/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "./aom_config.h" #include "./aom_version.h" #include "aom/internal/aom_codec_internal.h" #include "aom/aomdx.h" #include "aom/aom_decoder.h" #include "aom_dsp/bitreader_buffer.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_util/aom_thread.h" #include "av1/common/alloccommon.h" #include "av1/common/frame_buffers.h" #include "av1/common/enums.h" #include "av1/decoder/decoder.h" #include "av1/decoder/decodeframe.h" #include "av1/av1_iface_common.h" // This limit is due to framebuffer numbers. // TODO(hkuang): Remove this limit after implementing ondemand framebuffers. #define FRAME_CACHE_SIZE 6 // Cache maximum 6 decoded frames. typedef struct cache_frame { int fb_idx; aom_image_t img; } cache_frame; struct aom_codec_alg_priv { aom_codec_priv_t base; aom_codec_dec_cfg_t cfg; aom_codec_stream_info_t si; int postproc_cfg_set; aom_postproc_cfg_t postproc_cfg; aom_decrypt_cb decrypt_cb; void *decrypt_state; aom_image_t img; int img_avail; int flushed; int invert_tile_order; int last_show_frame; // Index of last output frame. int byte_alignment; int skip_loop_filter; int decode_tile_row; int decode_tile_col; // Frame parallel related. int frame_parallel_decode; // frame-based threading. AVxWorker *frame_workers; int num_frame_workers; int next_submit_worker_id; int last_submit_worker_id; int next_output_worker_id; int available_threads; cache_frame frame_cache[FRAME_CACHE_SIZE]; int frame_cache_write; int frame_cache_read; int num_cache_frames; int need_resync; // wait for key/intra-only frame // BufferPool that holds all reference frames. Shared by all the FrameWorkers. BufferPool *buffer_pool; // External frame buffer info to save for AV1 common. void *ext_priv; // Private data associated with the external frame buffers. aom_get_frame_buffer_cb_fn_t get_ext_fb_cb; aom_release_frame_buffer_cb_fn_t release_ext_fb_cb; #if CONFIG_INSPECTION aom_inspect_cb inspect_cb; void *inspect_ctx; #endif }; static aom_codec_err_t decoder_init(aom_codec_ctx_t *ctx, aom_codec_priv_enc_mr_cfg_t *data) { // This function only allocates space for the aom_codec_alg_priv_t // structure. More memory may be required at the time the stream // information becomes known. (void)data; if (!ctx->priv) { aom_codec_alg_priv_t *const priv = (aom_codec_alg_priv_t *)aom_calloc(1, sizeof(*priv)); if (priv == NULL) return AOM_CODEC_MEM_ERROR; ctx->priv = (aom_codec_priv_t *)priv; ctx->priv->init_flags = ctx->init_flags; priv->flushed = 0; // Only do frame parallel decode when threads > 1. priv->frame_parallel_decode = (ctx->config.dec && (ctx->config.dec->threads > 1) && (ctx->init_flags & AOM_CODEC_USE_FRAME_THREADING)) ? 1 : 0; // TODO(tdaede): this should not be exposed to the API priv->cfg.allow_lowbitdepth = CONFIG_LOWBITDEPTH; if (ctx->config.dec) { priv->cfg = *ctx->config.dec; ctx->config.dec = &priv->cfg; } } return AOM_CODEC_OK; } static aom_codec_err_t decoder_destroy(aom_codec_alg_priv_t *ctx) { if (ctx->frame_workers != NULL) { int i; for (i = 0; i < ctx->num_frame_workers; ++i) { AVxWorker *const worker = &ctx->frame_workers[i]; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; aom_get_worker_interface()->end(worker); av1_remove_common(&frame_worker_data->pbi->common); #if CONFIG_LOOP_RESTORATION av1_free_restoration_buffers(&frame_worker_data->pbi->common); #endif // CONFIG_LOOP_RESTORATION av1_decoder_remove(frame_worker_data->pbi); aom_free(frame_worker_data->scratch_buffer); #if CONFIG_MULTITHREAD pthread_mutex_destroy(&frame_worker_data->stats_mutex); pthread_cond_destroy(&frame_worker_data->stats_cond); #endif aom_free(frame_worker_data); } #if CONFIG_MULTITHREAD pthread_mutex_destroy(&ctx->buffer_pool->pool_mutex); #endif } if (ctx->buffer_pool) { av1_free_ref_frame_buffers(ctx->buffer_pool); av1_free_internal_frame_buffers(&ctx->buffer_pool->int_frame_buffers); } aom_free(ctx->frame_workers); aom_free(ctx->buffer_pool); aom_free(ctx); return AOM_CODEC_OK; } static int parse_bitdepth_colorspace_sampling(BITSTREAM_PROFILE profile, struct aom_read_bit_buffer *rb) { aom_color_space_t color_space; #if CONFIG_COLORSPACE_HEADERS int subsampling_x = 0; int subsampling_y = 0; #endif if (profile >= PROFILE_2) rb->bit_offset += 1; // Bit-depth 10 or 12. #if CONFIG_COLORSPACE_HEADERS color_space = (aom_color_space_t)aom_rb_read_literal(rb, 5); rb->bit_offset += 5; // Transfer function #else color_space = (aom_color_space_t)aom_rb_read_literal(rb, 3); #endif if (color_space != AOM_CS_SRGB) { rb->bit_offset += 1; // [16,235] (including xvycc) vs [0,255] range. if (profile == PROFILE_1 || profile == PROFILE_3) { #if CONFIG_COLORSPACE_HEADERS subsampling_x = aom_rb_read_bit(rb); subsampling_y = aom_rb_read_bit(rb); #else rb->bit_offset += 2; // subsampling x/y. #endif rb->bit_offset += 1; // unused. #if CONFIG_COLORSPACE_HEADERS } else { subsampling_x = 1; subsampling_y = 1; } if (subsampling_x == 1 && subsampling_y == 1) { rb->bit_offset += 2; } #else } #endif } else { if (profile == PROFILE_1 || profile == PROFILE_3) { rb->bit_offset += 1; // unused } else { // RGB is only available in version 1. return 0; } } return 1; } static aom_codec_err_t decoder_peek_si_internal( const uint8_t *data, unsigned int data_sz, aom_codec_stream_info_t *si, int *is_intra_only, aom_decrypt_cb decrypt_cb, void *decrypt_state) { int intra_only_flag = 0; uint8_t clear_buffer[9]; if (data + data_sz <= data) return AOM_CODEC_INVALID_PARAM; si->is_kf = 0; si->w = si->h = 0; if (decrypt_cb) { data_sz = AOMMIN(sizeof(clear_buffer), data_sz); decrypt_cb(decrypt_state, data, clear_buffer, data_sz); data = clear_buffer; } // skip a potential superframe index { uint32_t frame_sizes[8]; int frame_count; int index_size = 0; aom_codec_err_t res = av1_parse_superframe_index( data, data_sz, frame_sizes, &frame_count, &index_size, NULL, NULL); if (res != AOM_CODEC_OK) return res; data += index_size; data_sz -= index_size; } { int show_frame; int error_resilient; struct aom_read_bit_buffer rb = { data, data + data_sz, 0, NULL, NULL }; const int frame_marker = aom_rb_read_literal(&rb, 2); const BITSTREAM_PROFILE profile = av1_read_profile(&rb); #if CONFIG_EXT_TILE unsigned int large_scale_tile; #endif // CONFIG_EXT_TILE if (frame_marker != AOM_FRAME_MARKER) return AOM_CODEC_UNSUP_BITSTREAM; if (profile >= MAX_PROFILES) return AOM_CODEC_UNSUP_BITSTREAM; if ((profile >= 2 && data_sz <= 1) || data_sz < 1) return AOM_CODEC_UNSUP_BITSTREAM; #if CONFIG_EXT_TILE large_scale_tile = aom_rb_read_literal(&rb, 1); #endif // CONFIG_EXT_TILE if (aom_rb_read_bit(&rb)) { // show an existing frame aom_rb_read_literal(&rb, 3); // Frame buffer to show. return AOM_CODEC_OK; } if (data_sz <= 8) return AOM_CODEC_UNSUP_BITSTREAM; si->is_kf = !aom_rb_read_bit(&rb); show_frame = aom_rb_read_bit(&rb); error_resilient = aom_rb_read_bit(&rb); #if CONFIG_REFERENCE_BUFFER { /* TODO: Move outside frame loop or inside key-frame branch */ int frame_id_len; SequenceHeader seq_params; read_sequence_header(&seq_params); #if CONFIG_EXT_TILE if (large_scale_tile) seq_params.frame_id_numbers_present_flag = 0; #endif // CONFIG_EXT_TILE if (seq_params.frame_id_numbers_present_flag) { frame_id_len = seq_params.frame_id_length_minus7 + 7; aom_rb_read_literal(&rb, frame_id_len); } } #endif if (si->is_kf) { if (!av1_read_sync_code(&rb)) return AOM_CODEC_UNSUP_BITSTREAM; if (!parse_bitdepth_colorspace_sampling(profile, &rb)) return AOM_CODEC_UNSUP_BITSTREAM; av1_read_frame_size(&rb, (int *)&si->w, (int *)&si->h); } else { intra_only_flag = show_frame ? 0 : aom_rb_read_bit(&rb); rb.bit_offset += error_resilient ? 0 : 2; // reset_frame_context if (intra_only_flag) { if (!av1_read_sync_code(&rb)) return AOM_CODEC_UNSUP_BITSTREAM; if (profile > PROFILE_0) { if (!parse_bitdepth_colorspace_sampling(profile, &rb)) return AOM_CODEC_UNSUP_BITSTREAM; } rb.bit_offset += REF_FRAMES; // refresh_frame_flags av1_read_frame_size(&rb, (int *)&si->w, (int *)&si->h); } } } if (is_intra_only != NULL) *is_intra_only = intra_only_flag; return AOM_CODEC_OK; } static aom_codec_err_t decoder_peek_si(const uint8_t *data, unsigned int data_sz, aom_codec_stream_info_t *si) { return decoder_peek_si_internal(data, data_sz, si, NULL, NULL, NULL); } static aom_codec_err_t decoder_get_si(aom_codec_alg_priv_t *ctx, aom_codec_stream_info_t *si) { memcpy(si, &ctx->si, sizeof(*si)); return AOM_CODEC_OK; } static void set_error_detail(aom_codec_alg_priv_t *ctx, const char *const error) { ctx->base.err_detail = error; } static aom_codec_err_t update_error_state( aom_codec_alg_priv_t *ctx, const struct aom_internal_error_info *error) { if (error->error_code) set_error_detail(ctx, error->has_detail ? error->detail : NULL); return error->error_code; } static void init_buffer_callbacks(aom_codec_alg_priv_t *ctx) { int i; for (i = 0; i < ctx->num_frame_workers; ++i) { AVxWorker *const worker = &ctx->frame_workers[i]; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; AV1_COMMON *const cm = &frame_worker_data->pbi->common; BufferPool *const pool = cm->buffer_pool; cm->new_fb_idx = INVALID_IDX; cm->byte_alignment = ctx->byte_alignment; cm->skip_loop_filter = ctx->skip_loop_filter; if (ctx->get_ext_fb_cb != NULL && ctx->release_ext_fb_cb != NULL) { pool->get_fb_cb = ctx->get_ext_fb_cb; pool->release_fb_cb = ctx->release_ext_fb_cb; pool->cb_priv = ctx->ext_priv; } else { pool->get_fb_cb = av1_get_frame_buffer; pool->release_fb_cb = av1_release_frame_buffer; if (av1_alloc_internal_frame_buffers(&pool->int_frame_buffers)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to initialize internal frame buffers"); pool->cb_priv = &pool->int_frame_buffers; } } } static void set_default_ppflags(aom_postproc_cfg_t *cfg) { cfg->post_proc_flag = AOM_DEBLOCK | AOM_DEMACROBLOCK; cfg->deblocking_level = 4; cfg->noise_level = 0; } static int frame_worker_hook(void *arg1, void *arg2) { FrameWorkerData *const frame_worker_data = (FrameWorkerData *)arg1; const uint8_t *data = frame_worker_data->data; (void)arg2; frame_worker_data->result = av1_receive_compressed_data( frame_worker_data->pbi, frame_worker_data->data_size, &data); frame_worker_data->data_end = data; if (frame_worker_data->pbi->common.frame_parallel_decode) { // In frame parallel decoding, a worker thread must successfully decode all // the compressed data. if (frame_worker_data->result != 0 || frame_worker_data->data + frame_worker_data->data_size - 1 > data) { AVxWorker *const worker = frame_worker_data->pbi->frame_worker_owner; BufferPool *const pool = frame_worker_data->pbi->common.buffer_pool; // Signal all the other threads that are waiting for this frame. av1_frameworker_lock_stats(worker); frame_worker_data->frame_context_ready = 1; lock_buffer_pool(pool); frame_worker_data->pbi->cur_buf->buf.corrupted = 1; unlock_buffer_pool(pool); frame_worker_data->pbi->need_resync = 1; av1_frameworker_signal_stats(worker); av1_frameworker_unlock_stats(worker); return 0; } } else if (frame_worker_data->result != 0) { // Check decode result in serial decode. frame_worker_data->pbi->cur_buf->buf.corrupted = 1; frame_worker_data->pbi->need_resync = 1; } return !frame_worker_data->result; } static aom_codec_err_t init_decoder(aom_codec_alg_priv_t *ctx) { int i; const AVxWorkerInterface *const winterface = aom_get_worker_interface(); ctx->last_show_frame = -1; ctx->next_submit_worker_id = 0; ctx->last_submit_worker_id = 0; ctx->next_output_worker_id = 0; ctx->frame_cache_read = 0; ctx->frame_cache_write = 0; ctx->num_cache_frames = 0; ctx->need_resync = 1; ctx->num_frame_workers = (ctx->frame_parallel_decode == 1) ? ctx->cfg.threads : 1; if (ctx->num_frame_workers > MAX_DECODE_THREADS) ctx->num_frame_workers = MAX_DECODE_THREADS; ctx->available_threads = ctx->num_frame_workers; ctx->flushed = 0; ctx->buffer_pool = (BufferPool *)aom_calloc(1, sizeof(BufferPool)); if (ctx->buffer_pool == NULL) return AOM_CODEC_MEM_ERROR; #if CONFIG_MULTITHREAD if (pthread_mutex_init(&ctx->buffer_pool->pool_mutex, NULL)) { set_error_detail(ctx, "Failed to allocate buffer pool mutex"); return AOM_CODEC_MEM_ERROR; } #endif ctx->frame_workers = (AVxWorker *)aom_malloc(ctx->num_frame_workers * sizeof(*ctx->frame_workers)); if (ctx->frame_workers == NULL) { set_error_detail(ctx, "Failed to allocate frame_workers"); return AOM_CODEC_MEM_ERROR; } for (i = 0; i < ctx->num_frame_workers; ++i) { AVxWorker *const worker = &ctx->frame_workers[i]; FrameWorkerData *frame_worker_data = NULL; winterface->init(worker); worker->data1 = aom_memalign(32, sizeof(FrameWorkerData)); if (worker->data1 == NULL) { set_error_detail(ctx, "Failed to allocate frame_worker_data"); return AOM_CODEC_MEM_ERROR; } frame_worker_data = (FrameWorkerData *)worker->data1; frame_worker_data->pbi = av1_decoder_create(ctx->buffer_pool); if (frame_worker_data->pbi == NULL) { set_error_detail(ctx, "Failed to allocate frame_worker_data"); return AOM_CODEC_MEM_ERROR; } frame_worker_data->pbi->frame_worker_owner = worker; frame_worker_data->worker_id = i; frame_worker_data->scratch_buffer = NULL; frame_worker_data->scratch_buffer_size = 0; frame_worker_data->frame_context_ready = 0; frame_worker_data->received_frame = 0; #if CONFIG_MULTITHREAD if (pthread_mutex_init(&frame_worker_data->stats_mutex, NULL)) { set_error_detail(ctx, "Failed to allocate frame_worker_data mutex"); return AOM_CODEC_MEM_ERROR; } if (pthread_cond_init(&frame_worker_data->stats_cond, NULL)) { set_error_detail(ctx, "Failed to allocate frame_worker_data cond"); return AOM_CODEC_MEM_ERROR; } #endif frame_worker_data->pbi->allow_lowbitdepth = ctx->cfg.allow_lowbitdepth; // If decoding in serial mode, FrameWorker thread could create tile worker // thread or loopfilter thread. frame_worker_data->pbi->max_threads = (ctx->frame_parallel_decode == 0) ? ctx->cfg.threads : 0; frame_worker_data->pbi->inv_tile_order = ctx->invert_tile_order; frame_worker_data->pbi->common.frame_parallel_decode = ctx->frame_parallel_decode; worker->hook = (AVxWorkerHook)frame_worker_hook; if (!winterface->reset(worker)) { set_error_detail(ctx, "Frame Worker thread creation failed"); return AOM_CODEC_MEM_ERROR; } } // If postprocessing was enabled by the application and a // configuration has not been provided, default it. if (!ctx->postproc_cfg_set && (ctx->base.init_flags & AOM_CODEC_USE_POSTPROC)) set_default_ppflags(&ctx->postproc_cfg); init_buffer_callbacks(ctx); return AOM_CODEC_OK; } static INLINE void check_resync(aom_codec_alg_priv_t *const ctx, const AV1Decoder *const pbi) { // Clear resync flag if worker got a key frame or intra only frame. if (ctx->need_resync == 1 && pbi->need_resync == 0 && (pbi->common.intra_only || pbi->common.frame_type == KEY_FRAME)) ctx->need_resync = 0; } static aom_codec_err_t decode_one(aom_codec_alg_priv_t *ctx, const uint8_t **data, unsigned int data_sz, void *user_priv, int64_t deadline) { const AVxWorkerInterface *const winterface = aom_get_worker_interface(); (void)deadline; // Determine the stream parameters. Note that we rely on peek_si to // validate that we have a buffer that does not wrap around the top // of the heap. if (!ctx->si.h) { int is_intra_only = 0; const aom_codec_err_t res = decoder_peek_si_internal(*data, data_sz, &ctx->si, &is_intra_only, ctx->decrypt_cb, ctx->decrypt_state); if (res != AOM_CODEC_OK) return res; if (!ctx->si.is_kf && !is_intra_only) return AOM_CODEC_ERROR; } if (!ctx->frame_parallel_decode) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; frame_worker_data->data = *data; frame_worker_data->data_size = data_sz; frame_worker_data->user_priv = user_priv; frame_worker_data->received_frame = 1; // Set these even if already initialized. The caller may have changed the // decrypt config between frames. frame_worker_data->pbi->decrypt_cb = ctx->decrypt_cb; frame_worker_data->pbi->decrypt_state = ctx->decrypt_state; #if CONFIG_INSPECTION frame_worker_data->pbi->inspect_cb = ctx->inspect_cb; frame_worker_data->pbi->inspect_ctx = ctx->inspect_ctx; #endif #if CONFIG_EXT_TILE frame_worker_data->pbi->dec_tile_row = ctx->decode_tile_row; frame_worker_data->pbi->dec_tile_col = ctx->decode_tile_col; #endif // CONFIG_EXT_TILE worker->had_error = 0; winterface->execute(worker); // Update data pointer after decode. *data = frame_worker_data->data_end; if (worker->had_error) return update_error_state(ctx, &frame_worker_data->pbi->common.error); check_resync(ctx, frame_worker_data->pbi); } else { AVxWorker *const worker = &ctx->frame_workers[ctx->next_submit_worker_id]; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; // Copy context from last worker thread to next worker thread. if (ctx->next_submit_worker_id != ctx->last_submit_worker_id) av1_frameworker_copy_context( &ctx->frame_workers[ctx->next_submit_worker_id], &ctx->frame_workers[ctx->last_submit_worker_id]); frame_worker_data->pbi->ready_for_new_data = 0; // Copy the compressed data into worker's internal buffer. // TODO(hkuang): Will all the workers allocate the same size // as the size of the first intra frame be better? This will // avoid too many deallocate and allocate. if (frame_worker_data->scratch_buffer_size < data_sz) { aom_free(frame_worker_data->scratch_buffer); frame_worker_data->scratch_buffer = (uint8_t *)aom_malloc(data_sz); if (frame_worker_data->scratch_buffer == NULL) { set_error_detail(ctx, "Failed to reallocate scratch buffer"); return AOM_CODEC_MEM_ERROR; } frame_worker_data->scratch_buffer_size = data_sz; } frame_worker_data->data_size = data_sz; memcpy(frame_worker_data->scratch_buffer, *data, data_sz); frame_worker_data->frame_decoded = 0; frame_worker_data->frame_context_ready = 0; frame_worker_data->received_frame = 1; frame_worker_data->data = frame_worker_data->scratch_buffer; frame_worker_data->user_priv = user_priv; if (ctx->next_submit_worker_id != ctx->last_submit_worker_id) ctx->last_submit_worker_id = (ctx->last_submit_worker_id + 1) % ctx->num_frame_workers; ctx->next_submit_worker_id = (ctx->next_submit_worker_id + 1) % ctx->num_frame_workers; --ctx->available_threads; worker->had_error = 0; winterface->launch(worker); } return AOM_CODEC_OK; } static void wait_worker_and_cache_frame(aom_codec_alg_priv_t *ctx) { YV12_BUFFER_CONFIG sd; const AVxWorkerInterface *const winterface = aom_get_worker_interface(); AVxWorker *const worker = &ctx->frame_workers[ctx->next_output_worker_id]; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; ctx->next_output_worker_id = (ctx->next_output_worker_id + 1) % ctx->num_frame_workers; // TODO(hkuang): Add worker error handling here. winterface->sync(worker); frame_worker_data->received_frame = 0; ++ctx->available_threads; check_resync(ctx, frame_worker_data->pbi); if (av1_get_raw_frame(frame_worker_data->pbi, &sd) == 0) { AV1_COMMON *const cm = &frame_worker_data->pbi->common; RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; ctx->frame_cache[ctx->frame_cache_write].fb_idx = cm->new_fb_idx; yuvconfig2image(&ctx->frame_cache[ctx->frame_cache_write].img, &sd, frame_worker_data->user_priv); ctx->frame_cache[ctx->frame_cache_write].img.fb_priv = frame_bufs[cm->new_fb_idx].raw_frame_buffer.priv; ctx->frame_cache_write = (ctx->frame_cache_write + 1) % FRAME_CACHE_SIZE; ++ctx->num_cache_frames; } } static aom_codec_err_t decoder_decode(aom_codec_alg_priv_t *ctx, const uint8_t *data, unsigned int data_sz, void *user_priv, long deadline) { const uint8_t *data_start = data; const uint8_t *const data_end = data + data_sz; aom_codec_err_t res; uint32_t frame_sizes[8]; int frame_count; if (data == NULL && data_sz == 0) { ctx->flushed = 1; return AOM_CODEC_OK; } // Reset flushed when receiving a valid frame. ctx->flushed = 0; // Initialize the decoder workers on the first frame. if (ctx->frame_workers == NULL) { res = init_decoder(ctx); if (res != AOM_CODEC_OK) return res; } int index_size = 0; res = av1_parse_superframe_index(data, data_sz, frame_sizes, &frame_count, &index_size, ctx->decrypt_cb, ctx->decrypt_state); if (res != AOM_CODEC_OK) return res; data_start += index_size; if (ctx->frame_parallel_decode) { // Decode in frame parallel mode. When decoding in this mode, the frame // passed to the decoder must be either a normal frame or a superframe with // superframe index so the decoder could get each frame's start position // in the superframe. if (frame_count > 0) { int i; for (i = 0; i < frame_count; ++i) { const uint8_t *data_start_copy = data_start; const uint32_t frame_size = frame_sizes[i]; if (data_start < data || frame_size > (uint32_t)(data_end - data_start)) { set_error_detail(ctx, "Invalid frame size in index"); return AOM_CODEC_CORRUPT_FRAME; } if (ctx->available_threads == 0) { // No more threads for decoding. Wait until the next output worker // finishes decoding. Then copy the decoded frame into cache. if (ctx->num_cache_frames < FRAME_CACHE_SIZE) { wait_worker_and_cache_frame(ctx); } else { // TODO(hkuang): Add unit test to test this path. set_error_detail(ctx, "Frame output cache is full."); return AOM_CODEC_ERROR; } } res = decode_one(ctx, &data_start_copy, frame_size, user_priv, deadline); if (res != AOM_CODEC_OK) return res; data_start += frame_size; } } else { if (ctx->available_threads == 0) { // No more threads for decoding. Wait until the next output worker // finishes decoding. Then copy the decoded frame into cache. if (ctx->num_cache_frames < FRAME_CACHE_SIZE) { wait_worker_and_cache_frame(ctx); } else { // TODO(hkuang): Add unit test to test this path. set_error_detail(ctx, "Frame output cache is full."); return AOM_CODEC_ERROR; } } res = decode_one(ctx, &data, data_sz, user_priv, deadline); if (res != AOM_CODEC_OK) return res; } } else { // Decode in serial mode. if (frame_count > 0) { int i; for (i = 0; i < frame_count; ++i) { const uint8_t *data_start_copy = data_start; const uint32_t frame_size = frame_sizes[i]; if (data_start < data || frame_size > (uint32_t)(data_end - data_start)) { set_error_detail(ctx, "Invalid frame size in index"); return AOM_CODEC_CORRUPT_FRAME; } res = decode_one(ctx, &data_start_copy, frame_size, user_priv, deadline); if (res != AOM_CODEC_OK) return res; data_start += frame_size; } } else { while (data_start < data_end) { const uint32_t frame_size = (uint32_t)(data_end - data_start); res = decode_one(ctx, &data_start, frame_size, user_priv, deadline); if (res != AOM_CODEC_OK) return res; // Account for suboptimal termination by the encoder. while (data_start < data_end) { const uint8_t marker = read_marker(ctx->decrypt_cb, ctx->decrypt_state, data_start); if (marker) break; ++data_start; } } } } return res; } static void release_last_output_frame(aom_codec_alg_priv_t *ctx) { RefCntBuffer *const frame_bufs = ctx->buffer_pool->frame_bufs; // Decrease reference count of last output frame in frame parallel mode. if (ctx->frame_parallel_decode && ctx->last_show_frame >= 0) { BufferPool *const pool = ctx->buffer_pool; lock_buffer_pool(pool); decrease_ref_count(ctx->last_show_frame, frame_bufs, pool); unlock_buffer_pool(pool); } } static aom_image_t *decoder_get_frame(aom_codec_alg_priv_t *ctx, aom_codec_iter_t *iter) { aom_image_t *img = NULL; // Only return frame when all the cpu are busy or // application fluhsed the decoder in frame parallel decode. if (ctx->frame_parallel_decode && ctx->available_threads > 0 && !ctx->flushed) { return NULL; } // Output the frames in the cache first. if (ctx->num_cache_frames > 0) { release_last_output_frame(ctx); ctx->last_show_frame = ctx->frame_cache[ctx->frame_cache_read].fb_idx; if (ctx->need_resync) return NULL; img = &ctx->frame_cache[ctx->frame_cache_read].img; ctx->frame_cache_read = (ctx->frame_cache_read + 1) % FRAME_CACHE_SIZE; --ctx->num_cache_frames; return img; } // iter acts as a flip flop, so an image is only returned on the first // call to get_frame. if (*iter == NULL && ctx->frame_workers != NULL) { do { YV12_BUFFER_CONFIG sd; const AVxWorkerInterface *const winterface = aom_get_worker_interface(); AVxWorker *const worker = &ctx->frame_workers[ctx->next_output_worker_id]; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; ctx->next_output_worker_id = (ctx->next_output_worker_id + 1) % ctx->num_frame_workers; // Wait for the frame from worker thread. if (winterface->sync(worker)) { // Check if worker has received any frames. if (frame_worker_data->received_frame == 1) { ++ctx->available_threads; frame_worker_data->received_frame = 0; check_resync(ctx, frame_worker_data->pbi); } if (av1_get_raw_frame(frame_worker_data->pbi, &sd) == 0) { AV1_COMMON *const cm = &frame_worker_data->pbi->common; RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; release_last_output_frame(ctx); ctx->last_show_frame = frame_worker_data->pbi->common.new_fb_idx; if (ctx->need_resync) return NULL; yuvconfig2image(&ctx->img, &sd, frame_worker_data->user_priv); #if CONFIG_EXT_TILE if (cm->single_tile_decoding && frame_worker_data->pbi->dec_tile_row >= 0) { const int tile_row = AOMMIN(frame_worker_data->pbi->dec_tile_row, cm->tile_rows - 1); const int mi_row = tile_row * cm->tile_height; const int ssy = ctx->img.y_chroma_shift; int plane; ctx->img.planes[0] += mi_row * MI_SIZE * ctx->img.stride[0]; for (plane = 1; plane < MAX_MB_PLANE; ++plane) { ctx->img.planes[plane] += mi_row * (MI_SIZE >> ssy) * ctx->img.stride[plane]; } ctx->img.d_h = AOMMIN(cm->tile_height, cm->mi_rows - mi_row) * MI_SIZE; } if (cm->single_tile_decoding && frame_worker_data->pbi->dec_tile_col >= 0) { const int tile_col = AOMMIN(frame_worker_data->pbi->dec_tile_col, cm->tile_cols - 1); const int mi_col = tile_col * cm->tile_width; const int ssx = ctx->img.x_chroma_shift; int plane; ctx->img.planes[0] += mi_col * MI_SIZE; for (plane = 1; plane < MAX_MB_PLANE; ++plane) { ctx->img.planes[plane] += mi_col * (MI_SIZE >> ssx); } ctx->img.d_w = AOMMIN(cm->tile_width, cm->mi_cols - mi_col) * MI_SIZE; } #endif // CONFIG_EXT_TILE ctx->img.fb_priv = frame_bufs[cm->new_fb_idx].raw_frame_buffer.priv; img = &ctx->img; return img; } } else { // Decoding failed. Release the worker thread. frame_worker_data->received_frame = 0; ++ctx->available_threads; ctx->need_resync = 1; if (ctx->flushed != 1) return NULL; } } while (ctx->next_output_worker_id != ctx->next_submit_worker_id); } return NULL; } static aom_codec_err_t decoder_set_fb_fn( aom_codec_alg_priv_t *ctx, aom_get_frame_buffer_cb_fn_t cb_get, aom_release_frame_buffer_cb_fn_t cb_release, void *cb_priv) { if (cb_get == NULL || cb_release == NULL) { return AOM_CODEC_INVALID_PARAM; } else if (ctx->frame_workers == NULL) { // If the decoder has already been initialized, do not accept changes to // the frame buffer functions. ctx->get_ext_fb_cb = cb_get; ctx->release_ext_fb_cb = cb_release; ctx->ext_priv = cb_priv; return AOM_CODEC_OK; } return AOM_CODEC_ERROR; } static aom_codec_err_t ctrl_set_reference(aom_codec_alg_priv_t *ctx, va_list args) { aom_ref_frame_t *const data = va_arg(args, aom_ref_frame_t *); // Only support this function in serial decode. if (ctx->frame_parallel_decode) { set_error_detail(ctx, "Not supported in frame parallel decode"); return AOM_CODEC_INCAPABLE; } if (data) { aom_ref_frame_t *const frame = (aom_ref_frame_t *)data; YV12_BUFFER_CONFIG sd; AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; image2yuvconfig(&frame->img, &sd); return av1_set_reference_dec(&frame_worker_data->pbi->common, ref_frame_to_av1_reframe(frame->frame_type), &sd); } else { return AOM_CODEC_INVALID_PARAM; } } static aom_codec_err_t ctrl_copy_reference(aom_codec_alg_priv_t *ctx, va_list args) { const aom_ref_frame_t *const frame = va_arg(args, aom_ref_frame_t *); // Only support this function in serial decode. if (ctx->frame_parallel_decode) { set_error_detail(ctx, "Not supported in frame parallel decode"); return AOM_CODEC_INCAPABLE; } if (frame) { YV12_BUFFER_CONFIG sd; AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; image2yuvconfig(&frame->img, &sd); return av1_copy_reference_dec(frame_worker_data->pbi, (AOM_REFFRAME)frame->frame_type, &sd); } else { return AOM_CODEC_INVALID_PARAM; } } static aom_codec_err_t ctrl_get_reference(aom_codec_alg_priv_t *ctx, va_list args) { av1_ref_frame_t *data = va_arg(args, av1_ref_frame_t *); // Only support this function in serial decode. if (ctx->frame_parallel_decode) { set_error_detail(ctx, "Not supported in frame parallel decode"); return AOM_CODEC_INCAPABLE; } if (data) { YV12_BUFFER_CONFIG *fb; AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; fb = get_ref_frame(&frame_worker_data->pbi->common, data->idx); if (fb == NULL) return AOM_CODEC_ERROR; yuvconfig2image(&data->img, fb, NULL); return AOM_CODEC_OK; } else { return AOM_CODEC_INVALID_PARAM; } } static aom_codec_err_t ctrl_get_new_frame_image(aom_codec_alg_priv_t *ctx, va_list args) { aom_image_t *new_img = va_arg(args, aom_image_t *); // Only support this function in serial decode. if (ctx->frame_parallel_decode) { set_error_detail(ctx, "Not supported in frame parallel decode"); return AOM_CODEC_INCAPABLE; } if (new_img) { YV12_BUFFER_CONFIG new_frame; AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; if (av1_get_frame_to_show(frame_worker_data->pbi, &new_frame) == 0) { yuvconfig2image(new_img, &new_frame, NULL); return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } else { return AOM_CODEC_INVALID_PARAM; } } static aom_codec_err_t ctrl_set_postproc(aom_codec_alg_priv_t *ctx, va_list args) { (void)ctx; (void)args; return AOM_CODEC_INCAPABLE; } static aom_codec_err_t ctrl_set_dbg_options(aom_codec_alg_priv_t *ctx, va_list args) { (void)ctx; (void)args; return AOM_CODEC_INCAPABLE; } static aom_codec_err_t ctrl_get_last_ref_updates(aom_codec_alg_priv_t *ctx, va_list args) { int *const update_info = va_arg(args, int *); // Only support this function in serial decode. if (ctx->frame_parallel_decode) { set_error_detail(ctx, "Not supported in frame parallel decode"); return AOM_CODEC_INCAPABLE; } if (update_info) { if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; *update_info = frame_worker_data->pbi->refresh_frame_flags; return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } return AOM_CODEC_INVALID_PARAM; } static aom_codec_err_t ctrl_get_last_quantizer(aom_codec_alg_priv_t *ctx, va_list args) { int *const arg = va_arg(args, int *); if (arg == NULL) return AOM_CODEC_INVALID_PARAM; *arg = ((FrameWorkerData *)ctx->frame_workers[0].data1)->pbi->common.base_qindex; return AOM_CODEC_OK; } static aom_codec_err_t ctrl_get_frame_corrupted(aom_codec_alg_priv_t *ctx, va_list args) { int *corrupted = va_arg(args, int *); if (corrupted) { if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; RefCntBuffer *const frame_bufs = frame_worker_data->pbi->common.buffer_pool->frame_bufs; if (frame_worker_data->pbi->common.frame_to_show == NULL) return AOM_CODEC_ERROR; if (ctx->last_show_frame >= 0) *corrupted = frame_bufs[ctx->last_show_frame].buf.corrupted; return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } return AOM_CODEC_INVALID_PARAM; } static aom_codec_err_t ctrl_get_frame_size(aom_codec_alg_priv_t *ctx, va_list args) { int *const frame_size = va_arg(args, int *); // Only support this function in serial decode. if (ctx->frame_parallel_decode) { set_error_detail(ctx, "Not supported in frame parallel decode"); return AOM_CODEC_INCAPABLE; } if (frame_size) { if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; const AV1_COMMON *const cm = &frame_worker_data->pbi->common; frame_size[0] = cm->width; frame_size[1] = cm->height; return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } return AOM_CODEC_INVALID_PARAM; } static aom_codec_err_t ctrl_get_render_size(aom_codec_alg_priv_t *ctx, va_list args) { int *const render_size = va_arg(args, int *); // Only support this function in serial decode. if (ctx->frame_parallel_decode) { set_error_detail(ctx, "Not supported in frame parallel decode"); return AOM_CODEC_INCAPABLE; } if (render_size) { if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; const AV1_COMMON *const cm = &frame_worker_data->pbi->common; render_size[0] = cm->render_width; render_size[1] = cm->render_height; return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } return AOM_CODEC_INVALID_PARAM; } static aom_codec_err_t ctrl_get_bit_depth(aom_codec_alg_priv_t *ctx, va_list args) { unsigned int *const bit_depth = va_arg(args, unsigned int *); AVxWorker *const worker = &ctx->frame_workers[ctx->next_output_worker_id]; if (bit_depth) { if (worker) { FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; const AV1_COMMON *const cm = &frame_worker_data->pbi->common; *bit_depth = cm->bit_depth; return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } return AOM_CODEC_INVALID_PARAM; } static aom_codec_err_t ctrl_set_invert_tile_order(aom_codec_alg_priv_t *ctx, va_list args) { ctx->invert_tile_order = va_arg(args, int); return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_decryptor(aom_codec_alg_priv_t *ctx, va_list args) { aom_decrypt_init *init = va_arg(args, aom_decrypt_init *); ctx->decrypt_cb = init ? init->decrypt_cb : NULL; ctx->decrypt_state = init ? init->decrypt_state : NULL; return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_byte_alignment(aom_codec_alg_priv_t *ctx, va_list args) { const int legacy_byte_alignment = 0; const int min_byte_alignment = 32; const int max_byte_alignment = 1024; const int byte_alignment = va_arg(args, int); if (byte_alignment != legacy_byte_alignment && (byte_alignment < min_byte_alignment || byte_alignment > max_byte_alignment || (byte_alignment & (byte_alignment - 1)) != 0)) return AOM_CODEC_INVALID_PARAM; ctx->byte_alignment = byte_alignment; if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; frame_worker_data->pbi->common.byte_alignment = byte_alignment; } return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_skip_loop_filter(aom_codec_alg_priv_t *ctx, va_list args) { ctx->skip_loop_filter = va_arg(args, int); if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; frame_worker_data->pbi->common.skip_loop_filter = ctx->skip_loop_filter; } return AOM_CODEC_OK; } static aom_codec_err_t ctrl_get_accounting(aom_codec_alg_priv_t *ctx, va_list args) { #if !CONFIG_ACCOUNTING (void)ctx; (void)args; return AOM_CODEC_INCAPABLE; #else if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; AV1Decoder *pbi = frame_worker_data->pbi; Accounting **acct = va_arg(args, Accounting **); *acct = &pbi->accounting; return AOM_CODEC_OK; } return AOM_CODEC_ERROR; #endif } static aom_codec_err_t ctrl_set_decode_tile_row(aom_codec_alg_priv_t *ctx, va_list args) { ctx->decode_tile_row = va_arg(args, int); return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_decode_tile_col(aom_codec_alg_priv_t *ctx, va_list args) { ctx->decode_tile_col = va_arg(args, int); return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_inspection_callback(aom_codec_alg_priv_t *ctx, va_list args) { #if !CONFIG_INSPECTION (void)ctx; (void)args; return AOM_CODEC_INCAPABLE; #else aom_inspect_init *init = va_arg(args, aom_inspect_init *); ctx->inspect_cb = init->inspect_cb; ctx->inspect_ctx = init->inspect_ctx; return AOM_CODEC_OK; #endif } static aom_codec_ctrl_fn_map_t decoder_ctrl_maps[] = { { AOM_COPY_REFERENCE, ctrl_copy_reference }, // Setters { AOM_SET_REFERENCE, ctrl_set_reference }, { AOM_SET_POSTPROC, ctrl_set_postproc }, { AOM_SET_DBG_COLOR_REF_FRAME, ctrl_set_dbg_options }, { AOM_SET_DBG_COLOR_MB_MODES, ctrl_set_dbg_options }, { AOM_SET_DBG_COLOR_B_MODES, ctrl_set_dbg_options }, { AOM_SET_DBG_DISPLAY_MV, ctrl_set_dbg_options }, { AV1_INVERT_TILE_DECODE_ORDER, ctrl_set_invert_tile_order }, { AOMD_SET_DECRYPTOR, ctrl_set_decryptor }, { AV1_SET_BYTE_ALIGNMENT, ctrl_set_byte_alignment }, { AV1_SET_SKIP_LOOP_FILTER, ctrl_set_skip_loop_filter }, { AV1_SET_DECODE_TILE_ROW, ctrl_set_decode_tile_row }, { AV1_SET_DECODE_TILE_COL, ctrl_set_decode_tile_col }, { AV1_SET_INSPECTION_CALLBACK, ctrl_set_inspection_callback }, // Getters { AOMD_GET_FRAME_CORRUPTED, ctrl_get_frame_corrupted }, { AOMD_GET_LAST_QUANTIZER, ctrl_get_last_quantizer }, { AOMD_GET_LAST_REF_UPDATES, ctrl_get_last_ref_updates }, { AV1D_GET_BIT_DEPTH, ctrl_get_bit_depth }, { AV1D_GET_DISPLAY_SIZE, ctrl_get_render_size }, { AV1D_GET_FRAME_SIZE, ctrl_get_frame_size }, { AV1_GET_ACCOUNTING, ctrl_get_accounting }, { AV1_GET_NEW_FRAME_IMAGE, ctrl_get_new_frame_image }, { AV1_GET_REFERENCE, ctrl_get_reference }, { -1, NULL }, }; #ifndef VERSION_STRING #define VERSION_STRING #endif CODEC_INTERFACE(aom_codec_av1_dx) = { "AOMedia Project AV1 Decoder" VERSION_STRING, AOM_CODEC_INTERNAL_ABI_VERSION, AOM_CODEC_CAP_DECODER | AOM_CODEC_CAP_EXTERNAL_FRAME_BUFFER, // aom_codec_caps_t decoder_init, // aom_codec_init_fn_t decoder_destroy, // aom_codec_destroy_fn_t decoder_ctrl_maps, // aom_codec_ctrl_fn_map_t { // NOLINT decoder_peek_si, // aom_codec_peek_si_fn_t decoder_get_si, // aom_codec_get_si_fn_t decoder_decode, // aom_codec_decode_fn_t decoder_get_frame, // aom_codec_frame_get_fn_t decoder_set_fb_fn, // aom_codec_set_fb_fn_t }, { // NOLINT 0, NULL, // aom_codec_enc_cfg_map_t NULL, // aom_codec_encode_fn_t NULL, // aom_codec_get_cx_data_fn_t NULL, // aom_codec_enc_config_set_fn_t NULL, // aom_codec_get_global_headers_fn_t NULL, // aom_codec_get_preview_frame_fn_t NULL // aom_codec_enc_mr_get_mem_loc_fn_t } };