/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_DSP_ANSREADER_H_ #define AOM_DSP_ANSREADER_H_ // An implementation of Asymmetric Numeral Systems // http://arxiv.org/abs/1311.2540v2 // Implements decoding of: // * rABS (range Asymmetric Binary Systems), a boolean coder // * rANS (range Asymmetric Numeral Systems), a multi-symbol coder #include #include "./aom_config.h" #include "aom/aom_integer.h" #include "aom_dsp/prob.h" #include "aom_dsp/ans.h" #include "aom_ports/mem_ops.h" #if CONFIG_ACCOUNTING #include "av1/decoder/accounting.h" #endif #ifdef __cplusplus extern "C" { #endif // __cplusplus struct AnsDecoder { const uint8_t *buf; int buf_offset; uint32_t state; #if ANS_MAX_SYMBOLS int symbols_left; int window_size; #endif #if CONFIG_ACCOUNTING Accounting *accounting; #endif }; static INLINE int ans_read_reinit(struct AnsDecoder *const ans); static INLINE unsigned refill_state(struct AnsDecoder *const ans, unsigned state) { #if ANS_REVERSE while (state < L_BASE && ans->buf_offset < 0) { state = state * IO_BASE + ans->buf[ans->buf_offset++]; } #else while (state < L_BASE && ans->buf_offset > 0) { state = state * IO_BASE + ans->buf[--ans->buf_offset]; } #endif return state; } // Decode one rABS encoded boolean where the probability of the value being zero // is p0. static INLINE int rabs_read(struct AnsDecoder *ans, AnsP8 p0) { #if ANS_MAX_SYMBOLS if (ans->symbols_left-- == 0) { ans_read_reinit(ans); ans->symbols_left--; } #endif unsigned state = refill_state(ans, ans->state); const unsigned quotient = state / ANS_P8_PRECISION; const unsigned remainder = state % ANS_P8_PRECISION; const int value = remainder >= p0; const unsigned qp0 = quotient * p0; if (value) state = state - qp0 - p0; else state = qp0 + remainder; ans->state = state; return value; } // Decode one rABS encoded boolean where the probability of the value being zero // is one half. static INLINE int rabs_read_bit(struct AnsDecoder *ans) { #if ANS_MAX_SYMBOLS if (ans->symbols_left-- == 0) { ans_read_reinit(ans); ans->symbols_left--; } #endif unsigned state = refill_state(ans, ans->state); const int value = !!(state & 0x80); ans->state = ((state >> 1) & ~0x7F) | (state & 0x7F); return value; } struct rans_dec_sym { uint8_t val; aom_cdf_prob prob; aom_cdf_prob cum_prob; // not-inclusive }; static INLINE void fetch_sym(struct rans_dec_sym *out, const aom_cdf_prob *cdf, aom_cdf_prob rem) { int i; aom_cdf_prob cum_prob = 0, top_prob; // TODO(skal): if critical, could be a binary search. // Or, better, an O(1) alias-table. for (i = 0; rem >= (top_prob = cdf[i]); ++i) { cum_prob = top_prob; } out->val = i; out->prob = top_prob - cum_prob; out->cum_prob = cum_prob; } static INLINE int rans_read(struct AnsDecoder *ans, const aom_cdf_prob *tab) { unsigned rem; unsigned quo; struct rans_dec_sym sym; #if ANS_MAX_SYMBOLS if (ans->symbols_left-- == 0) { ans_read_reinit(ans); ans->symbols_left--; } #endif ans->state = refill_state(ans, ans->state); quo = ans->state / RANS_PRECISION; rem = ans->state % RANS_PRECISION; fetch_sym(&sym, tab, rem); ans->state = quo * sym.prob + rem - sym.cum_prob; return sym.val; } static INLINE int ans_read_init(struct AnsDecoder *const ans, const uint8_t *const buf, int offset) { unsigned x; if (offset < 1) return 1; #if ANS_REVERSE ans->buf = buf + offset; ans->buf_offset = -offset; x = buf[0]; if ((x & 0x80) == 0) { // Marker is 0xxx xxxx if (offset < 2) return 1; ans->buf_offset += 2; ans->state = mem_get_be16(buf) & 0x7FFF; #if L_BASE * IO_BASE > (1 << 23) } else if ((x & 0xC0) == 0x80) { // Marker is 10xx xxxx if (offset < 3) return 1; ans->buf_offset += 3; ans->state = mem_get_be24(buf) & 0x3FFFFF; } else { // Marker is 11xx xxxx if (offset < 4) return 1; ans->buf_offset += 4; ans->state = mem_get_be32(buf) & 0x3FFFFFFF; #else } else { // Marker is 1xxx xxxx if (offset < 3) return 1; ans->buf_offset += 3; ans->state = mem_get_be24(buf) & 0x7FFFFF; #endif } #else ans->buf = buf; x = buf[offset - 1]; if ((x & 0x80) == 0) { // Marker is 0xxx xxxx if (offset < 2) return 1; ans->buf_offset = offset - 2; ans->state = mem_get_le16(buf + offset - 2) & 0x7FFF; } else if ((x & 0xC0) == 0x80) { // Marker is 10xx xxxx if (offset < 3) return 1; ans->buf_offset = offset - 3; ans->state = mem_get_le24(buf + offset - 3) & 0x3FFFFF; } else if ((x & 0xE0) == 0xE0) { // Marker is 111x xxxx if (offset < 4) return 1; ans->buf_offset = offset - 4; ans->state = mem_get_le32(buf + offset - 4) & 0x1FFFFFFF; } else { // Marker 110x xxxx implies this byte is a superframe marker return 1; } #endif // ANS_REVERSE #if CONFIG_ACCOUNTING ans->accounting = NULL; #endif ans->state += L_BASE; if (ans->state >= L_BASE * IO_BASE) return 1; #if ANS_MAX_SYMBOLS assert(ans->window_size > 1); ans->symbols_left = ans->window_size; #endif return 0; } #if ANS_REVERSE static INLINE int ans_read_reinit(struct AnsDecoder *const ans) { return ans_read_init(ans, ans->buf + ans->buf_offset, -ans->buf_offset); } #endif static INLINE int ans_read_end(const struct AnsDecoder *const ans) { return ans->buf_offset == 0 && ans->state < L_BASE; } static INLINE int ans_reader_has_error(const struct AnsDecoder *const ans) { return ans->state < L_BASE / RANS_PRECISION; } #ifdef __cplusplus } // extern "C" #endif // __cplusplus #endif // AOM_DSP_ANSREADER_H_