/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_DSP_ANSWRITER_H_ #define AOM_DSP_ANSWRITER_H_ // An implementation of Asymmetric Numeral Systems // http://arxiv.org/abs/1311.2540v2 // Implements encoding of: // * rABS (range Asymmetric Binary Systems), a boolean coder // * rANS (range Asymmetric Numeral Systems), a multi-symbol coder #include #include "./aom_config.h" #include "aom/aom_integer.h" #include "aom_dsp/ans.h" #include "aom_dsp/prob.h" #include "aom_ports/mem_ops.h" #include "av1/common/odintrin.h" #if RANS_PRECISION <= OD_DIVU_DMAX #define ANS_DIVREM(quotient, remainder, dividend, divisor) \ do { \ quotient = OD_DIVU_SMALL((dividend), (divisor)); \ remainder = (dividend) - (quotient) * (divisor); \ } while (0) #else #define ANS_DIVREM(quotient, remainder, dividend, divisor) \ do { \ quotient = (dividend) / (divisor); \ remainder = (dividend) % (divisor); \ } while (0) #endif #define ANS_DIV8(dividend, divisor) OD_DIVU_SMALL((dividend), (divisor)) #ifdef __cplusplus extern "C" { #endif // __cplusplus struct AnsCoder { uint8_t *buf; int buf_offset; uint32_t state; }; static INLINE void ans_write_init(struct AnsCoder *const ans, uint8_t *const buf) { ans->buf = buf; ans->buf_offset = 0; ans->state = L_BASE; } static INLINE int ans_write_end(struct AnsCoder *const ans) { uint32_t state; int ans_size; assert(ans->state >= L_BASE); assert(ans->state < L_BASE * IO_BASE); state = ans->state - L_BASE; if (state < (1u << 15)) { mem_put_le16(ans->buf + ans->buf_offset, (0x00u << 15) + state); ans_size = ans->buf_offset + 2; #if ANS_REVERSE #if L_BASE * IO_BASE > (1 << 23) } else if (state < (1u << 22)) { mem_put_le24(ans->buf + ans->buf_offset, (0x02u << 22) + state); ans_size = ans->buf_offset + 3; } else if (state < (1u << 30)) { mem_put_le32(ans->buf + ans->buf_offset, (0x03u << 30) + state); ans_size = ans->buf_offset + 4; #else } else if (state < (1u << 23)) { mem_put_le24(ans->buf + ans->buf_offset, (0x01u << 23) + state); ans_size = ans->buf_offset + 3; #endif #else } else if (state < (1u << 22)) { mem_put_le24(ans->buf + ans->buf_offset, (0x02u << 22) + state); ans_size = ans->buf_offset + 3; } else if (state < (1u << 29)) { mem_put_le32(ans->buf + ans->buf_offset, (0x07u << 29) + state); ans_size = ans->buf_offset + 4; #endif } else { assert(0 && "State is too large to be serialized"); return ans->buf_offset; } #if ANS_REVERSE { int i; uint8_t tmp; for (i = 0; i < (ans_size >> 1); i++) { tmp = ans->buf[i]; ans->buf[i] = ans->buf[ans_size - 1 - i]; ans->buf[ans_size - 1 - i] = tmp; } ans->buf += ans_size; ans->buf_offset = 0; ans->state = L_BASE; } #endif return ans_size; } // Write one boolean using rABS where p0 is the probability of the value being // zero. static INLINE void rabs_write(struct AnsCoder *ans, int value, AnsP8 p0) { const AnsP8 p = ANS_P8_PRECISION - p0; const unsigned l_s = value ? p : p0; unsigned state = ans->state; while (state >= L_BASE / ANS_P8_PRECISION * IO_BASE * l_s) { ans->buf[ans->buf_offset++] = state % IO_BASE; state /= IO_BASE; } const unsigned quotient = ANS_DIV8(state, l_s); const unsigned remainder = state - quotient * l_s; ans->state = quotient * ANS_P8_PRECISION + remainder + (value ? p0 : 0); } // Encode one symbol using rANS. // cum_prob: The cumulative probability before this symbol (the offset of // the symbol in the symbol cycle) // prob: The probability of this symbol (l_s from the paper) // RANS_PRECISION takes the place of m from the paper. static INLINE void rans_write(struct AnsCoder *ans, aom_cdf_prob cum_prob, aom_cdf_prob prob) { unsigned quotient, remainder; while (ans->state >= L_BASE / RANS_PRECISION * IO_BASE * prob) { ans->buf[ans->buf_offset++] = ans->state % IO_BASE; ans->state /= IO_BASE; } ANS_DIVREM(quotient, remainder, ans->state, prob); ans->state = quotient * RANS_PRECISION + remainder + cum_prob; } #undef ANS_DIV8 #undef ANS_DIVREM #ifdef __cplusplus } // extern "C" #endif // __cplusplus #endif // AOM_DSP_ANSWRITER_H_