/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom_dsp/blend.h" #include "aom/aom_integer.h" #include "aom_dsp/x86/synonyms.h" #include "aom_dsp/x86//masked_sad_intrin_ssse3.h" static INLINE unsigned int masked_sad32xh_avx2( const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, int a_stride, const uint8_t *b_ptr, int b_stride, const uint8_t *m_ptr, int m_stride, int width, int height) { int x, y; __m256i res = _mm256_setzero_si256(); const __m256i mask_max = _mm256_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS)); const __m256i round_scale = _mm256_set1_epi16(1 << (15 - AOM_BLEND_A64_ROUND_BITS)); for (y = 0; y < height; y++) { for (x = 0; x < width; x += 32) { const __m256i src = _mm256_lddqu_si256((const __m256i *)&src_ptr[x]); const __m256i a = _mm256_lddqu_si256((const __m256i *)&a_ptr[x]); const __m256i b = _mm256_lddqu_si256((const __m256i *)&b_ptr[x]); const __m256i m = _mm256_lddqu_si256((const __m256i *)&m_ptr[x]); const __m256i m_inv = _mm256_sub_epi8(mask_max, m); // Calculate 16 predicted pixels. // Note that the maximum value of any entry of 'pred_l' or 'pred_r' // is 64 * 255, so we have plenty of space to add rounding constants. const __m256i data_l = _mm256_unpacklo_epi8(a, b); const __m256i mask_l = _mm256_unpacklo_epi8(m, m_inv); __m256i pred_l = _mm256_maddubs_epi16(data_l, mask_l); pred_l = _mm256_mulhrs_epi16(pred_l, round_scale); const __m256i data_r = _mm256_unpackhi_epi8(a, b); const __m256i mask_r = _mm256_unpackhi_epi8(m, m_inv); __m256i pred_r = _mm256_maddubs_epi16(data_r, mask_r); pred_r = _mm256_mulhrs_epi16(pred_r, round_scale); const __m256i pred = _mm256_packus_epi16(pred_l, pred_r); res = _mm256_add_epi32(res, _mm256_sad_epu8(pred, src)); } src_ptr += src_stride; a_ptr += a_stride; b_ptr += b_stride; m_ptr += m_stride; } // At this point, we have two 32-bit partial SADs in lanes 0 and 2 of 'res'. res = _mm256_shuffle_epi32(res, 0xd8); res = _mm256_permute4x64_epi64(res, 0xd8); res = _mm256_hadd_epi32(res, res); res = _mm256_hadd_epi32(res, res); int32_t sad = _mm256_extract_epi32(res, 0); return (sad + 31) >> 6; } static INLINE __m256i xx_loadu2_m128i(const void *hi, const void *lo) { __m128i a0 = _mm_lddqu_si128((const __m128i *)(lo)); __m128i a1 = _mm_lddqu_si128((const __m128i *)(hi)); __m256i a = _mm256_castsi128_si256(a0); return _mm256_inserti128_si256(a, a1, 1); } static INLINE unsigned int masked_sad16xh_avx2( const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, int a_stride, const uint8_t *b_ptr, int b_stride, const uint8_t *m_ptr, int m_stride, int height) { int y; __m256i res = _mm256_setzero_si256(); const __m256i mask_max = _mm256_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS)); const __m256i round_scale = _mm256_set1_epi16(1 << (15 - AOM_BLEND_A64_ROUND_BITS)); for (y = 0; y < height; y += 2) { const __m256i src = xx_loadu2_m128i(src_ptr + src_stride, src_ptr); const __m256i a = xx_loadu2_m128i(a_ptr + a_stride, a_ptr); const __m256i b = xx_loadu2_m128i(b_ptr + b_stride, b_ptr); const __m256i m = xx_loadu2_m128i(m_ptr + m_stride, m_ptr); const __m256i m_inv = _mm256_sub_epi8(mask_max, m); // Calculate 16 predicted pixels. // Note that the maximum value of any entry of 'pred_l' or 'pred_r' // is 64 * 255, so we have plenty of space to add rounding constants. const __m256i data_l = _mm256_unpacklo_epi8(a, b); const __m256i mask_l = _mm256_unpacklo_epi8(m, m_inv); __m256i pred_l = _mm256_maddubs_epi16(data_l, mask_l); pred_l = _mm256_mulhrs_epi16(pred_l, round_scale); const __m256i data_r = _mm256_unpackhi_epi8(a, b); const __m256i mask_r = _mm256_unpackhi_epi8(m, m_inv); __m256i pred_r = _mm256_maddubs_epi16(data_r, mask_r); pred_r = _mm256_mulhrs_epi16(pred_r, round_scale); const __m256i pred = _mm256_packus_epi16(pred_l, pred_r); res = _mm256_add_epi32(res, _mm256_sad_epu8(pred, src)); src_ptr += src_stride << 1; a_ptr += a_stride << 1; b_ptr += b_stride << 1; m_ptr += m_stride << 1; } // At this point, we have two 32-bit partial SADs in lanes 0 and 2 of 'res'. res = _mm256_shuffle_epi32(res, 0xd8); res = _mm256_permute4x64_epi64(res, 0xd8); res = _mm256_hadd_epi32(res, res); res = _mm256_hadd_epi32(res, res); int32_t sad = _mm256_extract_epi32(res, 0); return (sad + 31) >> 6; } static INLINE unsigned int aom_masked_sad_avx2( const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, const uint8_t *second_pred, const uint8_t *msk, int msk_stride, int invert_mask, int m, int n) { unsigned int sad; if (!invert_mask) { switch (m) { case 4: sad = aom_masked_sad4xh_ssse3(src, src_stride, ref, ref_stride, second_pred, m, msk, msk_stride, n); break; case 8: sad = aom_masked_sad8xh_ssse3(src, src_stride, ref, ref_stride, second_pred, m, msk, msk_stride, n); break; case 16: sad = masked_sad16xh_avx2(src, src_stride, ref, ref_stride, second_pred, m, msk, msk_stride, n); break; default: sad = masked_sad32xh_avx2(src, src_stride, ref, ref_stride, second_pred, m, msk, msk_stride, m, n); break; } } else { switch (m) { case 4: sad = aom_masked_sad4xh_ssse3(src, src_stride, second_pred, m, ref, ref_stride, msk, msk_stride, n); break; case 8: sad = aom_masked_sad8xh_ssse3(src, src_stride, second_pred, m, ref, ref_stride, msk, msk_stride, n); break; case 16: sad = masked_sad16xh_avx2(src, src_stride, second_pred, m, ref, ref_stride, msk, msk_stride, n); break; default: sad = masked_sad32xh_avx2(src, src_stride, second_pred, m, ref, ref_stride, msk, msk_stride, m, n); break; } } return sad; } #define MASKSADMXN_AVX2(m, n) \ unsigned int aom_masked_sad##m##x##n##_avx2( \ const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ const uint8_t *second_pred, const uint8_t *msk, int msk_stride, \ int invert_mask) { \ return aom_masked_sad_avx2(src, src_stride, ref, ref_stride, second_pred, \ msk, msk_stride, invert_mask, m, n); \ } MASKSADMXN_AVX2(4, 4) MASKSADMXN_AVX2(4, 8) MASKSADMXN_AVX2(8, 4) MASKSADMXN_AVX2(8, 8) MASKSADMXN_AVX2(8, 16) MASKSADMXN_AVX2(16, 8) MASKSADMXN_AVX2(16, 16) MASKSADMXN_AVX2(16, 32) MASKSADMXN_AVX2(32, 16) MASKSADMXN_AVX2(32, 32) MASKSADMXN_AVX2(32, 64) MASKSADMXN_AVX2(64, 32) MASKSADMXN_AVX2(64, 64) MASKSADMXN_AVX2(64, 128) MASKSADMXN_AVX2(128, 64) MASKSADMXN_AVX2(128, 128) MASKSADMXN_AVX2(4, 16) MASKSADMXN_AVX2(16, 4) MASKSADMXN_AVX2(8, 32) MASKSADMXN_AVX2(32, 8) MASKSADMXN_AVX2(16, 64) MASKSADMXN_AVX2(64, 16) static INLINE unsigned int highbd_masked_sad8xh_avx2( const uint8_t *src8, int src_stride, const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, const uint8_t *m_ptr, int m_stride, int height) { const uint16_t *src_ptr = CONVERT_TO_SHORTPTR(src8); const uint16_t *a_ptr = CONVERT_TO_SHORTPTR(a8); const uint16_t *b_ptr = CONVERT_TO_SHORTPTR(b8); int y; __m256i res = _mm256_setzero_si256(); const __m256i mask_max = _mm256_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS)); const __m256i round_const = _mm256_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1); const __m256i one = _mm256_set1_epi16(1); for (y = 0; y < height; y += 2) { const __m256i src = xx_loadu2_m128i(src_ptr + src_stride, src_ptr); const __m256i a = xx_loadu2_m128i(a_ptr + a_stride, a_ptr); const __m256i b = xx_loadu2_m128i(b_ptr + b_stride, b_ptr); // Zero-extend mask to 16 bits const __m256i m = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)(m_ptr)), _mm_loadl_epi64((const __m128i *)(m_ptr + m_stride)))); const __m256i m_inv = _mm256_sub_epi16(mask_max, m); const __m256i data_l = _mm256_unpacklo_epi16(a, b); const __m256i mask_l = _mm256_unpacklo_epi16(m, m_inv); __m256i pred_l = _mm256_madd_epi16(data_l, mask_l); pred_l = _mm256_srai_epi32(_mm256_add_epi32(pred_l, round_const), AOM_BLEND_A64_ROUND_BITS); const __m256i data_r = _mm256_unpackhi_epi16(a, b); const __m256i mask_r = _mm256_unpackhi_epi16(m, m_inv); __m256i pred_r = _mm256_madd_epi16(data_r, mask_r); pred_r = _mm256_srai_epi32(_mm256_add_epi32(pred_r, round_const), AOM_BLEND_A64_ROUND_BITS); // Note: the maximum value in pred_l/r is (2^bd)-1 < 2^15, // so it is safe to do signed saturation here. const __m256i pred = _mm256_packs_epi32(pred_l, pred_r); // There is no 16-bit SAD instruction, so we have to synthesize // an 8-element SAD. We do this by storing 4 32-bit partial SADs, // and accumulating them at the end const __m256i diff = _mm256_abs_epi16(_mm256_sub_epi16(pred, src)); res = _mm256_add_epi32(res, _mm256_madd_epi16(diff, one)); src_ptr += src_stride << 1; a_ptr += a_stride << 1; b_ptr += b_stride << 1; m_ptr += m_stride << 1; } // At this point, we have four 32-bit partial SADs stored in 'res'. res = _mm256_hadd_epi32(res, res); res = _mm256_hadd_epi32(res, res); int sad = _mm256_extract_epi32(res, 0) + _mm256_extract_epi32(res, 4); return (sad + 31) >> 6; } static INLINE unsigned int highbd_masked_sad16xh_avx2( const uint8_t *src8, int src_stride, const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, const uint8_t *m_ptr, int m_stride, int width, int height) { const uint16_t *src_ptr = CONVERT_TO_SHORTPTR(src8); const uint16_t *a_ptr = CONVERT_TO_SHORTPTR(a8); const uint16_t *b_ptr = CONVERT_TO_SHORTPTR(b8); int x, y; __m256i res = _mm256_setzero_si256(); const __m256i mask_max = _mm256_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS)); const __m256i round_const = _mm256_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1); const __m256i one = _mm256_set1_epi16(1); for (y = 0; y < height; y++) { for (x = 0; x < width; x += 16) { const __m256i src = _mm256_lddqu_si256((const __m256i *)&src_ptr[x]); const __m256i a = _mm256_lddqu_si256((const __m256i *)&a_ptr[x]); const __m256i b = _mm256_lddqu_si256((const __m256i *)&b_ptr[x]); // Zero-extend mask to 16 bits const __m256i m = _mm256_cvtepu8_epi16(_mm_lddqu_si128((const __m128i *)&m_ptr[x])); const __m256i m_inv = _mm256_sub_epi16(mask_max, m); const __m256i data_l = _mm256_unpacklo_epi16(a, b); const __m256i mask_l = _mm256_unpacklo_epi16(m, m_inv); __m256i pred_l = _mm256_madd_epi16(data_l, mask_l); pred_l = _mm256_srai_epi32(_mm256_add_epi32(pred_l, round_const), AOM_BLEND_A64_ROUND_BITS); const __m256i data_r = _mm256_unpackhi_epi16(a, b); const __m256i mask_r = _mm256_unpackhi_epi16(m, m_inv); __m256i pred_r = _mm256_madd_epi16(data_r, mask_r); pred_r = _mm256_srai_epi32(_mm256_add_epi32(pred_r, round_const), AOM_BLEND_A64_ROUND_BITS); // Note: the maximum value in pred_l/r is (2^bd)-1 < 2^15, // so it is safe to do signed saturation here. const __m256i pred = _mm256_packs_epi32(pred_l, pred_r); // There is no 16-bit SAD instruction, so we have to synthesize // an 8-element SAD. We do this by storing 4 32-bit partial SADs, // and accumulating them at the end const __m256i diff = _mm256_abs_epi16(_mm256_sub_epi16(pred, src)); res = _mm256_add_epi32(res, _mm256_madd_epi16(diff, one)); } src_ptr += src_stride; a_ptr += a_stride; b_ptr += b_stride; m_ptr += m_stride; } // At this point, we have four 32-bit partial SADs stored in 'res'. res = _mm256_hadd_epi32(res, res); res = _mm256_hadd_epi32(res, res); int sad = _mm256_extract_epi32(res, 0) + _mm256_extract_epi32(res, 4); return (sad + 31) >> 6; } static INLINE unsigned int aom_highbd_masked_sad_avx2( const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, const uint8_t *second_pred, const uint8_t *msk, int msk_stride, int invert_mask, int m, int n) { unsigned int sad; if (!invert_mask) { switch (m) { case 4: sad = aom_highbd_masked_sad4xh_ssse3(src, src_stride, ref, ref_stride, second_pred, m, msk, msk_stride, n); break; case 8: sad = highbd_masked_sad8xh_avx2(src, src_stride, ref, ref_stride, second_pred, m, msk, msk_stride, n); break; default: sad = highbd_masked_sad16xh_avx2(src, src_stride, ref, ref_stride, second_pred, m, msk, msk_stride, m, n); break; } } else { switch (m) { case 4: sad = aom_highbd_masked_sad4xh_ssse3(src, src_stride, second_pred, m, ref, ref_stride, msk, msk_stride, n); break; case 8: sad = highbd_masked_sad8xh_avx2(src, src_stride, second_pred, m, ref, ref_stride, msk, msk_stride, n); break; default: sad = highbd_masked_sad16xh_avx2(src, src_stride, second_pred, m, ref, ref_stride, msk, msk_stride, m, n); break; } } return sad; } #define HIGHBD_MASKSADMXN_AVX2(m, n) \ unsigned int aom_highbd_masked_sad##m##x##n##_avx2( \ const uint8_t *src8, int src_stride, const uint8_t *ref8, \ int ref_stride, const uint8_t *second_pred8, const uint8_t *msk, \ int msk_stride, int invert_mask) { \ return aom_highbd_masked_sad_avx2(src8, src_stride, ref8, ref_stride, \ second_pred8, msk, msk_stride, \ invert_mask, m, n); \ } HIGHBD_MASKSADMXN_AVX2(4, 4); HIGHBD_MASKSADMXN_AVX2(4, 8); HIGHBD_MASKSADMXN_AVX2(8, 4); HIGHBD_MASKSADMXN_AVX2(8, 8); HIGHBD_MASKSADMXN_AVX2(8, 16); HIGHBD_MASKSADMXN_AVX2(16, 8); HIGHBD_MASKSADMXN_AVX2(16, 16); HIGHBD_MASKSADMXN_AVX2(16, 32); HIGHBD_MASKSADMXN_AVX2(32, 16); HIGHBD_MASKSADMXN_AVX2(32, 32); HIGHBD_MASKSADMXN_AVX2(32, 64); HIGHBD_MASKSADMXN_AVX2(64, 32); HIGHBD_MASKSADMXN_AVX2(64, 64); HIGHBD_MASKSADMXN_AVX2(64, 128); HIGHBD_MASKSADMXN_AVX2(128, 64); HIGHBD_MASKSADMXN_AVX2(128, 128); HIGHBD_MASKSADMXN_AVX2(4, 16); HIGHBD_MASKSADMXN_AVX2(16, 4); HIGHBD_MASKSADMXN_AVX2(8, 32); HIGHBD_MASKSADMXN_AVX2(32, 8); HIGHBD_MASKSADMXN_AVX2(16, 64); HIGHBD_MASKSADMXN_AVX2(64, 16);