/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "aom_dsp/blend.h" #include "aom/aom_integer.h" #include "aom_ports/mem.h" #include "aom_dsp/aom_filter.h" #include "aom_dsp/x86/synonyms.h" // For width a multiple of 16 static void bilinear_filter(const uint8_t *src, int src_stride, int xoffset, int yoffset, uint8_t *dst, int w, int h); static void bilinear_filter8xh(const uint8_t *src, int src_stride, int xoffset, int yoffset, uint8_t *dst, int h); static void bilinear_filter4xh(const uint8_t *src, int src_stride, int xoffset, int yoffset, uint8_t *dst, int h); // For width a multiple of 16 static void masked_variance(const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, int a_stride, const uint8_t *b_ptr, int b_stride, const uint8_t *m_ptr, int m_stride, int width, int height, unsigned int *sse, int *sum_); static void masked_variance8xh(const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, const uint8_t *b_ptr, const uint8_t *m_ptr, int m_stride, int height, unsigned int *sse, int *sum_); static void masked_variance4xh(const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, const uint8_t *b_ptr, const uint8_t *m_ptr, int m_stride, int height, unsigned int *sse, int *sum_); #define MASK_SUBPIX_VAR_SSSE3(W, H) \ unsigned int aom_masked_sub_pixel_variance##W##x##H##_ssse3( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \ const uint8_t *msk, int msk_stride, int invert_mask, \ unsigned int *sse) { \ int sum; \ uint8_t temp[(H + 1) * W]; \ \ bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \ \ if (!invert_mask) \ masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \ msk_stride, W, H, sse, &sum); \ else \ masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \ msk_stride, W, H, sse, &sum); \ return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \ } #define MASK_SUBPIX_VAR8XH_SSSE3(H) \ unsigned int aom_masked_sub_pixel_variance8x##H##_ssse3( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \ const uint8_t *msk, int msk_stride, int invert_mask, \ unsigned int *sse) { \ int sum; \ uint8_t temp[(H + 1) * 8]; \ \ bilinear_filter8xh(src, src_stride, xoffset, yoffset, temp, H); \ \ if (!invert_mask) \ masked_variance8xh(ref, ref_stride, temp, second_pred, msk, msk_stride, \ H, sse, &sum); \ else \ masked_variance8xh(ref, ref_stride, second_pred, temp, msk, msk_stride, \ H, sse, &sum); \ return *sse - (uint32_t)(((int64_t)sum * sum) / (8 * H)); \ } #define MASK_SUBPIX_VAR4XH_SSSE3(H) \ unsigned int aom_masked_sub_pixel_variance4x##H##_ssse3( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \ const uint8_t *msk, int msk_stride, int invert_mask, \ unsigned int *sse) { \ int sum; \ uint8_t temp[(H + 1) * 4]; \ \ bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \ \ if (!invert_mask) \ masked_variance4xh(ref, ref_stride, temp, second_pred, msk, msk_stride, \ H, sse, &sum); \ else \ masked_variance4xh(ref, ref_stride, second_pred, temp, msk, msk_stride, \ H, sse, &sum); \ return *sse - (uint32_t)(((int64_t)sum * sum) / (4 * H)); \ } #if CONFIG_EXT_PARTITION MASK_SUBPIX_VAR_SSSE3(128, 128) MASK_SUBPIX_VAR_SSSE3(128, 64) MASK_SUBPIX_VAR_SSSE3(64, 128) #endif MASK_SUBPIX_VAR_SSSE3(64, 64) MASK_SUBPIX_VAR_SSSE3(64, 32) MASK_SUBPIX_VAR_SSSE3(32, 64) MASK_SUBPIX_VAR_SSSE3(32, 32) MASK_SUBPIX_VAR_SSSE3(32, 16) MASK_SUBPIX_VAR_SSSE3(16, 32) MASK_SUBPIX_VAR_SSSE3(16, 16) MASK_SUBPIX_VAR_SSSE3(16, 8) MASK_SUBPIX_VAR8XH_SSSE3(16) MASK_SUBPIX_VAR8XH_SSSE3(8) MASK_SUBPIX_VAR8XH_SSSE3(4) MASK_SUBPIX_VAR4XH_SSSE3(8) MASK_SUBPIX_VAR4XH_SSSE3(4) static INLINE __m128i filter_block(const __m128i a, const __m128i b, const __m128i filter) { __m128i v0 = _mm_unpacklo_epi8(a, b); v0 = _mm_maddubs_epi16(v0, filter); v0 = xx_roundn_epu16(v0, FILTER_BITS); __m128i v1 = _mm_unpackhi_epi8(a, b); v1 = _mm_maddubs_epi16(v1, filter); v1 = xx_roundn_epu16(v1, FILTER_BITS); return _mm_packus_epi16(v0, v1); } static void bilinear_filter(const uint8_t *src, int src_stride, int xoffset, int yoffset, uint8_t *dst, int w, int h) { int i, j; // Horizontal filter if (xoffset == 0) { uint8_t *b = dst; for (i = 0; i < h + 1; ++i) { for (j = 0; j < w; j += 16) { __m128i x = _mm_loadu_si128((__m128i *)&src[j]); _mm_storeu_si128((__m128i *)&b[j], x); } src += src_stride; b += w; } } else if (xoffset == 4) { uint8_t *b = dst; for (i = 0; i < h + 1; ++i) { for (j = 0; j < w; j += 16) { __m128i x = _mm_loadu_si128((__m128i *)&src[j]); __m128i y = _mm_loadu_si128((__m128i *)&src[j + 16]); __m128i z = _mm_alignr_epi8(y, x, 1); _mm_storeu_si128((__m128i *)&b[j], _mm_avg_epu8(x, z)); } src += src_stride; b += w; } } else { uint8_t *b = dst; const uint8_t *hfilter = bilinear_filters_2t[xoffset]; const __m128i hfilter_vec = _mm_set1_epi16(hfilter[0] | (hfilter[1] << 8)); for (i = 0; i < h + 1; ++i) { for (j = 0; j < w; j += 16) { const __m128i x = _mm_loadu_si128((__m128i *)&src[j]); const __m128i y = _mm_loadu_si128((__m128i *)&src[j + 16]); const __m128i z = _mm_alignr_epi8(y, x, 1); const __m128i res = filter_block(x, z, hfilter_vec); _mm_storeu_si128((__m128i *)&b[j], res); } src += src_stride; b += w; } } // Vertical filter if (yoffset == 0) { // The data is already in 'dst', so no need to filter } else if (yoffset == 4) { for (i = 0; i < h; ++i) { for (j = 0; j < w; j += 16) { __m128i x = _mm_loadu_si128((__m128i *)&dst[j]); __m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]); _mm_storeu_si128((__m128i *)&dst[j], _mm_avg_epu8(x, y)); } dst += w; } } else { const uint8_t *vfilter = bilinear_filters_2t[yoffset]; const __m128i vfilter_vec = _mm_set1_epi16(vfilter[0] | (vfilter[1] << 8)); for (i = 0; i < h; ++i) { for (j = 0; j < w; j += 16) { const __m128i x = _mm_loadu_si128((__m128i *)&dst[j]); const __m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]); const __m128i res = filter_block(x, y, vfilter_vec); _mm_storeu_si128((__m128i *)&dst[j], res); } dst += w; } } } static INLINE __m128i filter_block_2rows(const __m128i a0, const __m128i b0, const __m128i a1, const __m128i b1, const __m128i filter) { __m128i v0 = _mm_unpacklo_epi8(a0, b0); v0 = _mm_maddubs_epi16(v0, filter); v0 = xx_roundn_epu16(v0, FILTER_BITS); __m128i v1 = _mm_unpacklo_epi8(a1, b1); v1 = _mm_maddubs_epi16(v1, filter); v1 = xx_roundn_epu16(v1, FILTER_BITS); return _mm_packus_epi16(v0, v1); } static void bilinear_filter8xh(const uint8_t *src, int src_stride, int xoffset, int yoffset, uint8_t *dst, int h) { int i; // Horizontal filter if (xoffset == 0) { uint8_t *b = dst; for (i = 0; i < h + 1; ++i) { __m128i x = _mm_loadl_epi64((__m128i *)src); _mm_storel_epi64((__m128i *)b, x); src += src_stride; b += 8; } } else if (xoffset == 4) { uint8_t *b = dst; for (i = 0; i < h + 1; ++i) { __m128i x = _mm_loadu_si128((__m128i *)src); __m128i z = _mm_srli_si128(x, 1); _mm_storel_epi64((__m128i *)b, _mm_avg_epu8(x, z)); src += src_stride; b += 8; } } else { uint8_t *b = dst; const uint8_t *hfilter = bilinear_filters_2t[xoffset]; const __m128i hfilter_vec = _mm_set1_epi16(hfilter[0] | (hfilter[1] << 8)); for (i = 0; i < h; i += 2) { const __m128i x0 = _mm_loadu_si128((__m128i *)src); const __m128i z0 = _mm_srli_si128(x0, 1); const __m128i x1 = _mm_loadu_si128((__m128i *)&src[src_stride]); const __m128i z1 = _mm_srli_si128(x1, 1); const __m128i res = filter_block_2rows(x0, z0, x1, z1, hfilter_vec); _mm_storeu_si128((__m128i *)b, res); src += src_stride * 2; b += 16; } // Handle i = h separately const __m128i x0 = _mm_loadu_si128((__m128i *)src); const __m128i z0 = _mm_srli_si128(x0, 1); __m128i v0 = _mm_unpacklo_epi8(x0, z0); v0 = _mm_maddubs_epi16(v0, hfilter_vec); v0 = xx_roundn_epu16(v0, FILTER_BITS); _mm_storel_epi64((__m128i *)b, _mm_packus_epi16(v0, v0)); } // Vertical filter if (yoffset == 0) { // The data is already in 'dst', so no need to filter } else if (yoffset == 4) { for (i = 0; i < h; ++i) { __m128i x = _mm_loadl_epi64((__m128i *)dst); __m128i y = _mm_loadl_epi64((__m128i *)&dst[8]); _mm_storel_epi64((__m128i *)dst, _mm_avg_epu8(x, y)); dst += 8; } } else { const uint8_t *vfilter = bilinear_filters_2t[yoffset]; const __m128i vfilter_vec = _mm_set1_epi16(vfilter[0] | (vfilter[1] << 8)); for (i = 0; i < h; i += 2) { const __m128i x = _mm_loadl_epi64((__m128i *)dst); const __m128i y = _mm_loadl_epi64((__m128i *)&dst[8]); const __m128i z = _mm_loadl_epi64((__m128i *)&dst[16]); const __m128i res = filter_block_2rows(x, y, y, z, vfilter_vec); _mm_storeu_si128((__m128i *)dst, res); dst += 16; } } } static void bilinear_filter4xh(const uint8_t *src, int src_stride, int xoffset, int yoffset, uint8_t *dst, int h) { int i; // Horizontal filter if (xoffset == 0) { uint8_t *b = dst; for (i = 0; i < h + 1; ++i) { __m128i x = xx_loadl_32((__m128i *)src); xx_storel_32((__m128i *)b, x); src += src_stride; b += 4; } } else if (xoffset == 4) { uint8_t *b = dst; for (i = 0; i < h + 1; ++i) { __m128i x = _mm_loadl_epi64((__m128i *)src); __m128i z = _mm_srli_si128(x, 1); xx_storel_32((__m128i *)b, _mm_avg_epu8(x, z)); src += src_stride; b += 4; } } else { uint8_t *b = dst; const uint8_t *hfilter = bilinear_filters_2t[xoffset]; const __m128i hfilter_vec = _mm_set1_epi16(hfilter[0] | (hfilter[1] << 8)); for (i = 0; i < h; i += 4) { const __m128i x0 = _mm_loadl_epi64((__m128i *)src); const __m128i z0 = _mm_srli_si128(x0, 1); const __m128i x1 = _mm_loadl_epi64((__m128i *)&src[src_stride]); const __m128i z1 = _mm_srli_si128(x1, 1); const __m128i x2 = _mm_loadl_epi64((__m128i *)&src[src_stride * 2]); const __m128i z2 = _mm_srli_si128(x2, 1); const __m128i x3 = _mm_loadl_epi64((__m128i *)&src[src_stride * 3]); const __m128i z3 = _mm_srli_si128(x3, 1); const __m128i a0 = _mm_unpacklo_epi32(x0, x1); const __m128i b0 = _mm_unpacklo_epi32(z0, z1); const __m128i a1 = _mm_unpacklo_epi32(x2, x3); const __m128i b1 = _mm_unpacklo_epi32(z2, z3); const __m128i res = filter_block_2rows(a0, b0, a1, b1, hfilter_vec); _mm_storeu_si128((__m128i *)b, res); src += src_stride * 4; b += 16; } // Handle i = h separately const __m128i x = _mm_loadl_epi64((__m128i *)src); const __m128i z = _mm_srli_si128(x, 1); __m128i v0 = _mm_unpacklo_epi8(x, z); v0 = _mm_maddubs_epi16(v0, hfilter_vec); v0 = xx_roundn_epu16(v0, FILTER_BITS); xx_storel_32((__m128i *)b, _mm_packus_epi16(v0, v0)); } // Vertical filter if (yoffset == 0) { // The data is already in 'dst', so no need to filter } else if (yoffset == 4) { for (i = 0; i < h; ++i) { __m128i x = xx_loadl_32((__m128i *)dst); __m128i y = xx_loadl_32((__m128i *)&dst[4]); xx_storel_32((__m128i *)dst, _mm_avg_epu8(x, y)); dst += 4; } } else { const uint8_t *vfilter = bilinear_filters_2t[yoffset]; const __m128i vfilter_vec = _mm_set1_epi16(vfilter[0] | (vfilter[1] << 8)); for (i = 0; i < h; i += 4) { const __m128i a = xx_loadl_32((__m128i *)dst); const __m128i b = xx_loadl_32((__m128i *)&dst[4]); const __m128i c = xx_loadl_32((__m128i *)&dst[8]); const __m128i d = xx_loadl_32((__m128i *)&dst[12]); const __m128i e = xx_loadl_32((__m128i *)&dst[16]); const __m128i a0 = _mm_unpacklo_epi32(a, b); const __m128i b0 = _mm_unpacklo_epi32(b, c); const __m128i a1 = _mm_unpacklo_epi32(c, d); const __m128i b1 = _mm_unpacklo_epi32(d, e); const __m128i res = filter_block_2rows(a0, b0, a1, b1, vfilter_vec); _mm_storeu_si128((__m128i *)dst, res); dst += 16; } } } static INLINE void accumulate_block(const __m128i src, const __m128i a, const __m128i b, const __m128i m, __m128i *sum, __m128i *sum_sq) { const __m128i zero = _mm_setzero_si128(); const __m128i one = _mm_set1_epi16(1); const __m128i mask_max = _mm_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS)); const __m128i m_inv = _mm_sub_epi8(mask_max, m); // Calculate 16 predicted pixels. // Note that the maximum value of any entry of 'pred_l' or 'pred_r' // is 64 * 255, so we have plenty of space to add rounding constants. const __m128i data_l = _mm_unpacklo_epi8(a, b); const __m128i mask_l = _mm_unpacklo_epi8(m, m_inv); __m128i pred_l = _mm_maddubs_epi16(data_l, mask_l); pred_l = xx_roundn_epu16(pred_l, AOM_BLEND_A64_ROUND_BITS); const __m128i data_r = _mm_unpackhi_epi8(a, b); const __m128i mask_r = _mm_unpackhi_epi8(m, m_inv); __m128i pred_r = _mm_maddubs_epi16(data_r, mask_r); pred_r = xx_roundn_epu16(pred_r, AOM_BLEND_A64_ROUND_BITS); const __m128i src_l = _mm_unpacklo_epi8(src, zero); const __m128i src_r = _mm_unpackhi_epi8(src, zero); const __m128i diff_l = _mm_sub_epi16(pred_l, src_l); const __m128i diff_r = _mm_sub_epi16(pred_r, src_r); // Update partial sums and partial sums of squares *sum = _mm_add_epi32(*sum, _mm_madd_epi16(_mm_add_epi16(diff_l, diff_r), one)); *sum_sq = _mm_add_epi32(*sum_sq, _mm_add_epi32(_mm_madd_epi16(diff_l, diff_l), _mm_madd_epi16(diff_r, diff_r))); } static void masked_variance(const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, int a_stride, const uint8_t *b_ptr, int b_stride, const uint8_t *m_ptr, int m_stride, int width, int height, unsigned int *sse, int *sum_) { int x, y; __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128(); for (y = 0; y < height; y++) { for (x = 0; x < width; x += 16) { const __m128i src = _mm_loadu_si128((const __m128i *)&src_ptr[x]); const __m128i a = _mm_loadu_si128((const __m128i *)&a_ptr[x]); const __m128i b = _mm_loadu_si128((const __m128i *)&b_ptr[x]); const __m128i m = _mm_loadu_si128((const __m128i *)&m_ptr[x]); accumulate_block(src, a, b, m, &sum, &sum_sq); } src_ptr += src_stride; a_ptr += a_stride; b_ptr += b_stride; m_ptr += m_stride; } // Reduce down to a single sum and sum of squares sum = _mm_hadd_epi32(sum, sum_sq); sum = _mm_hadd_epi32(sum, sum); *sum_ = _mm_cvtsi128_si32(sum); *sse = _mm_cvtsi128_si32(_mm_srli_si128(sum, 4)); } static void masked_variance8xh(const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, const uint8_t *b_ptr, const uint8_t *m_ptr, int m_stride, int height, unsigned int *sse, int *sum_) { int y; __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128(); for (y = 0; y < height; y += 2) { __m128i src = _mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)src_ptr), _mm_loadl_epi64((const __m128i *)&src_ptr[src_stride])); const __m128i a = _mm_loadu_si128((const __m128i *)a_ptr); const __m128i b = _mm_loadu_si128((const __m128i *)b_ptr); const __m128i m = _mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i *)m_ptr), _mm_loadl_epi64((const __m128i *)&m_ptr[m_stride])); accumulate_block(src, a, b, m, &sum, &sum_sq); src_ptr += src_stride * 2; a_ptr += 16; b_ptr += 16; m_ptr += m_stride * 2; } // Reduce down to a single sum and sum of squares sum = _mm_hadd_epi32(sum, sum_sq); sum = _mm_hadd_epi32(sum, sum); *sum_ = _mm_cvtsi128_si32(sum); *sse = _mm_cvtsi128_si32(_mm_srli_si128(sum, 4)); } static void masked_variance4xh(const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, const uint8_t *b_ptr, const uint8_t *m_ptr, int m_stride, int height, unsigned int *sse, int *sum_) { int y; __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128(); for (y = 0; y < height; y += 4) { // Load four rows at a time __m128i src = _mm_setr_epi32(*(uint32_t *)src_ptr, *(uint32_t *)&src_ptr[src_stride], *(uint32_t *)&src_ptr[src_stride * 2], *(uint32_t *)&src_ptr[src_stride * 3]); const __m128i a = _mm_loadu_si128((const __m128i *)a_ptr); const __m128i b = _mm_loadu_si128((const __m128i *)b_ptr); const __m128i m = _mm_setr_epi32( *(uint32_t *)m_ptr, *(uint32_t *)&m_ptr[m_stride], *(uint32_t *)&m_ptr[m_stride * 2], *(uint32_t *)&m_ptr[m_stride * 3]); accumulate_block(src, a, b, m, &sum, &sum_sq); src_ptr += src_stride * 4; a_ptr += 16; b_ptr += 16; m_ptr += m_stride * 4; } // Reduce down to a single sum and sum of squares sum = _mm_hadd_epi32(sum, sum_sq); sum = _mm_hadd_epi32(sum, sum); *sum_ = _mm_cvtsi128_si32(sum); *sse = _mm_cvtsi128_si32(_mm_srli_si128(sum, 4)); } #if CONFIG_HIGHBITDEPTH // For width a multiple of 8 static void highbd_bilinear_filter(const uint16_t *src, int src_stride, int xoffset, int yoffset, uint16_t *dst, int w, int h); static void highbd_bilinear_filter4xh(const uint16_t *src, int src_stride, int xoffset, int yoffset, uint16_t *dst, int h); // For width a multiple of 8 static void highbd_masked_variance(const uint16_t *src_ptr, int src_stride, const uint16_t *a_ptr, int a_stride, const uint16_t *b_ptr, int b_stride, const uint8_t *m_ptr, int m_stride, int width, int height, uint64_t *sse, int *sum_); static void highbd_masked_variance4xh(const uint16_t *src_ptr, int src_stride, const uint16_t *a_ptr, const uint16_t *b_ptr, const uint8_t *m_ptr, int m_stride, int height, int *sse, int *sum_); #define HIGHBD_MASK_SUBPIX_VAR_SSSE3(W, H) \ unsigned int aom_highbd_8_masked_sub_pixel_variance##W##x##H##_ssse3( \ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \ const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \ uint64_t sse64; \ int sum; \ uint16_t temp[(H + 1) * W]; \ const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \ \ highbd_bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \ \ if (!invert_mask) \ highbd_masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \ msk_stride, W, H, &sse64, &sum); \ else \ highbd_masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \ msk_stride, W, H, &sse64, &sum); \ *sse = (uint32_t)sse64; \ return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \ } \ unsigned int aom_highbd_10_masked_sub_pixel_variance##W##x##H##_ssse3( \ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \ const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \ uint64_t sse64; \ int sum; \ uint16_t temp[(H + 1) * W]; \ const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \ \ highbd_bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \ \ if (!invert_mask) \ highbd_masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \ msk_stride, W, H, &sse64, &sum); \ else \ highbd_masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \ msk_stride, W, H, &sse64, &sum); \ *sse = (uint32_t)ROUND_POWER_OF_TWO(sse64, 4); \ sum = ROUND_POWER_OF_TWO(sum, 2); \ return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \ } \ unsigned int aom_highbd_12_masked_sub_pixel_variance##W##x##H##_ssse3( \ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \ const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \ uint64_t sse64; \ int sum; \ uint16_t temp[(H + 1) * W]; \ const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \ \ highbd_bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \ \ if (!invert_mask) \ highbd_masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \ msk_stride, W, H, &sse64, &sum); \ else \ highbd_masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \ msk_stride, W, H, &sse64, &sum); \ *sse = (uint32_t)ROUND_POWER_OF_TWO(sse64, 8); \ sum = ROUND_POWER_OF_TWO(sum, 4); \ return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \ } #define HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(H) \ unsigned int aom_highbd_8_masked_sub_pixel_variance4x##H##_ssse3( \ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \ const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \ int sse_; \ int sum; \ uint16_t temp[(H + 1) * 4]; \ const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \ \ highbd_bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \ \ if (!invert_mask) \ highbd_masked_variance4xh(ref, ref_stride, temp, second_pred, msk, \ msk_stride, H, &sse_, &sum); \ else \ highbd_masked_variance4xh(ref, ref_stride, second_pred, temp, msk, \ msk_stride, H, &sse_, &sum); \ *sse = (uint32_t)sse_; \ return *sse - (uint32_t)(((int64_t)sum * sum) / (4 * H)); \ } \ unsigned int aom_highbd_10_masked_sub_pixel_variance4x##H##_ssse3( \ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \ const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \ int sse_; \ int sum; \ uint16_t temp[(H + 1) * 4]; \ const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \ \ highbd_bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \ \ if (!invert_mask) \ highbd_masked_variance4xh(ref, ref_stride, temp, second_pred, msk, \ msk_stride, H, &sse_, &sum); \ else \ highbd_masked_variance4xh(ref, ref_stride, second_pred, temp, msk, \ msk_stride, H, &sse_, &sum); \ *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_, 4); \ sum = ROUND_POWER_OF_TWO(sum, 2); \ return *sse - (uint32_t)(((int64_t)sum * sum) / (4 * H)); \ } \ unsigned int aom_highbd_12_masked_sub_pixel_variance4x##H##_ssse3( \ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \ const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \ int sse_; \ int sum; \ uint16_t temp[(H + 1) * 4]; \ const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \ \ highbd_bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \ \ if (!invert_mask) \ highbd_masked_variance4xh(ref, ref_stride, temp, second_pred, msk, \ msk_stride, H, &sse_, &sum); \ else \ highbd_masked_variance4xh(ref, ref_stride, second_pred, temp, msk, \ msk_stride, H, &sse_, &sum); \ *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_, 8); \ sum = ROUND_POWER_OF_TWO(sum, 4); \ return *sse - (uint32_t)(((int64_t)sum * sum) / (4 * H)); \ } #if CONFIG_EXT_PARTITION HIGHBD_MASK_SUBPIX_VAR_SSSE3(128, 128) HIGHBD_MASK_SUBPIX_VAR_SSSE3(128, 64) HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 128) #endif HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 64) HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 32) HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 64) HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 32) HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 16) HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 32) HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 16) HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 8) HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 16) HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 8) HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 4) HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(8) HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(4) static INLINE __m128i highbd_filter_block(const __m128i a, const __m128i b, const __m128i filter) { __m128i v0 = _mm_unpacklo_epi16(a, b); v0 = _mm_madd_epi16(v0, filter); v0 = xx_roundn_epu32(v0, FILTER_BITS); __m128i v1 = _mm_unpackhi_epi16(a, b); v1 = _mm_madd_epi16(v1, filter); v1 = xx_roundn_epu32(v1, FILTER_BITS); return _mm_packs_epi32(v0, v1); } static void highbd_bilinear_filter(const uint16_t *src, int src_stride, int xoffset, int yoffset, uint16_t *dst, int w, int h) { int i, j; // Horizontal filter if (xoffset == 0) { uint16_t *b = dst; for (i = 0; i < h + 1; ++i) { for (j = 0; j < w; j += 8) { __m128i x = _mm_loadu_si128((__m128i *)&src[j]); _mm_storeu_si128((__m128i *)&b[j], x); } src += src_stride; b += w; } } else if (xoffset == 4) { uint16_t *b = dst; for (i = 0; i < h + 1; ++i) { for (j = 0; j < w; j += 8) { __m128i x = _mm_loadu_si128((__m128i *)&src[j]); __m128i y = _mm_loadu_si128((__m128i *)&src[j + 8]); __m128i z = _mm_alignr_epi8(y, x, 2); _mm_storeu_si128((__m128i *)&b[j], _mm_avg_epu16(x, z)); } src += src_stride; b += w; } } else { uint16_t *b = dst; const uint8_t *hfilter = bilinear_filters_2t[xoffset]; const __m128i hfilter_vec = _mm_set1_epi32(hfilter[0] | (hfilter[1] << 16)); for (i = 0; i < h + 1; ++i) { for (j = 0; j < w; j += 8) { const __m128i x = _mm_loadu_si128((__m128i *)&src[j]); const __m128i y = _mm_loadu_si128((__m128i *)&src[j + 8]); const __m128i z = _mm_alignr_epi8(y, x, 2); const __m128i res = highbd_filter_block(x, z, hfilter_vec); _mm_storeu_si128((__m128i *)&b[j], res); } src += src_stride; b += w; } } // Vertical filter if (yoffset == 0) { // The data is already in 'dst', so no need to filter } else if (yoffset == 4) { for (i = 0; i < h; ++i) { for (j = 0; j < w; j += 8) { __m128i x = _mm_loadu_si128((__m128i *)&dst[j]); __m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]); _mm_storeu_si128((__m128i *)&dst[j], _mm_avg_epu16(x, y)); } dst += w; } } else { const uint8_t *vfilter = bilinear_filters_2t[yoffset]; const __m128i vfilter_vec = _mm_set1_epi32(vfilter[0] | (vfilter[1] << 16)); for (i = 0; i < h; ++i) { for (j = 0; j < w; j += 8) { const __m128i x = _mm_loadu_si128((__m128i *)&dst[j]); const __m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]); const __m128i res = highbd_filter_block(x, y, vfilter_vec); _mm_storeu_si128((__m128i *)&dst[j], res); } dst += w; } } } static INLINE __m128i highbd_filter_block_2rows(const __m128i a0, const __m128i b0, const __m128i a1, const __m128i b1, const __m128i filter) { __m128i v0 = _mm_unpacklo_epi16(a0, b0); v0 = _mm_madd_epi16(v0, filter); v0 = xx_roundn_epu32(v0, FILTER_BITS); __m128i v1 = _mm_unpacklo_epi16(a1, b1); v1 = _mm_madd_epi16(v1, filter); v1 = xx_roundn_epu32(v1, FILTER_BITS); return _mm_packs_epi32(v0, v1); } static void highbd_bilinear_filter4xh(const uint16_t *src, int src_stride, int xoffset, int yoffset, uint16_t *dst, int h) { int i; // Horizontal filter if (xoffset == 0) { uint16_t *b = dst; for (i = 0; i < h + 1; ++i) { __m128i x = _mm_loadl_epi64((__m128i *)src); _mm_storel_epi64((__m128i *)b, x); src += src_stride; b += 4; } } else if (xoffset == 4) { uint16_t *b = dst; for (i = 0; i < h + 1; ++i) { __m128i x = _mm_loadu_si128((__m128i *)src); __m128i z = _mm_srli_si128(x, 2); _mm_storel_epi64((__m128i *)b, _mm_avg_epu16(x, z)); src += src_stride; b += 4; } } else { uint16_t *b = dst; const uint8_t *hfilter = bilinear_filters_2t[xoffset]; const __m128i hfilter_vec = _mm_set1_epi32(hfilter[0] | (hfilter[1] << 16)); for (i = 0; i < h; i += 2) { const __m128i x0 = _mm_loadu_si128((__m128i *)src); const __m128i z0 = _mm_srli_si128(x0, 2); const __m128i x1 = _mm_loadu_si128((__m128i *)&src[src_stride]); const __m128i z1 = _mm_srli_si128(x1, 2); const __m128i res = highbd_filter_block_2rows(x0, z0, x1, z1, hfilter_vec); _mm_storeu_si128((__m128i *)b, res); src += src_stride * 2; b += 8; } // Process i = h separately __m128i x = _mm_loadu_si128((__m128i *)src); __m128i z = _mm_srli_si128(x, 2); __m128i v0 = _mm_unpacklo_epi16(x, z); v0 = _mm_madd_epi16(v0, hfilter_vec); v0 = xx_roundn_epu32(v0, FILTER_BITS); _mm_storel_epi64((__m128i *)b, _mm_packs_epi32(v0, v0)); } // Vertical filter if (yoffset == 0) { // The data is already in 'dst', so no need to filter } else if (yoffset == 4) { for (i = 0; i < h; ++i) { __m128i x = _mm_loadl_epi64((__m128i *)dst); __m128i y = _mm_loadl_epi64((__m128i *)&dst[4]); _mm_storel_epi64((__m128i *)dst, _mm_avg_epu16(x, y)); dst += 4; } } else { const uint8_t *vfilter = bilinear_filters_2t[yoffset]; const __m128i vfilter_vec = _mm_set1_epi32(vfilter[0] | (vfilter[1] << 16)); for (i = 0; i < h; i += 2) { const __m128i x = _mm_loadl_epi64((__m128i *)dst); const __m128i y = _mm_loadl_epi64((__m128i *)&dst[4]); const __m128i z = _mm_loadl_epi64((__m128i *)&dst[8]); const __m128i res = highbd_filter_block_2rows(x, y, y, z, vfilter_vec); _mm_storeu_si128((__m128i *)dst, res); dst += 8; } } } static void highbd_masked_variance(const uint16_t *src_ptr, int src_stride, const uint16_t *a_ptr, int a_stride, const uint16_t *b_ptr, int b_stride, const uint8_t *m_ptr, int m_stride, int width, int height, uint64_t *sse, int *sum_) { int x, y; // Note on bit widths: // The maximum value of 'sum' is (2^12 - 1) * 128 * 128 =~ 2^26, // so this can be kept as four 32-bit values. // But the maximum value of 'sum_sq' is (2^12 - 1)^2 * 128 * 128 =~ 2^38, // so this must be stored as two 64-bit values. __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128(); const __m128i mask_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS)); const __m128i round_const = _mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1); const __m128i zero = _mm_setzero_si128(); for (y = 0; y < height; y++) { for (x = 0; x < width; x += 8) { const __m128i src = _mm_loadu_si128((const __m128i *)&src_ptr[x]); const __m128i a = _mm_loadu_si128((const __m128i *)&a_ptr[x]); const __m128i b = _mm_loadu_si128((const __m128i *)&b_ptr[x]); const __m128i m = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)&m_ptr[x]), zero); const __m128i m_inv = _mm_sub_epi16(mask_max, m); // Calculate 8 predicted pixels. const __m128i data_l = _mm_unpacklo_epi16(a, b); const __m128i mask_l = _mm_unpacklo_epi16(m, m_inv); __m128i pred_l = _mm_madd_epi16(data_l, mask_l); pred_l = _mm_srai_epi32(_mm_add_epi32(pred_l, round_const), AOM_BLEND_A64_ROUND_BITS); const __m128i data_r = _mm_unpackhi_epi16(a, b); const __m128i mask_r = _mm_unpackhi_epi16(m, m_inv); __m128i pred_r = _mm_madd_epi16(data_r, mask_r); pred_r = _mm_srai_epi32(_mm_add_epi32(pred_r, round_const), AOM_BLEND_A64_ROUND_BITS); const __m128i src_l = _mm_unpacklo_epi16(src, zero); const __m128i src_r = _mm_unpackhi_epi16(src, zero); __m128i diff_l = _mm_sub_epi32(pred_l, src_l); __m128i diff_r = _mm_sub_epi32(pred_r, src_r); // Update partial sums and partial sums of squares sum = _mm_add_epi32(sum, _mm_add_epi32(diff_l, diff_r)); // A trick: Now each entry of diff_l and diff_r is stored in a 32-bit // field, but the range of values is only [-(2^12 - 1), 2^12 - 1]. // So we can re-pack into 16-bit fields and use _mm_madd_epi16 // to calculate the squares and partially sum them. const __m128i tmp = _mm_packs_epi32(diff_l, diff_r); const __m128i prod = _mm_madd_epi16(tmp, tmp); // Then we want to sign-extend to 64 bits and accumulate const __m128i sign = _mm_srai_epi32(prod, 31); const __m128i tmp_0 = _mm_unpacklo_epi32(prod, sign); const __m128i tmp_1 = _mm_unpackhi_epi32(prod, sign); sum_sq = _mm_add_epi64(sum_sq, _mm_add_epi64(tmp_0, tmp_1)); } src_ptr += src_stride; a_ptr += a_stride; b_ptr += b_stride; m_ptr += m_stride; } // Reduce down to a single sum and sum of squares sum = _mm_hadd_epi32(sum, zero); sum = _mm_hadd_epi32(sum, zero); *sum_ = _mm_cvtsi128_si32(sum); sum_sq = _mm_add_epi64(sum_sq, _mm_srli_si128(sum_sq, 8)); _mm_storel_epi64((__m128i *)sse, sum_sq); } static void highbd_masked_variance4xh(const uint16_t *src_ptr, int src_stride, const uint16_t *a_ptr, const uint16_t *b_ptr, const uint8_t *m_ptr, int m_stride, int height, int *sse, int *sum_) { int y; // Note: For this function, h <= 8 (or maybe 16 if we add 4:1 partitions). // So the maximum value of sum is (2^12 - 1) * 4 * 16 =~ 2^18 // and the maximum value of sum_sq is (2^12 - 1)^2 * 4 * 16 =~ 2^30. // So we can safely pack sum_sq into 32-bit fields, which is slightly more // convenient. __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128(); const __m128i mask_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS)); const __m128i round_const = _mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1); const __m128i zero = _mm_setzero_si128(); for (y = 0; y < height; y += 2) { __m128i src = _mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)src_ptr), _mm_loadl_epi64((const __m128i *)&src_ptr[src_stride])); const __m128i a = _mm_loadu_si128((const __m128i *)a_ptr); const __m128i b = _mm_loadu_si128((const __m128i *)b_ptr); const __m128i m = _mm_unpacklo_epi8( _mm_unpacklo_epi32( _mm_cvtsi32_si128(*(const uint32_t *)m_ptr), _mm_cvtsi32_si128(*(const uint32_t *)&m_ptr[m_stride])), zero); const __m128i m_inv = _mm_sub_epi16(mask_max, m); const __m128i data_l = _mm_unpacklo_epi16(a, b); const __m128i mask_l = _mm_unpacklo_epi16(m, m_inv); __m128i pred_l = _mm_madd_epi16(data_l, mask_l); pred_l = _mm_srai_epi32(_mm_add_epi32(pred_l, round_const), AOM_BLEND_A64_ROUND_BITS); const __m128i data_r = _mm_unpackhi_epi16(a, b); const __m128i mask_r = _mm_unpackhi_epi16(m, m_inv); __m128i pred_r = _mm_madd_epi16(data_r, mask_r); pred_r = _mm_srai_epi32(_mm_add_epi32(pred_r, round_const), AOM_BLEND_A64_ROUND_BITS); const __m128i src_l = _mm_unpacklo_epi16(src, zero); const __m128i src_r = _mm_unpackhi_epi16(src, zero); __m128i diff_l = _mm_sub_epi32(pred_l, src_l); __m128i diff_r = _mm_sub_epi32(pred_r, src_r); // Update partial sums and partial sums of squares sum = _mm_add_epi32(sum, _mm_add_epi32(diff_l, diff_r)); const __m128i tmp = _mm_packs_epi32(diff_l, diff_r); const __m128i prod = _mm_madd_epi16(tmp, tmp); sum_sq = _mm_add_epi32(sum_sq, prod); src_ptr += src_stride * 2; a_ptr += 8; b_ptr += 8; m_ptr += m_stride * 2; } // Reduce down to a single sum and sum of squares sum = _mm_hadd_epi32(sum, sum_sq); sum = _mm_hadd_epi32(sum, zero); *sum_ = _mm_cvtsi128_si32(sum); *sse = _mm_cvtsi128_si32(_mm_srli_si128(sum, 4)); } #endif