/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_dsp_rtcd.h" #include "aom_dsp/x86/convolve.h" #include "aom_dsp/x86/convolve_avx2.h" #include "aom_ports/mem.h" #if defined(__clang__) #if (__clang_major__ > 0 && __clang_major__ < 3) || \ (__clang_major__ == 3 && __clang_minor__ <= 3) || \ (defined(__APPLE__) && defined(__apple_build_version__) && \ ((__clang_major__ == 4 && __clang_minor__ <= 2) || \ (__clang_major__ == 5 && __clang_minor__ == 0))) #define MM256_BROADCASTSI128_SI256(x) \ _mm_broadcastsi128_si256((__m128i const *)&(x)) #else // clang > 3.3, and not 5.0 on macosx. #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) #endif // clang <= 3.3 #elif defined(__GNUC__) #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 6) #define MM256_BROADCASTSI128_SI256(x) \ _mm_broadcastsi128_si256((__m128i const *)&(x)) #elif __GNUC__ == 4 && __GNUC_MINOR__ == 7 #define MM256_BROADCASTSI128_SI256(x) _mm_broadcastsi128_si256(x) #else // gcc > 4.7 #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) #endif // gcc <= 4.6 #else // !(gcc || clang) #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) #endif // __clang__ static INLINE void xx_storeu2_epi32(const uint8_t *output_ptr, const ptrdiff_t stride, const __m256i *a) { *((uint32_t *)(output_ptr)) = _mm_cvtsi128_si32(_mm256_castsi256_si128(*a)); *((uint32_t *)(output_ptr + stride)) = _mm_cvtsi128_si32(_mm256_extracti128_si256(*a, 1)); } static INLINE __m256i xx_loadu2_epi64(const void *hi, const void *lo) { __m256i a = _mm256_castsi128_si256(_mm_loadl_epi64((const __m128i *)(lo))); a = _mm256_inserti128_si256(a, _mm_loadl_epi64((const __m128i *)(hi)), 1); return a; } static INLINE void xx_storeu2_epi64(const uint8_t *output_ptr, const ptrdiff_t stride, const __m256i *a) { _mm_storel_epi64((__m128i *)output_ptr, _mm256_castsi256_si128(*a)); _mm_storel_epi64((__m128i *)(output_ptr + stride), _mm256_extractf128_si256(*a, 1)); } static INLINE __m256i xx_loadu2_mi128(const void *hi, const void *lo) { __m256i a = _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(lo))); a = _mm256_inserti128_si256(a, _mm_loadu_si128((const __m128i *)(hi)), 1); return a; } static INLINE void xx_store2_mi128(const uint8_t *output_ptr, const ptrdiff_t stride, const __m256i *a) { _mm_store_si128((__m128i *)output_ptr, _mm256_castsi256_si128(*a)); _mm_store_si128((__m128i *)(output_ptr + stride), _mm256_extractf128_si256(*a, 1)); } static void aom_filter_block1d4_h4_avx2( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m256i addFilterReg32, filt1Reg, firstFilters, srcReg32b1, srcRegFilt32b1_1; unsigned int i; ptrdiff_t src_stride, dst_stride; src_ptr -= 3; addFilterReg32 = _mm256_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register const __m256i filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi32(0x5040302u)); filt1Reg = _mm256_load_si256((__m256i const *)(filt4_d4_global_avx2)); // multiple the size of the source and destination stride by two src_stride = src_pixels_per_line << 1; dst_stride = output_pitch << 1; for (i = output_height; i > 1; i -= 2) { // load the 2 strides of source srcReg32b1 = xx_loadu2_mi128(src_ptr + src_pixels_per_line, src_ptr); // filter the source buffer srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg); // multiply 4 adjacent elements with the filter and add the result srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters); srcRegFilt32b1_1 = _mm256_hadds_epi16(srcRegFilt32b1_1, _mm256_setzero_si256()); // shift by 6 bit each 16 bit srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32); srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve result srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, _mm256_setzero_si256()); src_ptr += src_stride; xx_storeu2_epi32(output_ptr, output_pitch, &srcRegFilt32b1_1); output_ptr += dst_stride; } // if the number of strides is odd. // process only 4 bytes if (i > 0) { __m128i srcReg1, srcRegFilt1_1; srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr)); // filter the source buffer srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg)); // multiply 4 adjacent elements with the filter and add the result srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters)); srcRegFilt1_1 = _mm_hadds_epi16(srcRegFilt1_1, _mm_setzero_si128()); // shift by 6 bit each 16 bit srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32)); srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve result srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128()); // save 4 bytes *((uint32_t *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt1_1); } } static void aom_filter_block1d4_h8_avx2( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m256i addFilterReg32, filt1Reg, filt2Reg; __m256i firstFilters, secondFilters; __m256i srcRegFilt32b1_1, srcRegFilt32b2; __m256i srcReg32b1; unsigned int i; ptrdiff_t src_stride, dst_stride; src_ptr -= 3; addFilterReg32 = _mm256_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register const __m256i filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); // duplicate only the first 32 bits firstFilters = _mm256_shuffle_epi32(filtersReg32, 0); // duplicate only the second 32 bits secondFilters = _mm256_shuffle_epi32(filtersReg32, 0x55); filt1Reg = _mm256_load_si256((__m256i const *)filt_d4_global_avx2); filt2Reg = _mm256_load_si256((__m256i const *)(filt_d4_global_avx2 + 32)); // multiple the size of the source and destination stride by two src_stride = src_pixels_per_line << 1; dst_stride = output_pitch << 1; for (i = output_height; i > 1; i -= 2) { // load the 2 strides of source srcReg32b1 = xx_loadu2_mi128(src_ptr + src_pixels_per_line, src_ptr); // filter the source buffer srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg); // multiply 4 adjacent elements with the filter and add the result srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters); // filter the source buffer srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg); // multiply 4 adjacent elements with the filter and add the result srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, secondFilters); srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2); srcRegFilt32b1_1 = _mm256_hadds_epi16(srcRegFilt32b1_1, _mm256_setzero_si256()); // shift by 6 bit each 16 bit srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32); srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve result srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, _mm256_setzero_si256()); src_ptr += src_stride; xx_storeu2_epi32(output_ptr, output_pitch, &srcRegFilt32b1_1); output_ptr += dst_stride; } // if the number of strides is odd. // process only 4 bytes if (i > 0) { __m128i srcReg1, srcRegFilt1_1; __m128i srcRegFilt2; srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr)); // filter the source buffer srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg)); // multiply 4 adjacent elements with the filter and add the result srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters)); // filter the source buffer srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg)); // multiply 4 adjacent elements with the filter and add the result srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(secondFilters)); srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2); srcRegFilt1_1 = _mm_hadds_epi16(srcRegFilt1_1, _mm_setzero_si128()); // shift by 6 bit each 16 bit srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32)); srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve result srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128()); // save 4 bytes *((uint32_t *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt1_1); } } static void aom_filter_block1d8_h4_avx2( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m256i addFilterReg32, filt2Reg, filt3Reg; __m256i secondFilters, thirdFilters; __m256i srcRegFilt32b1_1, srcRegFilt32b2, srcRegFilt32b3; __m256i srcReg32b1, filtersReg32; unsigned int i; ptrdiff_t src_stride, dst_stride; src_ptr -= 3; addFilterReg32 = _mm256_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32)); filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2)); // multiply the size of the source and destination stride by two src_stride = src_pixels_per_line << 1; dst_stride = output_pitch << 1; for (i = output_height; i > 1; i -= 2) { // load the 2 strides of source srcReg32b1 = xx_loadu2_mi128(src_ptr + src_pixels_per_line, src_ptr); // filter the source buffer srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg); srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); // shift by 6 bit each 16 bit srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32); srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6); // shrink to 8 bit each 16 bits srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b1_1); src_ptr += src_stride; xx_storeu2_epi64(output_ptr, output_pitch, &srcRegFilt32b1_1); output_ptr += dst_stride; } // if the number of strides is odd. // process only 8 bytes if (i > 0) { __m128i srcReg1, srcRegFilt1_1; __m128i srcRegFilt2, srcRegFilt3; srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr)); // filter the source buffer srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg)); srcRegFilt3 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(secondFilters)); srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(thirdFilters)); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt2, srcRegFilt3); // shift by 6 bit each 16 bit srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32)); srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6); // shrink to 8 bit each 16 bits srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128()); // save 8 bytes _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt1_1); } } static void aom_filter_block1d8_h8_avx2( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m256i addFilterReg32, filt1Reg, filt2Reg, filt3Reg, filt4Reg; __m256i firstFilters, secondFilters, thirdFilters, forthFilters; __m256i srcRegFilt32b1_1, srcRegFilt32b2, srcRegFilt32b3; __m256i srcReg32b1; unsigned int i; ptrdiff_t src_stride, dst_stride; src_ptr -= 3; addFilterReg32 = _mm256_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register const __m256i filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); // duplicate only the first 16 bits (first and second byte) // across 256 bit register firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 256 bit register forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u)); filt1Reg = _mm256_load_si256((__m256i const *)filt_global_avx2); filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32)); filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2)); filt4Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 3)); // multiple the size of the source and destination stride by two src_stride = src_pixels_per_line << 1; dst_stride = output_pitch << 1; for (i = output_height; i > 1; i -= 2) { // load the 2 strides of source srcReg32b1 = xx_loadu2_mi128(src_ptr + src_pixels_per_line, src_ptr); // filter the source buffer srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg); srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters); // add and saturate the results together srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2); // filter the source buffer srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg); srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); __m256i sum23 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, sum23); // shift by 6 bit each 16 bit srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32); srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve result srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, _mm256_setzero_si256()); src_ptr += src_stride; xx_storeu2_epi64(output_ptr, output_pitch, &srcRegFilt32b1_1); output_ptr += dst_stride; } // if the number of strides is odd. // process only 8 bytes if (i > 0) { __m128i srcReg1, srcRegFilt1_1; __m128i srcRegFilt2, srcRegFilt3; srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr)); // filter the source buffer srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg)); srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt4Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters)); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters)); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2); // filter the source buffer srcRegFilt3 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg)); srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters)); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters)); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm_adds_epi16(srcRegFilt3, srcRegFilt2)); // shift by 6 bit each 16 bit srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32)); srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128()); // save 8 bytes _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt1_1); } } static void aom_filter_block1d16_h4_avx2( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m256i addFilterReg32, filt2Reg, filt3Reg; __m256i secondFilters, thirdFilters; __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3; __m256i srcReg32b1, srcReg32b2, filtersReg32; unsigned int i; ptrdiff_t src_stride, dst_stride; src_ptr -= 3; addFilterReg32 = _mm256_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32)); filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2)); // multiply the size of the source and destination stride by two src_stride = src_pixels_per_line << 1; dst_stride = output_pitch << 1; for (i = output_height; i > 1; i -= 2) { // load the 2 strides of source srcReg32b1 = xx_loadu2_mi128(src_ptr + src_pixels_per_line, src_ptr); // filter the source buffer srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg); srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); // reading 2 strides of the next 16 bytes // (part of it was being read by earlier read) srcReg32b2 = xx_loadu2_mi128(src_ptr + src_pixels_per_line + 8, src_ptr + 8); // filter the source buffer srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b2, filt2Reg); srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); // add and saturate the results together srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); // shift by 6 bit each 16 bit srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32); srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg32); srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6); srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve result srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1); src_ptr += src_stride; xx_store2_mi128(output_ptr, output_pitch, &srcRegFilt32b1_1); output_ptr += dst_stride; } // if the number of strides is odd. // process only 16 bytes if (i > 0) { __m256i srcReg1, srcReg12; __m256i srcRegFilt2, srcRegFilt3, srcRegFilt1_1; srcReg1 = _mm256_loadu_si256((const __m256i *)(src_ptr)); srcReg12 = _mm256_permute4x64_epi64(srcReg1, 0x94); // filter the source buffer srcRegFilt2 = _mm256_shuffle_epi8(srcReg12, filt2Reg); srcRegFilt3 = _mm256_shuffle_epi8(srcReg12, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt2 = _mm256_maddubs_epi16(srcRegFilt2, secondFilters); srcRegFilt3 = _mm256_maddubs_epi16(srcRegFilt3, thirdFilters); // add and saturate the results together srcRegFilt1_1 = _mm256_adds_epi16(srcRegFilt2, srcRegFilt3); // shift by 6 bit each 16 bit srcRegFilt1_1 = _mm256_adds_epi16(srcRegFilt1_1, addFilterReg32); srcRegFilt1_1 = _mm256_srai_epi16(srcRegFilt1_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt1_1 = _mm256_packus_epi16(srcRegFilt1_1, srcRegFilt1_1); srcRegFilt1_1 = _mm256_permute4x64_epi64(srcRegFilt1_1, 0x8); // save 16 bytes _mm_store_si128((__m128i *)output_ptr, _mm256_castsi256_si128(srcRegFilt1_1)); } } static void aom_filter_block1d16_h8_avx2( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m256i addFilterReg32, filt1Reg, filt2Reg, filt3Reg, filt4Reg; __m256i firstFilters, secondFilters, thirdFilters, forthFilters; __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3; __m256i srcReg32b1, srcReg32b2, filtersReg32; unsigned int i; ptrdiff_t src_stride, dst_stride; src_ptr -= 3; addFilterReg32 = _mm256_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); // duplicate only the first 16 bits (first and second byte) // across 256 bit register firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 256 bit register forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u)); filt1Reg = _mm256_load_si256((__m256i const *)filt_global_avx2); filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32)); filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2)); filt4Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 3)); // multiple the size of the source and destination stride by two src_stride = src_pixels_per_line << 1; dst_stride = output_pitch << 1; for (i = output_height; i > 1; i -= 2) { // load the 2 strides of source srcReg32b1 = xx_loadu2_mi128(src_ptr + src_pixels_per_line, src_ptr); // filter the source buffer srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg); srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters); // add and saturate the results together srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2); // filter the source buffer srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg); srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); __m256i sum23 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, sum23); // reading 2 strides of the next 16 bytes // (part of it was being read by earlier read) srcReg32b2 = xx_loadu2_mi128(src_ptr + src_pixels_per_line + 8, src_ptr + 8); // filter the source buffer srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg); srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters); // add and saturate the results together srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2); // filter the source buffer srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b2, filt2Reg); srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); // add and saturate the results together srcRegFilt32b2_1 = _mm256_adds_epi16( srcRegFilt32b2_1, _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2)); // shift by 6 bit each 16 bit srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32); srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg32); srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6); srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve result srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1); src_ptr += src_stride; xx_store2_mi128(output_ptr, output_pitch, &srcRegFilt32b1_1); output_ptr += dst_stride; } // if the number of strides is odd. // process only 16 bytes if (i > 0) { __m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1; __m128i srcRegFilt2, srcRegFilt3; srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr)); // filter the source buffer srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg)); srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt4Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters)); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters)); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2); // filter the source buffer srcRegFilt3 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg)); srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters)); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters)); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm_adds_epi16(srcRegFilt3, srcRegFilt2)); // reading the next 16 bytes // (part of it was being read by earlier read) srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + 8)); // filter the source buffer srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt1Reg)); srcRegFilt2 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt4Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1, _mm256_castsi256_si128(firstFilters)); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters)); // add and saturate the results together srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2); // filter the source buffer srcRegFilt3 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt2Reg)); srcRegFilt2 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt3Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters)); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters)); // add and saturate the results together srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, _mm_adds_epi16(srcRegFilt3, srcRegFilt2)); // shift by 6 bit each 16 bit srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32)); srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6); srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, _mm256_castsi256_si128(addFilterReg32)); srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1); // save 16 bytes _mm_store_si128((__m128i *)output_ptr, srcRegFilt1_1); } } static void aom_filter_block1d8_v4_avx2( const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m256i filtersReg32, addFilterReg32; __m256i srcReg23, srcReg4x, srcReg34, srcReg5x, srcReg45, srcReg6x, srcReg56; __m256i srcReg23_34_lo, srcReg45_56_lo; __m256i resReg23_34_lo, resReg45_56_lo; __m256i resReglo, resReg; __m256i secondFilters, thirdFilters; unsigned int i; ptrdiff_t src_stride, dst_stride; addFilterReg32 = _mm256_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the // same data in both lanes of 128 bit register. filtersReg = _mm_srai_epi16(filtersReg, 1); filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); // multiple the size of the source and destination stride by two src_stride = src_pitch << 1; dst_stride = out_pitch << 1; srcReg23 = xx_loadu2_epi64(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2); srcReg4x = _mm256_castsi128_si256( _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4))); // have consecutive loads on the same 256 register srcReg34 = _mm256_permute2x128_si256(srcReg23, srcReg4x, 0x21); srcReg23_34_lo = _mm256_unpacklo_epi8(srcReg23, srcReg34); for (i = output_height; i > 1; i -= 2) { // load the last 2 loads of 16 bytes and have every two // consecutive loads in the same 256 bit register srcReg5x = _mm256_castsi128_si256( _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5))); srcReg45 = _mm256_inserti128_si256(srcReg4x, _mm256_castsi256_si128(srcReg5x), 1); srcReg6x = _mm256_castsi128_si256( _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6))); srcReg56 = _mm256_inserti128_si256(srcReg5x, _mm256_castsi256_si128(srcReg6x), 1); // merge every two consecutive registers srcReg45_56_lo = _mm256_unpacklo_epi8(srcReg45, srcReg56); // multiply 2 adjacent elements with the filter and add the result resReg23_34_lo = _mm256_maddubs_epi16(srcReg23_34_lo, secondFilters); resReg45_56_lo = _mm256_maddubs_epi16(srcReg45_56_lo, thirdFilters); // add and saturate the results together resReglo = _mm256_adds_epi16(resReg23_34_lo, resReg45_56_lo); // shift by 6 bit each 16 bit resReglo = _mm256_adds_epi16(resReglo, addFilterReg32); resReglo = _mm256_srai_epi16(resReglo, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result resReg = _mm256_packus_epi16(resReglo, resReglo); src_ptr += src_stride; xx_storeu2_epi64(output_ptr, out_pitch, &resReg); output_ptr += dst_stride; // save part of the registers for next strides srcReg23_34_lo = srcReg45_56_lo; srcReg4x = srcReg6x; } } static void aom_filter_block1d8_v8_avx2( const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m256i addFilterReg32; __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5; __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10; __m256i srcReg32b11, srcReg32b12, filtersReg32; __m256i firstFilters, secondFilters, thirdFilters, forthFilters; unsigned int i; ptrdiff_t src_stride, dst_stride; addFilterReg32 = _mm256_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the // same data in both lanes of 128 bit register. filtersReg = _mm_srai_epi16(filtersReg, 1); filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); // duplicate only the first 16 bits (first and second byte) // across 256 bit register firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 256 bit register forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u)); // multiple the size of the source and destination stride by two src_stride = src_pitch << 1; dst_stride = out_pitch << 1; // load 16 bytes 7 times in stride of src_pitch srcReg32b1 = xx_loadu2_epi64(src_ptr + src_pitch, src_ptr); srcReg32b3 = xx_loadu2_epi64(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2); srcReg32b5 = xx_loadu2_epi64(src_ptr + src_pitch * 5, src_ptr + src_pitch * 4); srcReg32b7 = _mm256_castsi128_si256( _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6))); // have each consecutive loads on the same 256 register srcReg32b2 = _mm256_permute2x128_si256(srcReg32b1, srcReg32b3, 0x21); srcReg32b4 = _mm256_permute2x128_si256(srcReg32b3, srcReg32b5, 0x21); srcReg32b6 = _mm256_permute2x128_si256(srcReg32b5, srcReg32b7, 0x21); // merge every two consecutive registers except the last one srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2); srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4); srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6); for (i = output_height; i > 1; i -= 2) { // load the last 2 loads of 16 bytes and have every two // consecutive loads in the same 256 bit register srcReg32b8 = _mm256_castsi128_si256( _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7))); srcReg32b7 = _mm256_inserti128_si256(srcReg32b7, _mm256_castsi256_si128(srcReg32b8), 1); srcReg32b9 = _mm256_castsi128_si256( _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 8))); srcReg32b8 = _mm256_inserti128_si256(srcReg32b8, _mm256_castsi256_si128(srcReg32b9), 1); // merge every two consecutive registers // save srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8); // multiply 2 adjacent elements with the filter and add the result srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters); srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters); // add and saturate the results together srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6); // multiply 2 adjacent elements with the filter and add the result srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters); srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters); // add and saturate the results together srcReg32b10 = _mm256_adds_epi16(srcReg32b10, _mm256_adds_epi16(srcReg32b8, srcReg32b12)); // shift by 6 bit each 16 bit srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg32); srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcReg32b1 = _mm256_packus_epi16(srcReg32b10, _mm256_setzero_si256()); src_ptr += src_stride; xx_storeu2_epi64(output_ptr, out_pitch, &srcReg32b1); output_ptr += dst_stride; // save part of the registers for next strides srcReg32b10 = srcReg32b11; srcReg32b11 = srcReg32b2; srcReg32b2 = srcReg32b4; srcReg32b7 = srcReg32b9; } if (i > 0) { __m128i srcRegFilt1, srcRegFilt4, srcRegFilt6, srcRegFilt8; // load the last 16 bytes srcRegFilt8 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7)); // merge the last 2 results together srcRegFilt4 = _mm_unpacklo_epi8(_mm256_castsi256_si128(srcReg32b7), srcRegFilt8); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10), _mm256_castsi256_si128(firstFilters)); srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, _mm256_castsi256_si128(forthFilters)); // add and saturate the results together srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); // multiply 2 adjacent elements with the filter and add the result srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11), _mm256_castsi256_si128(secondFilters)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2), _mm256_castsi256_si128(thirdFilters)); // add and saturate the results together srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, _mm_adds_epi16(srcRegFilt4, srcRegFilt6)); // shift by 6 bit each 16 bit srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, _mm256_castsi256_si128(addFilterReg32)); srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve result srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, _mm_setzero_si128()); // save 8 bytes _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt1); } } static void aom_filter_block1d16_v4_avx2( const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m256i filtersReg32, addFilterReg32; __m256i srcReg23, srcReg4x, srcReg34, srcReg5x, srcReg45, srcReg6x, srcReg56; __m256i srcReg23_34_lo, srcReg23_34_hi, srcReg45_56_lo, srcReg45_56_hi; __m256i resReg23_34_lo, resReg23_34_hi, resReg45_56_lo, resReg45_56_hi; __m256i resReglo, resReghi, resReg; __m256i secondFilters, thirdFilters; unsigned int i; ptrdiff_t src_stride, dst_stride; addFilterReg32 = _mm256_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the // same data in both lanes of 128 bit register. filtersReg = _mm_srai_epi16(filtersReg, 1); filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); // multiple the size of the source and destination stride by two src_stride = src_pitch << 1; dst_stride = out_pitch << 1; srcReg23 = xx_loadu2_mi128(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2); srcReg4x = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4))); // have consecutive loads on the same 256 register srcReg34 = _mm256_permute2x128_si256(srcReg23, srcReg4x, 0x21); srcReg23_34_lo = _mm256_unpacklo_epi8(srcReg23, srcReg34); srcReg23_34_hi = _mm256_unpackhi_epi8(srcReg23, srcReg34); for (i = output_height; i > 1; i -= 2) { // load the last 2 loads of 16 bytes and have every two // consecutive loads in the same 256 bit register srcReg5x = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5))); srcReg45 = _mm256_inserti128_si256(srcReg4x, _mm256_castsi256_si128(srcReg5x), 1); srcReg6x = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6))); srcReg56 = _mm256_inserti128_si256(srcReg5x, _mm256_castsi256_si128(srcReg6x), 1); // merge every two consecutive registers srcReg45_56_lo = _mm256_unpacklo_epi8(srcReg45, srcReg56); srcReg45_56_hi = _mm256_unpackhi_epi8(srcReg45, srcReg56); // multiply 2 adjacent elements with the filter and add the result resReg23_34_lo = _mm256_maddubs_epi16(srcReg23_34_lo, secondFilters); resReg45_56_lo = _mm256_maddubs_epi16(srcReg45_56_lo, thirdFilters); // add and saturate the results together resReglo = _mm256_adds_epi16(resReg23_34_lo, resReg45_56_lo); // multiply 2 adjacent elements with the filter and add the result resReg23_34_hi = _mm256_maddubs_epi16(srcReg23_34_hi, secondFilters); resReg45_56_hi = _mm256_maddubs_epi16(srcReg45_56_hi, thirdFilters); // add and saturate the results together resReghi = _mm256_adds_epi16(resReg23_34_hi, resReg45_56_hi); // shift by 6 bit each 16 bit resReglo = _mm256_adds_epi16(resReglo, addFilterReg32); resReghi = _mm256_adds_epi16(resReghi, addFilterReg32); resReglo = _mm256_srai_epi16(resReglo, 6); resReghi = _mm256_srai_epi16(resReghi, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result resReg = _mm256_packus_epi16(resReglo, resReghi); src_ptr += src_stride; xx_store2_mi128(output_ptr, out_pitch, &resReg); output_ptr += dst_stride; // save part of the registers for next strides srcReg23_34_lo = srcReg45_56_lo; srcReg23_34_hi = srcReg45_56_hi; srcReg4x = srcReg6x; } } static void aom_filter_block1d16_v8_avx2( const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m256i addFilterReg32; __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5; __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10; __m256i srcReg32b11, srcReg32b12, filtersReg32; __m256i firstFilters, secondFilters, thirdFilters, forthFilters; unsigned int i; ptrdiff_t src_stride, dst_stride; addFilterReg32 = _mm256_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the // same data in both lanes of 128 bit register. filtersReg = _mm_srai_epi16(filtersReg, 1); filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); // duplicate only the first 16 bits (first and second byte) // across 256 bit register firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 256 bit register forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u)); // multiple the size of the source and destination stride by two src_stride = src_pitch << 1; dst_stride = out_pitch << 1; // load 16 bytes 7 times in stride of src_pitch srcReg32b1 = xx_loadu2_mi128(src_ptr + src_pitch, src_ptr); srcReg32b3 = xx_loadu2_mi128(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2); srcReg32b5 = xx_loadu2_mi128(src_ptr + src_pitch * 5, src_ptr + src_pitch * 4); srcReg32b7 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6))); // have each consecutive loads on the same 256 register srcReg32b2 = _mm256_permute2x128_si256(srcReg32b1, srcReg32b3, 0x21); srcReg32b4 = _mm256_permute2x128_si256(srcReg32b3, srcReg32b5, 0x21); srcReg32b6 = _mm256_permute2x128_si256(srcReg32b5, srcReg32b7, 0x21); // merge every two consecutive registers except the last one srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2); srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2); // save srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4); srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4); srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6); srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6); for (i = output_height; i > 1; i -= 2) { // load the last 2 loads of 16 bytes and have every two // consecutive loads in the same 256 bit register srcReg32b8 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7))); srcReg32b7 = _mm256_inserti128_si256(srcReg32b7, _mm256_castsi256_si128(srcReg32b8), 1); srcReg32b9 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 8))); srcReg32b8 = _mm256_inserti128_si256(srcReg32b8, _mm256_castsi256_si128(srcReg32b9), 1); // merge every two consecutive registers // save srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8); srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8); // multiply 2 adjacent elements with the filter and add the result srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters); srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters); // add and saturate the results together srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6); // multiply 2 adjacent elements with the filter and add the result srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters); srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters); // add and saturate the results together srcReg32b10 = _mm256_adds_epi16(srcReg32b10, _mm256_adds_epi16(srcReg32b8, srcReg32b12)); // multiply 2 adjacent elements with the filter and add the result srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters); srcReg32b6 = _mm256_maddubs_epi16(srcReg32b7, forthFilters); srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b6); // multiply 2 adjacent elements with the filter and add the result srcReg32b8 = _mm256_maddubs_epi16(srcReg32b3, secondFilters); srcReg32b12 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters); // add and saturate the results together srcReg32b1 = _mm256_adds_epi16(srcReg32b1, _mm256_adds_epi16(srcReg32b8, srcReg32b12)); // shift by 6 bit each 16 bit srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg32); srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg32); srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 6); srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1); src_ptr += src_stride; xx_store2_mi128(output_ptr, out_pitch, &srcReg32b1); output_ptr += dst_stride; // save part of the registers for next strides srcReg32b10 = srcReg32b11; srcReg32b1 = srcReg32b3; srcReg32b11 = srcReg32b2; srcReg32b3 = srcReg32b5; srcReg32b2 = srcReg32b4; srcReg32b5 = srcReg32b7; srcReg32b7 = srcReg32b9; } if (i > 0) { __m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5; __m128i srcRegFilt6, srcRegFilt7, srcRegFilt8; // load the last 16 bytes srcRegFilt8 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)); // merge the last 2 results together srcRegFilt4 = _mm_unpacklo_epi8(_mm256_castsi256_si128(srcReg32b7), srcRegFilt8); srcRegFilt7 = _mm_unpackhi_epi8(_mm256_castsi256_si128(srcReg32b7), srcRegFilt8); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10), _mm256_castsi256_si128(firstFilters)); srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, _mm256_castsi256_si128(forthFilters)); srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1), _mm256_castsi256_si128(firstFilters)); srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7, _mm256_castsi256_si128(forthFilters)); // add and saturate the results together srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7); // multiply 2 adjacent elements with the filter and add the result srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11), _mm256_castsi256_si128(secondFilters)); srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3), _mm256_castsi256_si128(secondFilters)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2), _mm256_castsi256_si128(thirdFilters)); srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5), _mm256_castsi256_si128(thirdFilters)); // add and saturate the results together srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, _mm_adds_epi16(srcRegFilt4, srcRegFilt6)); srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, _mm_adds_epi16(srcRegFilt5, srcRegFilt7)); // shift by 6 bit each 16 bit srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, _mm256_castsi256_si128(addFilterReg32)); srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, _mm256_castsi256_si128(addFilterReg32)); srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 6); srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3); // save 16 bytes _mm_store_si128((__m128i *)output_ptr, srcRegFilt1); } } static void aom_filter_block1d4_v4_avx2( const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m256i filtersReg32, addFilterReg32; __m256i srcReg23, srcReg4x, srcReg34, srcReg5x, srcReg45, srcReg6x, srcReg56; __m256i srcReg23_34_lo, srcReg45_56_lo; __m256i srcReg2345_3456_lo; __m256i resReglo, resReg; __m256i firstFilters; unsigned int i; ptrdiff_t src_stride, dst_stride; addFilterReg32 = _mm256_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the // same data in both lanes of 128 bit register. filtersReg = _mm_srai_epi16(filtersReg, 1); filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi32(0x5040302u)); // multiple the size of the source and destination stride by two src_stride = src_pitch << 1; dst_stride = out_pitch << 1; srcReg23 = xx_loadu2_epi64(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2); srcReg4x = _mm256_castsi128_si256( _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4))); // have consecutive loads on the same 256 register srcReg34 = _mm256_permute2x128_si256(srcReg23, srcReg4x, 0x21); srcReg23_34_lo = _mm256_unpacklo_epi8(srcReg23, srcReg34); for (i = output_height; i > 1; i -= 2) { // load the last 2 loads of 16 bytes and have every two // consecutive loads in the same 256 bit register srcReg5x = _mm256_castsi128_si256( _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5))); srcReg45 = _mm256_inserti128_si256(srcReg4x, _mm256_castsi256_si128(srcReg5x), 1); srcReg6x = _mm256_castsi128_si256( _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6))); srcReg56 = _mm256_inserti128_si256(srcReg5x, _mm256_castsi256_si128(srcReg6x), 1); // merge every two consecutive registers srcReg45_56_lo = _mm256_unpacklo_epi8(srcReg45, srcReg56); srcReg2345_3456_lo = _mm256_unpacklo_epi16(srcReg23_34_lo, srcReg45_56_lo); // multiply 2 adjacent elements with the filter and add the result resReglo = _mm256_maddubs_epi16(srcReg2345_3456_lo, firstFilters); resReglo = _mm256_hadds_epi16(resReglo, _mm256_setzero_si256()); // shift by 6 bit each 16 bit resReglo = _mm256_adds_epi16(resReglo, addFilterReg32); resReglo = _mm256_srai_epi16(resReglo, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result resReg = _mm256_packus_epi16(resReglo, resReglo); src_ptr += src_stride; xx_storeu2_epi32(output_ptr, out_pitch, &resReg); output_ptr += dst_stride; // save part of the registers for next strides srcReg23_34_lo = srcReg45_56_lo; srcReg4x = srcReg6x; } } #if HAVE_AVX2 && HAVE_SSSE3 filter8_1dfunction aom_filter_block1d4_v8_ssse3; filter8_1dfunction aom_filter_block1d16_v2_ssse3; filter8_1dfunction aom_filter_block1d16_h2_ssse3; filter8_1dfunction aom_filter_block1d8_v2_ssse3; filter8_1dfunction aom_filter_block1d8_h2_ssse3; filter8_1dfunction aom_filter_block1d4_v2_ssse3; filter8_1dfunction aom_filter_block1d4_h2_ssse3; #define aom_filter_block1d4_v8_avx2 aom_filter_block1d4_v8_ssse3 #define aom_filter_block1d16_v2_avx2 aom_filter_block1d16_v2_ssse3 #define aom_filter_block1d16_h2_avx2 aom_filter_block1d16_h2_ssse3 #define aom_filter_block1d8_v2_avx2 aom_filter_block1d8_v2_ssse3 #define aom_filter_block1d8_h2_avx2 aom_filter_block1d8_h2_ssse3 #define aom_filter_block1d4_v2_avx2 aom_filter_block1d4_v2_ssse3 #define aom_filter_block1d4_h2_avx2 aom_filter_block1d4_h2_ssse3 // void aom_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const int16_t *filter_x, int x_step_q4, // const int16_t *filter_y, int y_step_q4, // int w, int h); // void aom_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const int16_t *filter_x, int x_step_q4, // const int16_t *filter_y, int y_step_q4, // int w, int h); FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , avx2); FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , avx2); #endif // HAVE_AX2 && HAVE_SSSE3