUNDARY))) || ((HORZ_EDGE == edgeDir) && (0 == (mi->mbmi.boundary_info & TILE_ABOVE_BOUNDARY)))) #endif // CONFIG_LOOPFILTERING_ACROSS_TILES { const int32_t tuEdge = (coord & av1_transform_masks[edgeDir][ts]) ? (0) : (1); if (tuEdge) { const MODE_INFO *const pPrev = *(ppCurr - modeStep); const int pvRow = (VERT_EDGE == edgeDir) ? (mi_row) : (mi_row - (1 << scaleVert)); const int pvCol = (VERT_EDGE == edgeDir) ? (mi_col - (1 << scaleHorz)) : (mi_col); const TX_SIZE pvTs = av1_get_transform_size(pPrev, edgeDir, pvRow, pvCol, plane, pPlane, scaleHorz, scaleVert); #if CONFIG_EXT_DELTA_Q const uint32_t pvLvl = get_filter_level(cm, &cm->lf_info, &pPrev->mbmi); #else const uint32_t pvLvl = get_filter_level(&cm->lf_info, &pPrev->mbmi); #endif // CONFIG_EXT_DELTA_Q const int pvSkip = pPrev->mbmi.skip && is_inter_block(&pPrev->mbmi); const int32_t puEdge = (coord & av1_prediction_masks[edgeDir] [ss_size_lookup[mbmi->sb_type][scaleHorz] [scaleVert]]) ? (0) : (1); // if the current and the previous blocks are skipped, // deblock the edge if the edge belongs to a PU's edge only. if ((currLevel || pvLvl) && (!pvSkip || !currSkipped || puEdge)) { const TX_SIZE minTs = AOMMIN(ts, pvTs); if (TX_4X4 >= minTs) { pParams->filterLength = 4; } else if (TX_8X8 == minTs) { pParams->filterLength = 8; } else { pParams->filterLength = 16; #if PARALLEL_DEBLOCKING_15TAPLUMAONLY // No wide filtering for chroma plane if (plane != 0) { pParams->filterLength = 8; } #endif } #if PARALLEL_DEBLOCKING_DISABLE_15TAP pParams->filterLength = (TX_4X4 >= AOMMIN(ts, pvTs)) ? (4) : (8); #endif // PARALLEL_DEBLOCKING_DISABLE_15TAP // update the level if the current block is skipped, // but the previous one is not level = (currLevel) ? (currLevel) : (pvLvl); } } } #if !CONFIG_CB4X4 // prepare internal edge parameters if (currLevel && !currSkipped) { pParams->filterLengthInternal = (TX_4X4 >= ts) ? (4) : (0); } #endif // prepare common parameters if (pParams->filterLength || pParams->filterLengthInternal) { const loop_filter_thresh *const limits = cm->lf_info.lfthr + level; pParams->lim = limits->lim; pParams->mblim = limits->mblim; pParams->hev_thr = limits->hev_thr; } } } } static void av1_filter_block_plane_vert(const AV1_COMMON *const cm, const int plane, const MACROBLOCKD_PLANE *const pPlane, const MODE_INFO **ppModeInfo, const uint32_t cuX, const uint32_t cuY) { const int col_step = MI_SIZE >> MI_SIZE_LOG2; const int row_step = MI_SIZE >> MI_SIZE_LOG2; const uint32_t scaleHorz = pPlane->subsampling_x; const uint32_t scaleVert = pPlane->subsampling_y; const uint32_t width = pPlane->dst.width; const uint32_t height = pPlane->dst.height; uint8_t *const pDst = pPlane->dst.buf; const int dstStride = pPlane->dst.stride; for (int y = 0; y < (MAX_MIB_SIZE >> scaleVert); y += row_step) { uint8_t *p = pDst + y * MI_SIZE * dstStride; for (int x = 0; x < (MAX_MIB_SIZE >> scaleHorz); x += col_step) { // inner loop always filter vertical edges in a MI block. If MI size // is 8x8, it will filter the vertical edge aligned with a 8x8 block. // If 4x4 trasnform is used, it will then filter the internal edge // aligned with a 4x4 block const MODE_INFO **const pCurr = ppModeInfo + (y << scaleVert) * cm->mi_stride + (x << scaleHorz); AV1_DEBLOCKING_PARAMETERS params; memset(¶ms, 0, sizeof(params)); set_lpf_parameters(¶ms, pCurr, ((ptrdiff_t)1 << scaleHorz), cm, VERT_EDGE, cuX + x * MI_SIZE, cuY + y * MI_SIZE, width, height, plane, pPlane, scaleHorz, scaleVert); switch (params.filterLength) { // apply 4-tap filtering case 4: #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) aom_highbd_lpf_vertical_4_c(CONVERT_TO_SHORTPTR(p), dstStride, params.mblim, params.lim, params.hev_thr, cm->bit_depth); else #endif // CONFIG_HIGHBITDEPTH aom_lpf_vertical_4_c(p, dstStride, params.mblim, params.lim, params.hev_thr); break; // apply 8-tap filtering case 8: #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) aom_highbd_lpf_vertical_8_c(CONVERT_TO_SHORTPTR(p), dstStride, params.mblim, params.lim, params.hev_thr, cm->bit_depth); else #endif // CONFIG_HIGHBITDEPTH aom_lpf_vertical_8_c(p, dstStride, params.mblim, params.lim, params.hev_thr); break; // apply 16-tap filtering case 16: #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) aom_highbd_lpf_vertical_16_c(CONVERT_TO_SHORTPTR(p), dstStride, params.mblim, params.lim, params.hev_thr, cm->bit_depth); else #endif // CONFIG_HIGHBITDEPTH aom_lpf_vertical_16_c(p, dstStride, params.mblim, params.lim, params.hev_thr); break; // no filtering default: break; } // process the internal edge if (params.filterLengthInternal) { #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) aom_highbd_lpf_vertical_4_c(CONVERT_TO_SHORTPTR(p + 4), dstStride, params.mblim, params.lim, params.hev_thr, cm->bit_depth); else #endif // CONFIG_HIGHBITDEPTH aom_lpf_vertical_4_c(p + 4, dstStride, params.mblim, params.lim, params.hev_thr); } // advance the destination pointer p += MI_SIZE; } } } static void av1_filter_block_plane_horz(const AV1_COMMON *const cm, const int plane, const MACROBLOCKD_PLANE *const pPlane, const MODE_INFO **ppModeInfo, const uint32_t cuX, const uint32_t cuY) { const int col_step = MI_SIZE >> MI_SIZE_LOG2; const int row_step = MI_SIZE >> MI_SIZE_LOG2; const uint32_t scaleHorz = pPlane->subsampling_x; const uint32_t scaleVert = pPlane->subsampling_y; const uint32_t width = pPlane->dst.width; const uint32_t height = pPlane->dst.height; uint8_t *const pDst = pPlane->dst.buf; const int dstStride = pPlane->dst.stride; for (int y = 0; y < (MAX_MIB_SIZE >> scaleVert); y += row_step) { uint8_t *p = pDst + y * MI_SIZE * dstStride; for (int x = 0; x < (MAX_MIB_SIZE >> scaleHorz); x += col_step) { // inner loop always filter vertical edges in a MI block. If MI size // is 8x8, it will first filter the vertical edge aligned with a 8x8 // block. If 4x4 trasnform is used, it will then filter the internal // edge aligned with a 4x4 block const MODE_INFO **const pCurr = ppModeInfo + (y << scaleVert) * cm->mi_stride + (x << scaleHorz); AV1_DEBLOCKING_PARAMETERS params; memset(¶ms, 0, sizeof(params)); set_lpf_parameters(¶ms, pCurr, (cm->mi_stride << scaleVert), cm, HORZ_EDGE, cuX + x * MI_SIZE, cuY + y * MI_SIZE, width, height, plane, pPlane, scaleHorz, scaleVert); switch (params.filterLength) { // apply 4-tap filtering case 4: #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) aom_highbd_lpf_horizontal_4_c(CONVERT_TO_SHORTPTR(p), dstStride, params.mblim, params.lim, params.hev_thr, cm->bit_depth); else #endif // CONFIG_HIGHBITDEPTH aom_lpf_horizontal_4_c(p, dstStride, params.mblim, params.lim, params.hev_thr); break; // apply 8-tap filtering case 8: #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) aom_highbd_lpf_horizontal_8_c(CONVERT_TO_SHORTPTR(p), dstStride, params.mblim, params.lim, params.hev_thr, cm->bit_depth); else #endif // CONFIG_HIGHBITDEPTH aom_lpf_horizontal_8_c(p, dstStride, params.mblim, params.lim, params.hev_thr); break; // apply 16-tap filtering case 16: #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) aom_highbd_lpf_horizontal_edge_16_c( CONVERT_TO_SHORTPTR(p), dstStride, params.mblim, params.lim, params.hev_thr, cm->bit_depth); else #endif // CONFIG_HIGHBITDEPTH aom_lpf_horizontal_edge_16_c(p, dstStride, params.mblim, params.lim, params.hev_thr); break; // no filtering default: break; } // process the internal edge if (params.filterLengthInternal) { #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) aom_highbd_lpf_horizontal_4_c(CONVERT_TO_SHORTPTR(p + 4 * dstStride), dstStride, params.mblim, params.lim, params.hev_thr, cm->bit_depth); else #endif // CONFIG_HIGHBITDEPTH aom_lpf_horizontal_4_c(p + 4 * dstStride, dstStride, params.mblim, params.lim, params.hev_thr); } // advance the destination pointer p += MI_SIZE; } } } #endif // CONFIG_PARALLEL_DEBLOCKING void av1_loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, AV1_COMMON *cm, struct macroblockd_plane planes[MAX_MB_PLANE], int start, int stop, int y_only) { #if CONFIG_UV_LVL // y_only no longer has its original meaning. // Here it means which plane to filter // when y_only = {0, 1, 2}, it means we are searching for filter level for // Y/U/V plane individually. const int plane_start = y_only; const int plane_end = plane_start + 1; #else const int num_planes = y_only ? 1 : MAX_MB_PLANE; #endif // CONFIG_UV_LVL int mi_row, mi_col; #if CONFIG_VAR_TX || CONFIG_EXT_PARTITION || CONFIG_EXT_PARTITION_TYPES || \ CONFIG_CB4X4 #if !CONFIG_PARALLEL_DEBLOCKING #if CONFIG_VAR_TX for (int i = 0; i < MAX_MB_PLANE; ++i) memset(cm->top_txfm_context[i], TX_32X32, cm->mi_cols << TX_UNIT_WIDE_LOG2); #endif // CONFIG_VAR_TX for (mi_row = start; mi_row < stop; mi_row += cm->mib_size) { MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride; #if CONFIG_VAR_TX for (int i = 0; i < MAX_MB_PLANE; ++i) memset(cm->left_txfm_context[i], TX_32X32, MAX_MIB_SIZE << TX_UNIT_HIGH_LOG2); #endif // CONFIG_VAR_TX for (mi_col = 0; mi_col < cm->mi_cols; mi_col += cm->mib_size) { int plane; av1_setup_dst_planes(planes, cm->sb_size, frame_buffer, mi_row, mi_col); #if CONFIG_UV_LVL for (plane = plane_start; plane < plane_end; ++plane) { #else for (plane = 0; plane < num_planes; ++plane) { #endif // CONFIG_UV_LVL av1_filter_block_plane_non420_ver(cm, &planes[plane], mi + mi_col, mi_row, mi_col, plane); av1_filter_block_plane_non420_hor(cm, &planes[plane], mi + mi_col, mi_row, mi_col, plane); } } } #else // filter all vertical edges in every 64x64 super block for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride; for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) { av1_setup_dst_planes(planes, cm->sb_size, frame_buffer, mi_row, mi_col); #if CONFIG_UV_LVL for (int planeIdx = plane_start; planeIdx < plane_end; ++planeIdx) { #else for (int planeIdx = 0; planeIdx < num_planes; planeIdx += 1) { #endif // CONFIG_UV_LVL const int32_t scaleHorz = planes[planeIdx].subsampling_x; const int32_t scaleVert = planes[planeIdx].subsampling_y; av1_filter_block_plane_vert( cm, planeIdx, &planes[planeIdx], (const MODE_INFO **)(mi + mi_col), (mi_col * MI_SIZE) >> scaleHorz, (mi_row * MI_SIZE) >> scaleVert); } } } // filter all horizontal edges in every 64x64 super block for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride; for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) { av1_setup_dst_planes(planes, cm->sb_size, frame_buffer, mi_row, mi_col); #if CONFIG_UV_LVL for (int planeIdx = plane_start; planeIdx < plane_end; ++planeIdx) { #else for (int planeIdx = 0; planeIdx < num_planes; planeIdx += 1) { #endif // CONFIG_UV_LVL const int32_t scaleHorz = planes[planeIdx].subsampling_x; const int32_t scaleVert = planes[planeIdx].subsampling_y; av1_filter_block_plane_horz( cm, planeIdx, &planes[planeIdx], (const MODE_INFO **)(mi + mi_col), (mi_col * MI_SIZE) >> scaleHorz, (mi_row * MI_SIZE) >> scaleVert); } } } #endif // CONFIG_PARALLEL_DEBLOCKING #else // CONFIG_VAR_TX || CONFIG_EXT_PARTITION || CONFIG_EXT_PARTITION_TYPES #if CONFIG_PARALLEL_DEBLOCKING for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride; for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) { av1_setup_dst_planes(planes, cm->sb_size, frame_buffer, mi_row, mi_col); // filter all vertical edges in every 64x64 super block for (int planeIdx = 0; planeIdx < num_planes; planeIdx += 1) { const int32_t scaleHorz = planes[planeIdx].subsampling_x; const int32_t scaleVert = planes[planeIdx].subsampling_y; av1_filter_block_plane_vert( cm, planeIdx, planes + planeIdx, (const MODE_INFO **)(mi + mi_col), (mi_col * MI_SIZE) >> scaleHorz, (mi_row * MI_SIZE) >> scaleVert); } } } for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride; for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) { av1_setup_dst_planes(planes, cm->sb_size, frame_buffer, mi_row, mi_col); // filter all horizontal edges in every 64x64 super block for (int planeIdx = 0; planeIdx < num_planes; planeIdx += 1) { const int32_t scaleHorz = planes[planeIdx].subsampling_x; const int32_t scaleVert = planes[planeIdx].subsampling_y; av1_filter_block_plane_horz( cm, planeIdx, planes + planeIdx, (const MODE_INFO **)(mi + mi_col), (mi_col * MI_SIZE) >> scaleHorz, (mi_row * MI_SIZE) >> scaleVert); } } } #else // CONFIG_PARALLEL_DEBLOCKING enum lf_path path; LOOP_FILTER_MASK lfm; if (y_only) path = LF_PATH_444; else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1) path = LF_PATH_420; else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0) path = LF_PATH_444; else path = LF_PATH_SLOW; for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride; for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) { int plane; av1_setup_dst_planes(planes, cm->sb_size, frame_buffer, mi_row, mi_col); // TODO(JBB): Make setup_mask work for non 420. av1_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride, &lfm); av1_filter_block_plane_ss00_ver(cm, &planes[0], mi_row, &lfm); av1_filter_block_plane_ss00_hor(cm, &planes[0], mi_row, &lfm); for (plane = 1; plane < num_planes; ++plane) { switch (path) { case LF_PATH_420: av1_filter_block_plane_ss11_ver(cm, &planes[plane], mi_row, &lfm); av1_filter_block_plane_ss11_hor(cm, &planes[plane], mi_row, &lfm); break; case LF_PATH_444: av1_filter_block_plane_ss00_ver(cm, &planes[plane], mi_row, &lfm); av1_filter_block_plane_ss00_hor(cm, &planes[plane], mi_row, &lfm); break; case LF_PATH_SLOW: av1_filter_block_plane_non420_ver(cm, &planes[plane], mi + mi_col, mi_row, mi_col, plane); av1_filter_block_plane_non420_hor(cm, &planes[plane], mi + mi_col, mi_row, mi_col, plane); break; } } } } #endif // CONFIG_PARALLEL_DEBLOCKING #endif // CONFIG_VAR_TX || CONFIG_EXT_PARTITION || CONFIG_EXT_PARTITION_TYPES } void av1_loop_filter_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, MACROBLOCKD *xd, int frame_filter_level, int y_only, int partial_frame) { int start_mi_row, end_mi_row, mi_rows_to_filter; #if CONFIG_EXT_DELTA_Q int orig_filter_level = cm->lf.filter_level; #endif if (!frame_filter_level) return; start_mi_row = 0; mi_rows_to_filter = cm->mi_rows; if (partial_frame && cm->mi_rows > 8) { start_mi_row = cm->mi_rows >> 1; start_mi_row &= 0xfffffff8; mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8); } end_mi_row = start_mi_row + mi_rows_to_filter; av1_loop_filter_frame_init(cm, frame_filter_level); #if CONFIG_EXT_DELTA_Q cm->lf.filter_level = frame_filter_level; #endif av1_loop_filter_rows(frame, cm, xd->plane, start_mi_row, end_mi_row, y_only); #if CONFIG_EXT_DELTA_Q cm->lf.filter_level = orig_filter_level; #endif } void av1_loop_filter_data_reset( LFWorkerData *lf_data, YV12_BUFFER_CONFIG *frame_buffer, struct AV1Common *cm, const struct macroblockd_plane planes[MAX_MB_PLANE]) { lf_data->frame_buffer = frame_buffer; lf_data->cm = cm; lf_data->start = 0; lf_data->stop = 0; lf_data->y_only = 0; memcpy(lf_data->planes, planes, sizeof(lf_data->planes)); } int av1_loop_filter_worker(LFWorkerData *const lf_data, void *unused) { (void)unused; av1_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->start, lf_data->stop, lf_data->y_only); return 1; }