/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "./aom_dsp_rtcd.h" #include "aom/aom_integer.h" static INLINE void init_one_qp(const __m128i *p, __m256i *qp) { const __m128i sign = _mm_srai_epi16(*p, 15); const __m128i dc = _mm_unpacklo_epi16(*p, sign); const __m128i ac = _mm_unpackhi_epi16(*p, sign); *qp = _mm256_insertf128_si256(_mm256_castsi128_si256(dc), ac, 1); } static INLINE void update_qp(__m256i *qp) { int i; for (i = 0; i < 5; ++i) { qp[i] = _mm256_permute2x128_si256(qp[i], qp[i], 0x11); } } static INLINE void init_qp(const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *dequant_ptr, const int16_t *quant_shift_ptr, __m256i *qp) { const __m128i zbin = _mm_loadu_si128((const __m128i *)zbin_ptr); const __m128i round = _mm_loadu_si128((const __m128i *)round_ptr); const __m128i quant = _mm_loadu_si128((const __m128i *)quant_ptr); const __m128i dequant = _mm_loadu_si128((const __m128i *)dequant_ptr); const __m128i quant_shift = _mm_loadu_si128((const __m128i *)quant_shift_ptr); init_one_qp(&zbin, &qp[0]); init_one_qp(&round, &qp[1]); init_one_qp(&quant, &qp[2]); init_one_qp(&dequant, &qp[3]); init_one_qp(&quant_shift, &qp[4]); } // Note: // *x is vector multiplied by *y which is 16 int32_t parallel multiplication // and right shift 16. The output, 16 int32_t is save in *p. static INLINE void mm256_mul_shift_epi32(const __m256i *x, const __m256i *y, __m256i *p) { __m256i prod_lo = _mm256_mul_epi32(*x, *y); __m256i prod_hi = _mm256_srli_epi64(*x, 32); const __m256i mult_hi = _mm256_srli_epi64(*y, 32); prod_hi = _mm256_mul_epi32(prod_hi, mult_hi); prod_lo = _mm256_srli_epi64(prod_lo, 16); const __m256i mask = _mm256_set_epi32(0, -1, 0, -1, 0, -1, 0, -1); prod_lo = _mm256_and_si256(prod_lo, mask); prod_hi = _mm256_srli_epi64(prod_hi, 16); prod_hi = _mm256_slli_epi64(prod_hi, 32); *p = _mm256_or_si256(prod_lo, prod_hi); } static INLINE void quantize(const __m256i *qp, __m256i *c, const int16_t *iscan_ptr, tran_low_t *qcoeff, tran_low_t *dqcoeff, __m256i *eob) { const __m256i abs = _mm256_abs_epi32(*c); const __m256i flag1 = _mm256_cmpgt_epi32(abs, qp[0]); __m256i flag2 = _mm256_cmpeq_epi32(abs, qp[0]); flag2 = _mm256_or_si256(flag1, flag2); const int32_t nzflag = _mm256_movemask_epi8(flag2); if (LIKELY(nzflag)) { __m256i q = _mm256_add_epi32(abs, qp[1]); __m256i tmp; mm256_mul_shift_epi32(&q, &qp[2], &tmp); q = _mm256_add_epi32(tmp, q); mm256_mul_shift_epi32(&q, &qp[4], &q); __m256i dq = _mm256_mullo_epi32(q, qp[3]); q = _mm256_sign_epi32(q, *c); dq = _mm256_sign_epi32(dq, *c); q = _mm256_and_si256(q, flag2); dq = _mm256_and_si256(dq, flag2); _mm256_storeu_si256((__m256i *)qcoeff, q); _mm256_storeu_si256((__m256i *)dqcoeff, dq); const __m128i isc = _mm_loadu_si128((const __m128i *)iscan_ptr); const __m128i zr = _mm_setzero_si128(); const __m128i lo = _mm_unpacklo_epi16(isc, zr); const __m128i hi = _mm_unpackhi_epi16(isc, zr); const __m256i iscan = _mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1); const __m256i zero = _mm256_setzero_si256(); const __m256i zc = _mm256_cmpeq_epi32(dq, zero); const __m256i nz = _mm256_cmpeq_epi32(zc, zero); __m256i cur_eob = _mm256_sub_epi32(iscan, nz); cur_eob = _mm256_and_si256(cur_eob, nz); *eob = _mm256_max_epi32(cur_eob, *eob); } else { const __m256i zero = _mm256_setzero_si256(); _mm256_storeu_si256((__m256i *)qcoeff, zero); _mm256_storeu_si256((__m256i *)dqcoeff, zero); } } void aom_highbd_quantize_b_avx2(const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { (void)scan; const unsigned int step = 8; if (LIKELY(!skip_block)) { __m256i qp[5], coeff; init_qp(zbin_ptr, round_ptr, quant_ptr, dequant_ptr, quant_shift_ptr, qp); coeff = _mm256_loadu_si256((const __m256i *)coeff_ptr); __m256i eob = _mm256_setzero_si256(); quantize(qp, &coeff, iscan, qcoeff_ptr, dqcoeff_ptr, &eob); coeff_ptr += step; qcoeff_ptr += step; dqcoeff_ptr += step; iscan += step; n_coeffs -= step; update_qp(qp); while (n_coeffs > 0) { coeff = _mm256_loadu_si256((const __m256i *)coeff_ptr); quantize(qp, &coeff, iscan, qcoeff_ptr, dqcoeff_ptr, &eob); coeff_ptr += step; qcoeff_ptr += step; dqcoeff_ptr += step; iscan += step; n_coeffs -= step; } { __m256i eob_s; eob_s = _mm256_shuffle_epi32(eob, 0xe); eob = _mm256_max_epi16(eob, eob_s); eob_s = _mm256_shufflelo_epi16(eob, 0xe); eob = _mm256_max_epi16(eob, eob_s); eob_s = _mm256_shufflelo_epi16(eob, 1); eob = _mm256_max_epi16(eob, eob_s); const __m128i final_eob = _mm_max_epi16(_mm256_castsi256_si128(eob), _mm256_extractf128_si256(eob, 1)); *eob_ptr = _mm_extract_epi16(final_eob, 0); } } else { do { const __m256i zero = _mm256_setzero_si256(); _mm256_storeu_si256((__m256i *)qcoeff_ptr, zero); _mm256_storeu_si256((__m256i *)dqcoeff_ptr, zero); qcoeff_ptr += step; dqcoeff_ptr += step; n_coeffs -= step; } while (n_coeffs > 0); *eob_ptr = 0; } }