/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "./aom_config.h" #include "aom_ports/mem.h" #include "aom/aom_integer.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/aom_filter.h" #include "aom_dsp/x86/obmc_intrinsic_ssse3.h" #include "aom_dsp/x86/synonyms.h" //////////////////////////////////////////////////////////////////////////////// // 8 bit //////////////////////////////////////////////////////////////////////////////// static INLINE void obmc_variance_w4(const uint8_t *pre, const int pre_stride, const int32_t *wsrc, const int32_t *mask, unsigned int *const sse, int *const sum, const int h) { const int pre_step = pre_stride - 4; int n = 0; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_d = _mm_setzero_si128(); assert(IS_POWER_OF_TWO(h)); do { const __m128i v_p_b = xx_loadl_32(pre + n); const __m128i v_m_d = xx_load_128(mask + n); const __m128i v_w_d = xx_load_128(wsrc + n); const __m128i v_p_d = _mm_cvtepu8_epi32(v_p_b); // Values in both pre and mask fit in 15 bits, and are packed at 32 bit // boundaries. We use pmaddwd, as it has lower latency on Haswell // than pmulld but produces the same result with these inputs. const __m128i v_pm_d = _mm_madd_epi16(v_p_d, v_m_d); const __m128i v_diff_d = _mm_sub_epi32(v_w_d, v_pm_d); const __m128i v_rdiff_d = xx_roundn_epi32(v_diff_d, 12); const __m128i v_sqrdiff_d = _mm_mullo_epi32(v_rdiff_d, v_rdiff_d); v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff_d); v_sse_d = _mm_add_epi32(v_sse_d, v_sqrdiff_d); n += 4; if (n % 4 == 0) pre += pre_step; } while (n < 4 * h); *sum = xx_hsum_epi32_si32(v_sum_d); *sse = xx_hsum_epi32_si32(v_sse_d); } static INLINE void obmc_variance_w8n(const uint8_t *pre, const int pre_stride, const int32_t *wsrc, const int32_t *mask, unsigned int *const sse, int *const sum, const int w, const int h) { const int pre_step = pre_stride - w; int n = 0; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_d = _mm_setzero_si128(); assert(w >= 8); assert(IS_POWER_OF_TWO(w)); assert(IS_POWER_OF_TWO(h)); do { const __m128i v_p1_b = xx_loadl_32(pre + n + 4); const __m128i v_m1_d = xx_load_128(mask + n + 4); const __m128i v_w1_d = xx_load_128(wsrc + n + 4); const __m128i v_p0_b = xx_loadl_32(pre + n); const __m128i v_m0_d = xx_load_128(mask + n); const __m128i v_w0_d = xx_load_128(wsrc + n); const __m128i v_p0_d = _mm_cvtepu8_epi32(v_p0_b); const __m128i v_p1_d = _mm_cvtepu8_epi32(v_p1_b); // Values in both pre and mask fit in 15 bits, and are packed at 32 bit // boundaries. We use pmaddwd, as it has lower latency on Haswell // than pmulld but produces the same result with these inputs. const __m128i v_pm0_d = _mm_madd_epi16(v_p0_d, v_m0_d); const __m128i v_pm1_d = _mm_madd_epi16(v_p1_d, v_m1_d); const __m128i v_diff0_d = _mm_sub_epi32(v_w0_d, v_pm0_d); const __m128i v_diff1_d = _mm_sub_epi32(v_w1_d, v_pm1_d); const __m128i v_rdiff0_d = xx_roundn_epi32(v_diff0_d, 12); const __m128i v_rdiff1_d = xx_roundn_epi32(v_diff1_d, 12); const __m128i v_rdiff01_w = _mm_packs_epi32(v_rdiff0_d, v_rdiff1_d); const __m128i v_sqrdiff_d = _mm_madd_epi16(v_rdiff01_w, v_rdiff01_w); v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff0_d); v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff1_d); v_sse_d = _mm_add_epi32(v_sse_d, v_sqrdiff_d); n += 8; if (n % w == 0) pre += pre_step; } while (n < w * h); *sum = xx_hsum_epi32_si32(v_sum_d); *sse = xx_hsum_epi32_si32(v_sse_d); } #define OBMCVARWXH(W, H) \ unsigned int aom_obmc_variance##W##x##H##_sse4_1( \ const uint8_t *pre, int pre_stride, const int32_t *wsrc, \ const int32_t *mask, unsigned int *sse) { \ int sum; \ if (W == 4) { \ obmc_variance_w4(pre, pre_stride, wsrc, mask, sse, &sum, H); \ } else { \ obmc_variance_w8n(pre, pre_stride, wsrc, mask, sse, &sum, W, H); \ } \ return *sse - (unsigned int)(((int64_t)sum * sum) / (W * H)); \ } #if CONFIG_EXT_PARTITION OBMCVARWXH(128, 128) OBMCVARWXH(128, 64) OBMCVARWXH(64, 128) #endif // CONFIG_EXT_PARTITION OBMCVARWXH(64, 64) OBMCVARWXH(64, 32) OBMCVARWXH(32, 64) OBMCVARWXH(32, 32) OBMCVARWXH(32, 16) OBMCVARWXH(16, 32) OBMCVARWXH(16, 16) OBMCVARWXH(16, 8) OBMCVARWXH(8, 16) OBMCVARWXH(8, 8) OBMCVARWXH(8, 4) OBMCVARWXH(4, 8) OBMCVARWXH(4, 4) //////////////////////////////////////////////////////////////////////////////// // High bit-depth //////////////////////////////////////////////////////////////////////////////// #if CONFIG_HIGHBITDEPTH static INLINE void hbd_obmc_variance_w4( const uint8_t *pre8, const int pre_stride, const int32_t *wsrc, const int32_t *mask, uint64_t *const sse, int64_t *const sum, const int h) { const uint16_t *pre = CONVERT_TO_SHORTPTR(pre8); const int pre_step = pre_stride - 4; int n = 0; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_d = _mm_setzero_si128(); assert(IS_POWER_OF_TWO(h)); do { const __m128i v_p_w = xx_loadl_64(pre + n); const __m128i v_m_d = xx_load_128(mask + n); const __m128i v_w_d = xx_load_128(wsrc + n); const __m128i v_p_d = _mm_cvtepu16_epi32(v_p_w); // Values in both pre and mask fit in 15 bits, and are packed at 32 bit // boundaries. We use pmaddwd, as it has lower latency on Haswell // than pmulld but produces the same result with these inputs. const __m128i v_pm_d = _mm_madd_epi16(v_p_d, v_m_d); const __m128i v_diff_d = _mm_sub_epi32(v_w_d, v_pm_d); const __m128i v_rdiff_d = xx_roundn_epi32(v_diff_d, 12); const __m128i v_sqrdiff_d = _mm_mullo_epi32(v_rdiff_d, v_rdiff_d); v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff_d); v_sse_d = _mm_add_epi32(v_sse_d, v_sqrdiff_d); n += 4; if (n % 4 == 0) pre += pre_step; } while (n < 4 * h); *sum = xx_hsum_epi32_si32(v_sum_d); *sse = xx_hsum_epi32_si32(v_sse_d); } static INLINE void hbd_obmc_variance_w8n( const uint8_t *pre8, const int pre_stride, const int32_t *wsrc, const int32_t *mask, uint64_t *const sse, int64_t *const sum, const int w, const int h) { const uint16_t *pre = CONVERT_TO_SHORTPTR(pre8); const int pre_step = pre_stride - w; int n = 0; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_d = _mm_setzero_si128(); assert(w >= 8); assert(IS_POWER_OF_TWO(w)); assert(IS_POWER_OF_TWO(h)); do { const __m128i v_p1_w = xx_loadl_64(pre + n + 4); const __m128i v_m1_d = xx_load_128(mask + n + 4); const __m128i v_w1_d = xx_load_128(wsrc + n + 4); const __m128i v_p0_w = xx_loadl_64(pre + n); const __m128i v_m0_d = xx_load_128(mask + n); const __m128i v_w0_d = xx_load_128(wsrc + n); const __m128i v_p0_d = _mm_cvtepu16_epi32(v_p0_w); const __m128i v_p1_d = _mm_cvtepu16_epi32(v_p1_w); // Values in both pre and mask fit in 15 bits, and are packed at 32 bit // boundaries. We use pmaddwd, as it has lower latency on Haswell // than pmulld but produces the same result with these inputs. const __m128i v_pm0_d = _mm_madd_epi16(v_p0_d, v_m0_d); const __m128i v_pm1_d = _mm_madd_epi16(v_p1_d, v_m1_d); const __m128i v_diff0_d = _mm_sub_epi32(v_w0_d, v_pm0_d); const __m128i v_diff1_d = _mm_sub_epi32(v_w1_d, v_pm1_d); const __m128i v_rdiff0_d = xx_roundn_epi32(v_diff0_d, 12); const __m128i v_rdiff1_d = xx_roundn_epi32(v_diff1_d, 12); const __m128i v_rdiff01_w = _mm_packs_epi32(v_rdiff0_d, v_rdiff1_d); const __m128i v_sqrdiff_d = _mm_madd_epi16(v_rdiff01_w, v_rdiff01_w); v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff0_d); v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff1_d); v_sse_d = _mm_add_epi32(v_sse_d, v_sqrdiff_d); n += 8; if (n % w == 0) pre += pre_step; } while (n < w * h); *sum += xx_hsum_epi32_si64(v_sum_d); *sse += xx_hsum_epi32_si64(v_sse_d); } static INLINE void highbd_obmc_variance(const uint8_t *pre8, int pre_stride, const int32_t *wsrc, const int32_t *mask, int w, int h, unsigned int *sse, int *sum) { int64_t sum64 = 0; uint64_t sse64 = 0; if (w == 4) { hbd_obmc_variance_w4(pre8, pre_stride, wsrc, mask, &sse64, &sum64, h); } else { hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask, &sse64, &sum64, w, h); } *sum = (int)sum64; *sse = (unsigned int)sse64; } static INLINE void highbd_10_obmc_variance(const uint8_t *pre8, int pre_stride, const int32_t *wsrc, const int32_t *mask, int w, int h, unsigned int *sse, int *sum) { int64_t sum64 = 0; uint64_t sse64 = 0; if (w == 4) { hbd_obmc_variance_w4(pre8, pre_stride, wsrc, mask, &sse64, &sum64, h); } else { hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask, &sse64, &sum64, w, h); } *sum = (int)ROUND_POWER_OF_TWO(sum64, 2); *sse = (unsigned int)ROUND_POWER_OF_TWO(sse64, 4); } static INLINE void highbd_12_obmc_variance(const uint8_t *pre8, int pre_stride, const int32_t *wsrc, const int32_t *mask, int w, int h, unsigned int *sse, int *sum) { int64_t sum64 = 0; uint64_t sse64 = 0; if (w == 128) { do { hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask, &sse64, &sum64, 128, 32); pre8 += 32 * pre_stride; wsrc += 32 * 128; mask += 32 * 128; h -= 32; } while (h > 0); } else if (w == 64 && h >= 128) { do { hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask, &sse64, &sum64, 64, 64); pre8 += 64 * pre_stride; wsrc += 64 * 64; mask += 64 * 64; h -= 64; } while (h > 0); } else if (w == 4) { hbd_obmc_variance_w4(pre8, pre_stride, wsrc, mask, &sse64, &sum64, h); } else { hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask, &sse64, &sum64, w, h); } *sum = (int)ROUND_POWER_OF_TWO(sum64, 4); *sse = (unsigned int)ROUND_POWER_OF_TWO(sse64, 8); } #define HBD_OBMCVARWXH(W, H) \ unsigned int aom_highbd_obmc_variance##W##x##H##_sse4_1( \ const uint8_t *pre, int pre_stride, const int32_t *wsrc, \ const int32_t *mask, unsigned int *sse) { \ int sum; \ highbd_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \ return *sse - (unsigned int)(((int64_t)sum * sum) / (W * H)); \ } \ \ unsigned int aom_highbd_10_obmc_variance##W##x##H##_sse4_1( \ const uint8_t *pre, int pre_stride, const int32_t *wsrc, \ const int32_t *mask, unsigned int *sse) { \ int sum; \ int64_t var; \ highbd_10_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \ var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \ return (var >= 0) ? (uint32_t)var : 0; \ } \ \ unsigned int aom_highbd_12_obmc_variance##W##x##H##_sse4_1( \ const uint8_t *pre, int pre_stride, const int32_t *wsrc, \ const int32_t *mask, unsigned int *sse) { \ int sum; \ int64_t var; \ highbd_12_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \ var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \ return (var >= 0) ? (uint32_t)var : 0; \ } #if CONFIG_EXT_PARTITION HBD_OBMCVARWXH(128, 128) HBD_OBMCVARWXH(128, 64) HBD_OBMCVARWXH(64, 128) #endif // CONFIG_EXT_PARTITION HBD_OBMCVARWXH(64, 64) HBD_OBMCVARWXH(64, 32) HBD_OBMCVARWXH(32, 64) HBD_OBMCVARWXH(32, 32) HBD_OBMCVARWXH(32, 16) HBD_OBMCVARWXH(16, 32) HBD_OBMCVARWXH(16, 16) HBD_OBMCVARWXH(16, 8) HBD_OBMCVARWXH(8, 16) HBD_OBMCVARWXH(8, 8) HBD_OBMCVARWXH(8, 4) HBD_OBMCVARWXH(4, 8) HBD_OBMCVARWXH(4, 4) #endif // CONFIG_HIGHBITDEPTH