/* * * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "./aom_config.h" #include "aom_mem/aom_mem.h" #include "av1/common/alloccommon.h" #include "av1/common/blockd.h" #include "av1/common/entropymode.h" #include "av1/common/entropymv.h" #include "av1/common/onyxc_int.h" int av1_get_MBs(int width, int height) { const int aligned_width = ALIGN_POWER_OF_TWO(width, 3); const int aligned_height = ALIGN_POWER_OF_TWO(height, 3); const int mi_cols = aligned_width >> MI_SIZE_LOG2; const int mi_rows = aligned_height >> MI_SIZE_LOG2; #if CONFIG_CB4X4 const int mb_cols = (mi_cols + 2) >> 2; const int mb_rows = (mi_rows + 2) >> 2; #else const int mb_cols = (mi_cols + 1) >> 1; const int mb_rows = (mi_rows + 1) >> 1; #endif return mb_rows * mb_cols; } void av1_set_mb_mi(AV1_COMMON *cm, int width, int height) { // Ensure that the decoded width and height are both multiples of // 8 luma pixels (note: this may only be a multiple of 4 chroma pixels if // subsampling is used). // This simplifies the implementation of various experiments, // eg. cdef, which operates on units of 8x8 luma pixels. const int aligned_width = ALIGN_POWER_OF_TWO(width, 3); const int aligned_height = ALIGN_POWER_OF_TWO(height, 3); cm->mi_cols = aligned_width >> MI_SIZE_LOG2; cm->mi_rows = aligned_height >> MI_SIZE_LOG2; cm->mi_stride = calc_mi_size(cm->mi_cols); #if CONFIG_CB4X4 cm->mb_cols = (cm->mi_cols + 2) >> 2; cm->mb_rows = (cm->mi_rows + 2) >> 2; #else cm->mb_cols = (cm->mi_cols + 1) >> 1; cm->mb_rows = (cm->mi_rows + 1) >> 1; #endif cm->MBs = cm->mb_rows * cm->mb_cols; } static int alloc_seg_map(AV1_COMMON *cm, int seg_map_size) { int i; for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) { cm->seg_map_array[i] = (uint8_t *)aom_calloc(seg_map_size, 1); if (cm->seg_map_array[i] == NULL) return 1; } cm->seg_map_alloc_size = seg_map_size; // Init the index. cm->seg_map_idx = 0; cm->prev_seg_map_idx = 1; cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx]; if (!cm->frame_parallel_decode) cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx]; return 0; } static void free_seg_map(AV1_COMMON *cm) { int i; for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) { aom_free(cm->seg_map_array[i]); cm->seg_map_array[i] = NULL; } cm->current_frame_seg_map = NULL; if (!cm->frame_parallel_decode) { cm->last_frame_seg_map = NULL; } cm->seg_map_alloc_size = 0; } static void free_scratch_buffers(AV1_COMMON *cm) { (void)cm; #if CONFIG_NCOBMC && CONFIG_NCOBMC_ADAPT_WEIGHT for (int i = 0; i < 4; ++i) { if (cm->ncobmcaw_buf[i]) { aom_free(cm->ncobmcaw_buf[i]); cm->ncobmcaw_buf[i] = NULL; } } #endif // CONFIG_NCOBMC && CONFIG_NCOBMC_ADAPT_WEIGHT } static int alloc_scratch_buffers(AV1_COMMON *cm) { (void)cm; #if CONFIG_NCOBMC && CONFIG_NCOBMC_ADAPT_WEIGHT // If not allocated already, allocate if (!cm->ncobmcaw_buf[0] && !cm->ncobmcaw_buf[1] && !cm->ncobmcaw_buf[2] && !cm->ncobmcaw_buf[3]) { for (int i = 0; i < 4; ++i) { CHECK_MEM_ERROR( cm, cm->ncobmcaw_buf[i], (uint8_t *)aom_memalign( 16, (1 + CONFIG_HIGHBITDEPTH) * MAX_MB_PLANE * MAX_SB_SQUARE)); } } #endif // CONFIG_NCOBMC && CONFIG_NCOBMC_ADAPT_WEIGHT return 0; } void av1_free_ref_frame_buffers(BufferPool *pool) { int i; for (i = 0; i < FRAME_BUFFERS; ++i) { if (pool->frame_bufs[i].ref_count > 0 && pool->frame_bufs[i].raw_frame_buffer.data != NULL) { pool->release_fb_cb(pool->cb_priv, &pool->frame_bufs[i].raw_frame_buffer); pool->frame_bufs[i].ref_count = 0; } aom_free(pool->frame_bufs[i].mvs); pool->frame_bufs[i].mvs = NULL; #if CONFIG_MFMV aom_free(pool->frame_bufs[i].tpl_mvs); pool->frame_bufs[i].tpl_mvs = NULL; #endif aom_free_frame_buffer(&pool->frame_bufs[i].buf); #if CONFIG_HASH_ME av1_hash_table_destroy(&pool->frame_bufs[i].hash_table); #endif } } #if CONFIG_LOOP_RESTORATION // Assumes cm->rst_info[p].restoration_tilesize is already initialized void av1_alloc_restoration_buffers(AV1_COMMON *cm) { int p; #if CONFIG_FRAME_SUPERRES int width = cm->superres_upscaled_width; int height = cm->superres_upscaled_height; #else int width = cm->width; int height = cm->height; #endif // CONFIG_FRAME_SUPERRES av1_alloc_restoration_struct(cm, &cm->rst_info[0], width, height); for (p = 1; p < MAX_MB_PLANE; ++p) av1_alloc_restoration_struct(cm, &cm->rst_info[p], ROUND_POWER_OF_TWO(width, cm->subsampling_x), ROUND_POWER_OF_TWO(height, cm->subsampling_y)); aom_free(cm->rst_internal.tmpbuf); CHECK_MEM_ERROR(cm, cm->rst_internal.tmpbuf, (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE)); #if CONFIG_STRIPED_LOOP_RESTORATION // Allocate internal storage for the loop restoration stripe boundary lines for (p = 0; p < MAX_MB_PLANE; ++p) { int w = p == 0 ? width : ROUND_POWER_OF_TWO(width, cm->subsampling_x); int align_bits = 5; // align for efficiency int stride = ALIGN_POWER_OF_TWO(w, align_bits); int num_stripes = (height + 63) / 64; // for each processing stripe: 2 lines above, 2 below int buf_size = num_stripes * 2 * stride; uint8_t *above_buf, *below_buf; aom_free(cm->rst_internal.stripe_boundary_above[p]); aom_free(cm->rst_internal.stripe_boundary_below[p]); #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) buf_size = buf_size * 2; #endif CHECK_MEM_ERROR(cm, above_buf, (uint8_t *)aom_memalign(1 << align_bits, buf_size)); CHECK_MEM_ERROR(cm, below_buf, (uint8_t *)aom_memalign(1 << align_bits, buf_size)); cm->rst_internal.stripe_boundary_above[p] = above_buf; cm->rst_internal.stripe_boundary_below[p] = below_buf; cm->rst_internal.stripe_boundary_stride[p] = stride; } #endif // CONFIG_STRIPED_LOOP_RESTORATION } void av1_free_restoration_buffers(AV1_COMMON *cm) { int p; for (p = 0; p < MAX_MB_PLANE; ++p) av1_free_restoration_struct(&cm->rst_info[p]); aom_free(cm->rst_internal.tmpbuf); cm->rst_internal.tmpbuf = NULL; } #endif // CONFIG_LOOP_RESTORATION void av1_free_context_buffers(AV1_COMMON *cm) { int i; cm->free_mi(cm); free_seg_map(cm); free_scratch_buffers(cm); for (i = 0; i < MAX_MB_PLANE; i++) { aom_free(cm->above_context[i]); cm->above_context[i] = NULL; } aom_free(cm->above_seg_context); cm->above_seg_context = NULL; cm->above_context_alloc_cols = 0; #if CONFIG_VAR_TX aom_free(cm->above_txfm_context); cm->above_txfm_context = NULL; for (i = 0; i < MAX_MB_PLANE; ++i) { aom_free(cm->top_txfm_context[i]); cm->top_txfm_context[i] = NULL; } #endif } int av1_alloc_context_buffers(AV1_COMMON *cm, int width, int height) { int new_mi_size; av1_set_mb_mi(cm, width, height); new_mi_size = cm->mi_stride * calc_mi_size(cm->mi_rows); if (cm->mi_alloc_size < new_mi_size) { cm->free_mi(cm); if (cm->alloc_mi(cm, new_mi_size)) goto fail; } if (cm->seg_map_alloc_size < cm->mi_rows * cm->mi_cols) { // Create the segmentation map structure and set to 0. free_seg_map(cm); if (alloc_seg_map(cm, cm->mi_rows * cm->mi_cols)) goto fail; } if (alloc_scratch_buffers(cm)) goto fail; if (cm->above_context_alloc_cols < cm->mi_cols) { // TODO(geza.lore): These are bigger than they need to be. // cm->tile_width would be enough but it complicates indexing a // little elsewhere. const int aligned_mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2); int i; for (i = 0; i < MAX_MB_PLANE; i++) { aom_free(cm->above_context[i]); cm->above_context[i] = (ENTROPY_CONTEXT *)aom_calloc( aligned_mi_cols << (MI_SIZE_LOG2 - tx_size_wide_log2[0]), sizeof(*cm->above_context[0])); if (!cm->above_context[i]) goto fail; } aom_free(cm->above_seg_context); cm->above_seg_context = (PARTITION_CONTEXT *)aom_calloc( aligned_mi_cols, sizeof(*cm->above_seg_context)); if (!cm->above_seg_context) goto fail; #if CONFIG_VAR_TX aom_free(cm->above_txfm_context); cm->above_txfm_context = (TXFM_CONTEXT *)aom_calloc( aligned_mi_cols << TX_UNIT_WIDE_LOG2, sizeof(*cm->above_txfm_context)); if (!cm->above_txfm_context) goto fail; for (i = 0; i < MAX_MB_PLANE; ++i) { aom_free(cm->top_txfm_context[i]); cm->top_txfm_context[i] = (TXFM_CONTEXT *)aom_calloc(aligned_mi_cols << TX_UNIT_WIDE_LOG2, sizeof(*cm->top_txfm_context[0])); if (!cm->top_txfm_context[i]) goto fail; } #endif cm->above_context_alloc_cols = aligned_mi_cols; } return 0; fail: // clear the mi_* values to force a realloc on resync av1_set_mb_mi(cm, 0, 0); av1_free_context_buffers(cm); return 1; } void av1_remove_common(AV1_COMMON *cm) { av1_free_context_buffers(cm); aom_free(cm->fc); cm->fc = NULL; aom_free(cm->frame_contexts); cm->frame_contexts = NULL; } void av1_init_context_buffers(AV1_COMMON *cm) { cm->setup_mi(cm); if (cm->last_frame_seg_map && !cm->frame_parallel_decode) memset(cm->last_frame_seg_map, 0, cm->mi_rows * cm->mi_cols); } void av1_swap_current_and_last_seg_map(AV1_COMMON *cm) { // Swap indices. const int tmp = cm->seg_map_idx; cm->seg_map_idx = cm->prev_seg_map_idx; cm->prev_seg_map_idx = tmp; cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx]; cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx]; }