/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * SSL3 Protocol * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* TODO(ekr): Implement HelloVerifyRequest on server side. OK for now. */ #include "cert.h" #include "ssl.h" #include "cryptohi.h" /* for DSAU_ stuff */ #include "keyhi.h" #include "secder.h" #include "secitem.h" #include "sechash.h" #include "sslimpl.h" #include "sslproto.h" #include "sslerr.h" #include "ssl3ext.h" #include "ssl3exthandle.h" #include "tls13subcerts.h" #include "prtime.h" #include "prinrval.h" #include "prerror.h" #include "pratom.h" #include "prthread.h" #include "nss.h" #include "nssoptions.h" #include "pk11func.h" #include "secmod.h" #include "blapi.h" #include static PK11SymKey *ssl3_GenerateRSAPMS(sslSocket *ss, ssl3CipherSpec *spec, PK11SlotInfo *serverKeySlot); static SECStatus ssl3_ComputeMasterSecret(sslSocket *ss, PK11SymKey *pms, PK11SymKey **msp); static SECStatus ssl3_DeriveConnectionKeys(sslSocket *ss, PK11SymKey *masterSecret); static SECStatus ssl3_HandshakeFailure(sslSocket *ss); static SECStatus ssl3_SendCertificate(sslSocket *ss); static SECStatus ssl3_SendCertificateRequest(sslSocket *ss); static SECStatus ssl3_SendNextProto(sslSocket *ss); static SECStatus ssl3_SendFinished(sslSocket *ss, PRInt32 flags); static SECStatus ssl3_SendServerHelloDone(sslSocket *ss); static SECStatus ssl3_SendServerKeyExchange(sslSocket *ss); static SECStatus ssl3_HandleClientHelloPart2(sslSocket *ss, SECItem *suites, sslSessionID *sid, const PRUint8 *msg, unsigned int len); static SECStatus ssl3_HandleServerHelloPart2(sslSocket *ss, const SECItem *sidBytes, int *retErrCode); static SECStatus ssl3_HandlePostHelloHandshakeMessage(sslSocket *ss, PRUint8 *b, PRUint32 length); static SECStatus ssl3_FlushHandshakeMessages(sslSocket *ss, PRInt32 flags); static CK_MECHANISM_TYPE ssl3_GetHashMechanismByHashType(SSLHashType hashType); static CK_MECHANISM_TYPE ssl3_GetMgfMechanismByHashType(SSLHashType hash); PRBool ssl_IsRsaPssSignatureScheme(SSLSignatureScheme scheme); PRBool ssl_IsRsaPkcs1SignatureScheme(SSLSignatureScheme scheme); PRBool ssl_IsDsaSignatureScheme(SSLSignatureScheme scheme); const PRUint8 ssl_hello_retry_random[] = { 0xCF, 0x21, 0xAD, 0x74, 0xE5, 0x9A, 0x61, 0x11, 0xBE, 0x1D, 0x8C, 0x02, 0x1E, 0x65, 0xB8, 0x91, 0xC2, 0xA2, 0x11, 0x16, 0x7A, 0xBB, 0x8C, 0x5E, 0x07, 0x9E, 0x09, 0xE2, 0xC8, 0xA8, 0x33, 0x9C }; PR_STATIC_ASSERT(PR_ARRAY_SIZE(ssl_hello_retry_random) == SSL3_RANDOM_LENGTH); /* This list of SSL3 cipher suites is sorted in descending order of * precedence (desirability). It only includes cipher suites we implement. * This table is modified by SSL3_SetPolicy(). The ordering of cipher suites * in this table must match the ordering in SSL_ImplementedCiphers (sslenum.c) * * Important: See bug 946147 before enabling, reordering, or adding any cipher * suites to this list. */ /* clang-format off */ static ssl3CipherSuiteCfg cipherSuites[ssl_V3_SUITES_IMPLEMENTED] = { /* cipher_suite policy enabled isPresent */ /* Special TLS 1.3 suites. */ { TLS_AES_128_GCM_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE }, { TLS_CHACHA20_POLY1305_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE }, { TLS_AES_256_GCM_SHA384, SSL_ALLOWED, PR_TRUE, PR_FALSE }, { TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, SSL_ALLOWED, PR_TRUE, PR_FALSE}, /* TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA is out of order to work around * bug 946147. */ { TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDHE_RSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256,SSL_ALLOWED,PR_TRUE, PR_FALSE}, { TLS_DHE_DSS_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_DHE_DSS_WITH_AES_256_GCM_SHA384, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_DHE_RSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_DHE_DSS_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_DHE_DSS_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_DHE_RSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_DHE_DSS_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_DHE_DSS_WITH_AES_256_CBC_SHA256, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_DHE_DSS_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDH_ECDSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDH_RSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, /* RSA */ { TLS_RSA_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_RSA_WITH_AES_256_GCM_SHA384, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_RSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_RSA_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_RSA_WITH_CAMELLIA_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_RSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_RSA_WITH_AES_256_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_RSA_WITH_CAMELLIA_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_RSA_WITH_SEED_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_RSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_RSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE}, { TLS_RSA_WITH_RC4_128_MD5, SSL_ALLOWED, PR_TRUE, PR_FALSE}, /* 56-bit DES "domestic" cipher suites */ { TLS_DHE_RSA_WITH_DES_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_DHE_DSS_WITH_DES_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_RSA_WITH_DES_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, /* ciphersuites with no encryption */ { TLS_ECDHE_ECDSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDHE_RSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDH_RSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_ECDH_ECDSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_RSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_RSA_WITH_NULL_SHA256, SSL_ALLOWED, PR_FALSE, PR_FALSE}, { TLS_RSA_WITH_NULL_MD5, SSL_ALLOWED, PR_FALSE, PR_FALSE}, }; /* clang-format on */ /* This is the default supported set of signature schemes. The order of the * hashes here is all that is important, since that will (sometimes) determine * which hash we use. The key pair (i.e., cert) is the primary thing that * determines what we use and this doesn't affect how we select key pairs. The * order of signature types is based on the same rules for ordering we use for * cipher suites just for consistency. */ static const SSLSignatureScheme defaultSignatureSchemes[] = { ssl_sig_ecdsa_secp256r1_sha256, ssl_sig_ecdsa_secp384r1_sha384, ssl_sig_ecdsa_secp521r1_sha512, ssl_sig_ecdsa_sha1, ssl_sig_rsa_pss_rsae_sha256, ssl_sig_rsa_pss_rsae_sha384, ssl_sig_rsa_pss_rsae_sha512, ssl_sig_rsa_pkcs1_sha256, ssl_sig_rsa_pkcs1_sha384, ssl_sig_rsa_pkcs1_sha512, ssl_sig_rsa_pkcs1_sha1, ssl_sig_dsa_sha256, ssl_sig_dsa_sha384, ssl_sig_dsa_sha512, ssl_sig_dsa_sha1 }; PR_STATIC_ASSERT(PR_ARRAY_SIZE(defaultSignatureSchemes) <= MAX_SIGNATURE_SCHEMES); /* Verify that SSL_ImplementedCiphers and cipherSuites are in consistent order. */ #ifdef DEBUG void ssl3_CheckCipherSuiteOrderConsistency() { unsigned int i; PORT_Assert(SSL_NumImplementedCiphers == PR_ARRAY_SIZE(cipherSuites)); for (i = 0; i < PR_ARRAY_SIZE(cipherSuites); ++i) { PORT_Assert(SSL_ImplementedCiphers[i] == cipherSuites[i].cipher_suite); } } #endif static const /*SSL3ClientCertificateType */ PRUint8 certificate_types[] = { ct_RSA_sign, ct_ECDSA_sign, ct_DSS_sign, }; static SSL3Statistics ssl3stats; static const ssl3KEADef kea_defs[] = { /* indexed by SSL3KeyExchangeAlgorithm */ /* kea exchKeyType signKeyType authKeyType ephemeral oid */ { kea_null, ssl_kea_null, nullKey, ssl_auth_null, PR_FALSE, 0 }, { kea_rsa, ssl_kea_rsa, nullKey, ssl_auth_rsa_decrypt, PR_FALSE, SEC_OID_TLS_RSA }, { kea_dh_dss, ssl_kea_dh, dsaKey, ssl_auth_dsa, PR_FALSE, SEC_OID_TLS_DH_DSS }, { kea_dh_rsa, ssl_kea_dh, rsaKey, ssl_auth_rsa_sign, PR_FALSE, SEC_OID_TLS_DH_RSA }, { kea_dhe_dss, ssl_kea_dh, dsaKey, ssl_auth_dsa, PR_TRUE, SEC_OID_TLS_DHE_DSS }, { kea_dhe_rsa, ssl_kea_dh, rsaKey, ssl_auth_rsa_sign, PR_TRUE, SEC_OID_TLS_DHE_RSA }, { kea_dh_anon, ssl_kea_dh, nullKey, ssl_auth_null, PR_TRUE, SEC_OID_TLS_DH_ANON }, { kea_ecdh_ecdsa, ssl_kea_ecdh, nullKey, ssl_auth_ecdh_ecdsa, PR_FALSE, SEC_OID_TLS_ECDH_ECDSA }, { kea_ecdhe_ecdsa, ssl_kea_ecdh, ecKey, ssl_auth_ecdsa, PR_TRUE, SEC_OID_TLS_ECDHE_ECDSA }, { kea_ecdh_rsa, ssl_kea_ecdh, nullKey, ssl_auth_ecdh_rsa, PR_FALSE, SEC_OID_TLS_ECDH_RSA }, { kea_ecdhe_rsa, ssl_kea_ecdh, rsaKey, ssl_auth_rsa_sign, PR_TRUE, SEC_OID_TLS_ECDHE_RSA }, { kea_ecdh_anon, ssl_kea_ecdh, nullKey, ssl_auth_null, PR_TRUE, SEC_OID_TLS_ECDH_ANON }, { kea_ecdhe_psk, ssl_kea_ecdh_psk, nullKey, ssl_auth_psk, PR_TRUE, SEC_OID_TLS_ECDHE_PSK }, { kea_dhe_psk, ssl_kea_dh_psk, nullKey, ssl_auth_psk, PR_TRUE, SEC_OID_TLS_DHE_PSK }, { kea_tls13_any, ssl_kea_tls13_any, nullKey, ssl_auth_tls13_any, PR_TRUE, SEC_OID_TLS13_KEA_ANY }, }; /* must use ssl_LookupCipherSuiteDef to access */ static const ssl3CipherSuiteDef cipher_suite_defs[] = { /* cipher_suite bulk_cipher_alg mac_alg key_exchange_alg prf_hash */ /* Note that the prf_hash_alg is the hash function used by the PRF, see sslimpl.h. */ { TLS_NULL_WITH_NULL_NULL, cipher_null, ssl_mac_null, kea_null, ssl_hash_none }, { TLS_RSA_WITH_NULL_MD5, cipher_null, ssl_mac_md5, kea_rsa, ssl_hash_none }, { TLS_RSA_WITH_NULL_SHA, cipher_null, ssl_mac_sha, kea_rsa, ssl_hash_none }, { TLS_RSA_WITH_NULL_SHA256, cipher_null, ssl_hmac_sha256, kea_rsa, ssl_hash_sha256 }, { TLS_RSA_WITH_RC4_128_MD5, cipher_rc4, ssl_mac_md5, kea_rsa, ssl_hash_none }, { TLS_RSA_WITH_RC4_128_SHA, cipher_rc4, ssl_mac_sha, kea_rsa, ssl_hash_none }, { TLS_RSA_WITH_DES_CBC_SHA, cipher_des, ssl_mac_sha, kea_rsa, ssl_hash_none }, { TLS_RSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, ssl_mac_sha, kea_rsa, ssl_hash_none }, { TLS_DHE_DSS_WITH_DES_CBC_SHA, cipher_des, ssl_mac_sha, kea_dhe_dss, ssl_hash_none }, { TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA, cipher_3des, ssl_mac_sha, kea_dhe_dss, ssl_hash_none }, { TLS_DHE_DSS_WITH_RC4_128_SHA, cipher_rc4, ssl_mac_sha, kea_dhe_dss, ssl_hash_none }, { TLS_DHE_RSA_WITH_DES_CBC_SHA, cipher_des, ssl_mac_sha, kea_dhe_rsa, ssl_hash_none }, { TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, ssl_mac_sha, kea_dhe_rsa, ssl_hash_none }, /* New TLS cipher suites */ { TLS_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, ssl_mac_sha, kea_rsa, ssl_hash_none }, { TLS_RSA_WITH_AES_128_CBC_SHA256, cipher_aes_128, ssl_hmac_sha256, kea_rsa, ssl_hash_sha256 }, { TLS_DHE_DSS_WITH_AES_128_CBC_SHA, cipher_aes_128, ssl_mac_sha, kea_dhe_dss, ssl_hash_none }, { TLS_DHE_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, ssl_mac_sha, kea_dhe_rsa, ssl_hash_none }, { TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, cipher_aes_128, ssl_hmac_sha256, kea_dhe_rsa, ssl_hash_sha256 }, { TLS_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, ssl_mac_sha, kea_rsa, ssl_hash_none }, { TLS_RSA_WITH_AES_256_CBC_SHA256, cipher_aes_256, ssl_hmac_sha256, kea_rsa, ssl_hash_sha256 }, { TLS_DHE_DSS_WITH_AES_256_CBC_SHA, cipher_aes_256, ssl_mac_sha, kea_dhe_dss, ssl_hash_none }, { TLS_DHE_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, ssl_mac_sha, kea_dhe_rsa, ssl_hash_none }, { TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, cipher_aes_256, ssl_hmac_sha256, kea_dhe_rsa, ssl_hash_sha256 }, { TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, cipher_aes_256_gcm, ssl_mac_aead, kea_dhe_rsa, ssl_hash_sha384 }, { TLS_RSA_WITH_SEED_CBC_SHA, cipher_seed, ssl_mac_sha, kea_rsa, ssl_hash_none }, { TLS_RSA_WITH_CAMELLIA_128_CBC_SHA, cipher_camellia_128, ssl_mac_sha, kea_rsa, ssl_hash_none }, { TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA, cipher_camellia_128, ssl_mac_sha, kea_dhe_dss, ssl_hash_none }, { TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA, cipher_camellia_128, ssl_mac_sha, kea_dhe_rsa, ssl_hash_none }, { TLS_RSA_WITH_CAMELLIA_256_CBC_SHA, cipher_camellia_256, ssl_mac_sha, kea_rsa, ssl_hash_none }, { TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA, cipher_camellia_256, ssl_mac_sha, kea_dhe_dss, ssl_hash_none }, { TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA, cipher_camellia_256, ssl_mac_sha, kea_dhe_rsa, ssl_hash_none }, { TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, ssl_mac_aead, kea_dhe_rsa, ssl_hash_sha256 }, { TLS_RSA_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, ssl_mac_aead, kea_rsa, ssl_hash_sha256 }, { TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, ssl_mac_aead, kea_ecdhe_rsa, ssl_hash_sha256 }, { TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, ssl_mac_aead, kea_ecdhe_ecdsa, ssl_hash_sha256 }, { TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, cipher_aes_256_gcm, ssl_mac_aead, kea_ecdhe_ecdsa, ssl_hash_sha384 }, { TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, cipher_aes_256_gcm, ssl_mac_aead, kea_ecdhe_rsa, ssl_hash_sha384 }, { TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, cipher_aes_256, ssl_hmac_sha384, kea_ecdhe_ecdsa, ssl_hash_sha384 }, { TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, cipher_aes_256, ssl_hmac_sha384, kea_ecdhe_rsa, ssl_hash_sha384 }, { TLS_DHE_DSS_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, ssl_mac_aead, kea_dhe_dss, ssl_hash_sha256 }, { TLS_DHE_DSS_WITH_AES_128_CBC_SHA256, cipher_aes_128, ssl_hmac_sha256, kea_dhe_dss, ssl_hash_sha256 }, { TLS_DHE_DSS_WITH_AES_256_CBC_SHA256, cipher_aes_256, ssl_hmac_sha256, kea_dhe_dss, ssl_hash_sha256 }, { TLS_DHE_DSS_WITH_AES_256_GCM_SHA384, cipher_aes_256_gcm, ssl_mac_aead, kea_dhe_dss, ssl_hash_sha384 }, { TLS_RSA_WITH_AES_256_GCM_SHA384, cipher_aes_256_gcm, ssl_mac_aead, kea_rsa, ssl_hash_sha384 }, { TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256, cipher_chacha20, ssl_mac_aead, kea_dhe_rsa, ssl_hash_sha256 }, { TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, cipher_chacha20, ssl_mac_aead, kea_ecdhe_rsa, ssl_hash_sha256 }, { TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, cipher_chacha20, ssl_mac_aead, kea_ecdhe_ecdsa, ssl_hash_sha256 }, { TLS_ECDH_ECDSA_WITH_NULL_SHA, cipher_null, ssl_mac_sha, kea_ecdh_ecdsa, ssl_hash_none }, { TLS_ECDH_ECDSA_WITH_RC4_128_SHA, cipher_rc4, ssl_mac_sha, kea_ecdh_ecdsa, ssl_hash_none }, { TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, ssl_mac_sha, kea_ecdh_ecdsa, ssl_hash_none }, { TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, cipher_aes_128, ssl_mac_sha, kea_ecdh_ecdsa, ssl_hash_none }, { TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, cipher_aes_256, ssl_mac_sha, kea_ecdh_ecdsa, ssl_hash_none }, { TLS_ECDHE_ECDSA_WITH_NULL_SHA, cipher_null, ssl_mac_sha, kea_ecdhe_ecdsa, ssl_hash_none }, { TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, cipher_rc4, ssl_mac_sha, kea_ecdhe_ecdsa, ssl_hash_none }, { TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, ssl_mac_sha, kea_ecdhe_ecdsa, ssl_hash_none }, { TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, cipher_aes_128, ssl_mac_sha, kea_ecdhe_ecdsa, ssl_hash_none }, { TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, cipher_aes_128, ssl_hmac_sha256, kea_ecdhe_ecdsa, ssl_hash_sha256 }, { TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, cipher_aes_256, ssl_mac_sha, kea_ecdhe_ecdsa, ssl_hash_none }, { TLS_ECDH_RSA_WITH_NULL_SHA, cipher_null, ssl_mac_sha, kea_ecdh_rsa, ssl_hash_none }, { TLS_ECDH_RSA_WITH_RC4_128_SHA, cipher_rc4, ssl_mac_sha, kea_ecdh_rsa, ssl_hash_none }, { TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, ssl_mac_sha, kea_ecdh_rsa, ssl_hash_none }, { TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, ssl_mac_sha, kea_ecdh_rsa, ssl_hash_none }, { TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, ssl_mac_sha, kea_ecdh_rsa, ssl_hash_none }, { TLS_ECDHE_RSA_WITH_NULL_SHA, cipher_null, ssl_mac_sha, kea_ecdhe_rsa, ssl_hash_none }, { TLS_ECDHE_RSA_WITH_RC4_128_SHA, cipher_rc4, ssl_mac_sha, kea_ecdhe_rsa, ssl_hash_none }, { TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, ssl_mac_sha, kea_ecdhe_rsa, ssl_hash_none }, { TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, ssl_mac_sha, kea_ecdhe_rsa, ssl_hash_none }, { TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, cipher_aes_128, ssl_hmac_sha256, kea_ecdhe_rsa, ssl_hash_sha256 }, { TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, ssl_mac_sha, kea_ecdhe_rsa, ssl_hash_none }, { TLS_AES_128_GCM_SHA256, cipher_aes_128_gcm, ssl_mac_aead, kea_tls13_any, ssl_hash_sha256 }, { TLS_CHACHA20_POLY1305_SHA256, cipher_chacha20, ssl_mac_aead, kea_tls13_any, ssl_hash_sha256 }, { TLS_AES_256_GCM_SHA384, cipher_aes_256_gcm, ssl_mac_aead, kea_tls13_any, ssl_hash_sha384 }, }; static const CK_MECHANISM_TYPE auth_alg_defs[] = { CKM_INVALID_MECHANISM, /* ssl_auth_null */ CKM_RSA_PKCS, /* ssl_auth_rsa_decrypt */ CKM_DSA, /* ? _SHA1 */ /* ssl_auth_dsa */ CKM_INVALID_MECHANISM, /* ssl_auth_kea (unused) */ CKM_ECDSA, /* ssl_auth_ecdsa */ CKM_ECDH1_DERIVE, /* ssl_auth_ecdh_rsa */ CKM_ECDH1_DERIVE, /* ssl_auth_ecdh_ecdsa */ CKM_RSA_PKCS, /* ssl_auth_rsa_sign */ CKM_RSA_PKCS_PSS, /* ssl_auth_rsa_pss */ CKM_NSS_HKDF_SHA256, /* ssl_auth_psk (just check for HKDF) */ CKM_INVALID_MECHANISM /* ssl_auth_tls13_any */ }; PR_STATIC_ASSERT(PR_ARRAY_SIZE(auth_alg_defs) == ssl_auth_size); static const CK_MECHANISM_TYPE kea_alg_defs[] = { CKM_INVALID_MECHANISM, /* ssl_kea_null */ CKM_RSA_PKCS, /* ssl_kea_rsa */ CKM_DH_PKCS_DERIVE, /* ssl_kea_dh */ CKM_INVALID_MECHANISM, /* ssl_kea_fortezza (unused) */ CKM_ECDH1_DERIVE, /* ssl_kea_ecdh */ CKM_ECDH1_DERIVE, /* ssl_kea_ecdh_psk */ CKM_DH_PKCS_DERIVE, /* ssl_kea_dh_psk */ CKM_INVALID_MECHANISM, /* ssl_kea_tls13_any */ }; PR_STATIC_ASSERT(PR_ARRAY_SIZE(kea_alg_defs) == ssl_kea_size); typedef struct SSLCipher2MechStr { SSLCipherAlgorithm calg; CK_MECHANISM_TYPE cmech; } SSLCipher2Mech; /* indexed by type SSLCipherAlgorithm */ static const SSLCipher2Mech alg2Mech[] = { /* calg, cmech */ { ssl_calg_null, CKM_INVALID_MECHANISM }, { ssl_calg_rc4, CKM_RC4 }, { ssl_calg_rc2, CKM_RC2_CBC }, { ssl_calg_des, CKM_DES_CBC }, { ssl_calg_3des, CKM_DES3_CBC }, { ssl_calg_idea, CKM_IDEA_CBC }, { ssl_calg_fortezza, CKM_SKIPJACK_CBC64 }, { ssl_calg_aes, CKM_AES_CBC }, { ssl_calg_camellia, CKM_CAMELLIA_CBC }, { ssl_calg_seed, CKM_SEED_CBC }, { ssl_calg_aes_gcm, CKM_AES_GCM }, { ssl_calg_chacha20, CKM_NSS_CHACHA20_POLY1305 }, }; const PRUint8 tls13_downgrade_random[] = { 0x44, 0x4F, 0x57, 0x4E, 0x47, 0x52, 0x44, 0x01 }; const PRUint8 tls12_downgrade_random[] = { 0x44, 0x4F, 0x57, 0x4E, 0x47, 0x52, 0x44, 0x00 }; PR_STATIC_ASSERT(sizeof(tls13_downgrade_random) == sizeof(tls13_downgrade_random)); /* The ECCWrappedKeyInfo structure defines how various pieces of * information are laid out within wrappedSymmetricWrappingkey * for ECDH key exchange. Since wrappedSymmetricWrappingkey is * a 512-byte buffer (see sslimpl.h), the variable length field * in ECCWrappedKeyInfo can be at most (512 - 8) = 504 bytes. * * XXX For now, NSS only supports named elliptic curves of size 571 bits * or smaller. The public value will fit within 145 bytes and EC params * will fit within 12 bytes. We'll need to revisit this when NSS * supports arbitrary curves. */ #define MAX_EC_WRAPPED_KEY_BUFLEN 504 typedef struct ECCWrappedKeyInfoStr { PRUint16 size; /* EC public key size in bits */ PRUint16 encodedParamLen; /* length (in bytes) of DER encoded EC params */ PRUint16 pubValueLen; /* length (in bytes) of EC public value */ PRUint16 wrappedKeyLen; /* length (in bytes) of the wrapped key */ PRUint8 var[MAX_EC_WRAPPED_KEY_BUFLEN]; /* this buffer contains the */ /* EC public-key params, the EC public value and the wrapped key */ } ECCWrappedKeyInfo; CK_MECHANISM_TYPE ssl3_Alg2Mech(SSLCipherAlgorithm calg) { PORT_Assert(alg2Mech[calg].calg == calg); return alg2Mech[calg].cmech; } #if defined(TRACE) static char * ssl3_DecodeHandshakeType(int msgType) { char *rv; static char line[40]; switch (msgType) { case ssl_hs_hello_request: rv = "hello_request (0)"; break; case ssl_hs_client_hello: rv = "client_hello (1)"; break; case ssl_hs_server_hello: rv = "server_hello (2)"; break; case ssl_hs_hello_verify_request: rv = "hello_verify_request (3)"; break; case ssl_hs_new_session_ticket: rv = "new_session_ticket (4)"; break; case ssl_hs_end_of_early_data: rv = "end_of_early_data (5)"; break; case ssl_hs_hello_retry_request: rv = "hello_retry_request (6)"; break; case ssl_hs_encrypted_extensions: rv = "encrypted_extensions (8)"; break; case ssl_hs_certificate: rv = "certificate (11)"; break; case ssl_hs_server_key_exchange: rv = "server_key_exchange (12)"; break; case ssl_hs_certificate_request: rv = "certificate_request (13)"; break; case ssl_hs_server_hello_done: rv = "server_hello_done (14)"; break; case ssl_hs_certificate_verify: rv = "certificate_verify (15)"; break; case ssl_hs_client_key_exchange: rv = "client_key_exchange (16)"; break; case ssl_hs_finished: rv = "finished (20)"; break; case ssl_hs_certificate_status: rv = "certificate_status (22)"; break; case ssl_hs_key_update: rv = "key_update (24)"; break; default: sprintf(line, "*UNKNOWN* handshake type! (%d)", msgType); rv = line; } return rv; } static char * ssl3_DecodeContentType(int msgType) { char *rv; static char line[40]; switch (msgType) { case ssl_ct_change_cipher_spec: rv = "change_cipher_spec (20)"; break; case ssl_ct_alert: rv = "alert (21)"; break; case ssl_ct_handshake: rv = "handshake (22)"; break; case ssl_ct_application_data: rv = "application_data (23)"; break; case ssl_ct_ack: rv = "ack (25)"; break; default: sprintf(line, "*UNKNOWN* record type! (%d)", msgType); rv = line; } return rv; } #endif SSL3Statistics * SSL_GetStatistics(void) { return &ssl3stats; } typedef struct tooLongStr { #if defined(IS_LITTLE_ENDIAN) PRInt32 low; PRInt32 high; #else PRInt32 high; PRInt32 low; #endif } tooLong; void SSL_AtomicIncrementLong(long *x) { if ((sizeof *x) == sizeof(PRInt32)) { PR_ATOMIC_INCREMENT((PRInt32 *)x); } else { tooLong *tl = (tooLong *)x; if (PR_ATOMIC_INCREMENT(&tl->low) == 0) PR_ATOMIC_INCREMENT(&tl->high); } } PRBool ssl3_CipherSuiteAllowedForVersionRange(ssl3CipherSuite cipherSuite, const SSLVersionRange *vrange) { switch (cipherSuite) { case TLS_DHE_RSA_WITH_AES_256_CBC_SHA256: case TLS_RSA_WITH_AES_256_CBC_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384: case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256: case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384: case TLS_DHE_RSA_WITH_AES_128_CBC_SHA256: case TLS_RSA_WITH_AES_128_CBC_SHA256: case TLS_RSA_WITH_AES_128_GCM_SHA256: case TLS_RSA_WITH_AES_256_GCM_SHA384: case TLS_DHE_DSS_WITH_AES_128_CBC_SHA256: case TLS_DHE_DSS_WITH_AES_256_CBC_SHA256: case TLS_RSA_WITH_NULL_SHA256: case TLS_DHE_DSS_WITH_AES_128_GCM_SHA256: case TLS_DHE_DSS_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_DHE_RSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256: case TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256: case TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256: return vrange->max >= SSL_LIBRARY_VERSION_TLS_1_2 && vrange->min < SSL_LIBRARY_VERSION_TLS_1_3; /* RFC 4492: ECC cipher suites need TLS extensions to negotiate curves and * point formats.*/ case TLS_ECDH_ECDSA_WITH_NULL_SHA: case TLS_ECDH_ECDSA_WITH_RC4_128_SHA: case TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA: case TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA: case TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA: case TLS_ECDHE_ECDSA_WITH_NULL_SHA: case TLS_ECDHE_ECDSA_WITH_RC4_128_SHA: case TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA: case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA: case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA: case TLS_ECDH_RSA_WITH_NULL_SHA: case TLS_ECDH_RSA_WITH_RC4_128_SHA: case TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA: case TLS_ECDH_RSA_WITH_AES_128_CBC_SHA: case TLS_ECDH_RSA_WITH_AES_256_CBC_SHA: case TLS_ECDHE_RSA_WITH_NULL_SHA: case TLS_ECDHE_RSA_WITH_RC4_128_SHA: case TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA: case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA: return vrange->max >= SSL_LIBRARY_VERSION_TLS_1_0 && vrange->min < SSL_LIBRARY_VERSION_TLS_1_3; case TLS_AES_128_GCM_SHA256: case TLS_AES_256_GCM_SHA384: case TLS_CHACHA20_POLY1305_SHA256: return vrange->max >= SSL_LIBRARY_VERSION_TLS_1_3; default: return vrange->min < SSL_LIBRARY_VERSION_TLS_1_3; } } /* return pointer to ssl3CipherSuiteDef for suite, or NULL */ /* XXX This does a linear search. A binary search would be better. */ const ssl3CipherSuiteDef * ssl_LookupCipherSuiteDef(ssl3CipherSuite suite) { int cipher_suite_def_len = sizeof(cipher_suite_defs) / sizeof(cipher_suite_defs[0]); int i; for (i = 0; i < cipher_suite_def_len; i++) { if (cipher_suite_defs[i].cipher_suite == suite) return &cipher_suite_defs[i]; } PORT_Assert(PR_FALSE); /* We should never get here. */ PORT_SetError(SSL_ERROR_UNKNOWN_CIPHER_SUITE); return NULL; } /* Find the cipher configuration struct associate with suite */ /* XXX This does a linear search. A binary search would be better. */ static ssl3CipherSuiteCfg * ssl_LookupCipherSuiteCfgMutable(ssl3CipherSuite suite, ssl3CipherSuiteCfg *suites) { int i; for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) { if (suites[i].cipher_suite == suite) return &suites[i]; } /* return NULL and let the caller handle it. */ PORT_SetError(SSL_ERROR_UNKNOWN_CIPHER_SUITE); return NULL; } const ssl3CipherSuiteCfg * ssl_LookupCipherSuiteCfg(ssl3CipherSuite suite, const ssl3CipherSuiteCfg *suites) { return ssl_LookupCipherSuiteCfgMutable(suite, CONST_CAST(ssl3CipherSuiteCfg, suites)); } static PRBool ssl_NamedGroupTypeEnabled(const sslSocket *ss, SSLKEAType keaType) { unsigned int i; for (i = 0; i < SSL_NAMED_GROUP_COUNT; ++i) { if (ss->namedGroupPreferences[i] && ss->namedGroupPreferences[i]->keaType == keaType) { return PR_TRUE; } } return PR_FALSE; } static PRBool ssl_KEAEnabled(const sslSocket *ss, SSLKEAType keaType) { switch (keaType) { case ssl_kea_rsa: return PR_TRUE; case ssl_kea_dh: case ssl_kea_dh_psk: { if (ss->sec.isServer && !ss->opt.enableServerDhe) { return PR_FALSE; } if (ss->sec.isServer) { /* If the server requires named FFDHE groups, then the client * must have included an FFDHE group. peerSupportsFfdheGroups * is set to true in ssl_HandleSupportedGroupsXtn(). */ if (ss->opt.requireDHENamedGroups && !ss->xtnData.peerSupportsFfdheGroups) { return PR_FALSE; } /* We can use the weak DH group if all of these are true: * 1. We don't require named groups. * 2. The peer doesn't support named groups. * 3. This isn't TLS 1.3. * 4. The weak group is enabled. */ if (!ss->opt.requireDHENamedGroups && !ss->xtnData.peerSupportsFfdheGroups && ss->version < SSL_LIBRARY_VERSION_TLS_1_3 && ss->ssl3.dheWeakGroupEnabled) { return PR_TRUE; } } else { if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3 && !ss->opt.requireDHENamedGroups) { /* The client enables DHE cipher suites even if no DHE groups * are enabled. Only if this isn't TLS 1.3 and named groups * are not required. */ return PR_TRUE; } } return ssl_NamedGroupTypeEnabled(ss, ssl_kea_dh); } case ssl_kea_ecdh: case ssl_kea_ecdh_psk: return ssl_NamedGroupTypeEnabled(ss, ssl_kea_ecdh); case ssl_kea_tls13_any: return PR_TRUE; case ssl_kea_fortezza: default: PORT_Assert(0); } return PR_FALSE; } static PRBool ssl_HasCert(const sslSocket *ss, PRUint16 maxVersion, SSLAuthType authType) { PRCList *cursor; if (authType == ssl_auth_null || authType == ssl_auth_psk || authType == ssl_auth_tls13_any) { return PR_TRUE; } for (cursor = PR_NEXT_LINK(&ss->serverCerts); cursor != &ss->serverCerts; cursor = PR_NEXT_LINK(cursor)) { sslServerCert *cert = (sslServerCert *)cursor; if (!cert->serverKeyPair || !cert->serverKeyPair->privKey || !cert->serverCertChain || !SSL_CERT_IS(cert, authType)) { continue; } /* When called from ssl3_config_match_init(), all the EC curves will be * enabled, so this will essentially do nothing (unless we implement * curve configuration). However, once we have seen the * supported_groups extension and this is called from config_match(), * this will filter out certificates with an unsupported curve. * * If we might negotiate TLS 1.3, skip this test as group configuration * doesn't affect choices in TLS 1.3. */ if (maxVersion < SSL_LIBRARY_VERSION_TLS_1_3 && (authType == ssl_auth_ecdsa || authType == ssl_auth_ecdh_ecdsa || authType == ssl_auth_ecdh_rsa) && !ssl_NamedGroupEnabled(ss, cert->namedCurve)) { continue; } return PR_TRUE; } if (authType == ssl_auth_rsa_sign) { return ssl_HasCert(ss, maxVersion, ssl_auth_rsa_pss); } return PR_FALSE; } /* Check that a signature scheme is accepted. * Both by policy and by having a token that supports it. */ static PRBool ssl_SignatureSchemeAccepted(PRUint16 minVersion, SSLSignatureScheme scheme) { /* Disable RSA-PSS schemes if there are no tokens to verify them. */ if (ssl_IsRsaPssSignatureScheme(scheme)) { if (!PK11_TokenExists(auth_alg_defs[ssl_auth_rsa_pss])) { return PR_FALSE; } } else if (ssl_IsRsaPkcs1SignatureScheme(scheme)) { /* Disable PKCS#1 signatures if we are limited to TLS 1.3. */ if (minVersion >= SSL_LIBRARY_VERSION_TLS_1_3) { return PR_FALSE; } } else if (ssl_IsDsaSignatureScheme(scheme)) { /* DSA: not in TLS 1.3, and check policy. */ if (minVersion >= SSL_LIBRARY_VERSION_TLS_1_3) { return PR_FALSE; } PRUint32 dsaPolicy; SECStatus rv = NSS_GetAlgorithmPolicy(SEC_OID_ANSIX9_DSA_SIGNATURE, &dsaPolicy); if (rv == SECSuccess && (dsaPolicy & NSS_USE_ALG_IN_SSL_KX) == 0) { return PR_FALSE; } } /* Hash policy. */ PRUint32 hashPolicy; SSLHashType hashType = ssl_SignatureSchemeToHashType(scheme); SECOidTag hashOID = ssl3_HashTypeToOID(hashType); SECStatus rv = NSS_GetAlgorithmPolicy(hashOID, &hashPolicy); if (rv == SECSuccess && (hashPolicy & NSS_USE_ALG_IN_SSL_KX) == 0) { return PR_FALSE; } return PR_TRUE; } static SECStatus ssl_CheckSignatureSchemes(sslSocket *ss) { if (ss->vrange.max < SSL_LIBRARY_VERSION_TLS_1_2) { return SECSuccess; } /* If this is a server using TLS 1.3, we just need to have one signature * scheme for which we have a usable certificate. * * Note: Certificates for earlier TLS versions are checked along with the * cipher suite in ssl3_config_match_init. */ if (ss->sec.isServer && ss->vrange.max >= SSL_LIBRARY_VERSION_TLS_1_3) { PRBool foundCert = PR_FALSE; for (unsigned int i = 0; i < ss->ssl3.signatureSchemeCount; ++i) { SSLAuthType authType = ssl_SignatureSchemeToAuthType(ss->ssl3.signatureSchemes[i]); if (ssl_HasCert(ss, ss->vrange.max, authType)) { foundCert = PR_TRUE; break; } } if (!foundCert) { PORT_SetError(SSL_ERROR_NO_SUPPORTED_SIGNATURE_ALGORITHM); return SECFailure; } } /* Ensure that there is a signature scheme that can be accepted.*/ for (unsigned int i = 0; i < ss->ssl3.signatureSchemeCount; ++i) { if (ssl_SignatureSchemeAccepted(ss->vrange.min, ss->ssl3.signatureSchemes[i])) { return SECSuccess; } } PORT_SetError(SSL_ERROR_NO_SUPPORTED_SIGNATURE_ALGORITHM); return SECFailure; } /* For a server, check that a signature scheme that can be used with the * provided authType is both enabled and usable. */ static PRBool ssl_HasSignatureScheme(const sslSocket *ss, SSLAuthType authType) { PORT_Assert(ss->sec.isServer); PORT_Assert(ss->ssl3.hs.preliminaryInfo & ssl_preinfo_version); PORT_Assert(authType != ssl_auth_null); PORT_Assert(authType != ssl_auth_tls13_any); if (ss->version < SSL_LIBRARY_VERSION_TLS_1_2 || authType == ssl_auth_rsa_decrypt || authType == ssl_auth_ecdh_rsa || authType == ssl_auth_ecdh_ecdsa) { return PR_TRUE; } for (unsigned int i = 0; i < ss->ssl3.signatureSchemeCount; ++i) { SSLSignatureScheme scheme = ss->ssl3.signatureSchemes[i]; SSLAuthType schemeAuthType = ssl_SignatureSchemeToAuthType(scheme); PRBool acceptable = authType == schemeAuthType || (schemeAuthType == ssl_auth_rsa_pss && authType == ssl_auth_rsa_sign); if (acceptable && ssl_SignatureSchemeAccepted(ss->version, scheme)) { return PR_TRUE; } } return PR_FALSE; } /* Initialize the suite->isPresent value for config_match * Returns count of enabled ciphers supported by extant tokens, * regardless of policy or user preference. * If this returns zero, the user cannot do SSL v3. */ unsigned int ssl3_config_match_init(sslSocket *ss) { ssl3CipherSuiteCfg *suite; const ssl3CipherSuiteDef *cipher_def; SSLCipherAlgorithm cipher_alg; CK_MECHANISM_TYPE cipher_mech; SSLAuthType authType; SSLKEAType keaType; unsigned int i; unsigned int numPresent = 0; unsigned int numEnabled = 0; PORT_Assert(ss); if (!ss) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return 0; } if (SSL_ALL_VERSIONS_DISABLED(&ss->vrange)) { return 0; } if (ssl_CheckSignatureSchemes(ss) != SECSuccess) { return 0; /* Code already set. */ } ssl_FilterSupportedGroups(ss); for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) { suite = &ss->cipherSuites[i]; if (suite->enabled) { ++numEnabled; /* We need the cipher defs to see if we have a token that can handle * this cipher. It isn't part of the static definition. */ cipher_def = ssl_LookupCipherSuiteDef(suite->cipher_suite); if (!cipher_def) { suite->isPresent = PR_FALSE; continue; } cipher_alg = ssl_GetBulkCipherDef(cipher_def)->calg; cipher_mech = ssl3_Alg2Mech(cipher_alg); /* Mark the suites that are backed by real tokens, certs and keys */ suite->isPresent = PR_TRUE; authType = kea_defs[cipher_def->key_exchange_alg].authKeyType; if (authType != ssl_auth_null && authType != ssl_auth_tls13_any) { if (ss->sec.isServer && !(ssl_HasCert(ss, ss->vrange.max, authType) && ssl_HasSignatureScheme(ss, authType))) { suite->isPresent = PR_FALSE; } else if (!PK11_TokenExists(auth_alg_defs[authType])) { suite->isPresent = PR_FALSE; } } keaType = kea_defs[cipher_def->key_exchange_alg].exchKeyType; if (keaType != ssl_kea_null && keaType != ssl_kea_tls13_any && !PK11_TokenExists(kea_alg_defs[keaType])) { suite->isPresent = PR_FALSE; } if (cipher_alg != ssl_calg_null && !PK11_TokenExists(cipher_mech)) { suite->isPresent = PR_FALSE; } if (suite->isPresent) { ++numPresent; } } } PORT_Assert(numPresent > 0 || numEnabled == 0); if (numPresent == 0) { PORT_SetError(SSL_ERROR_NO_CIPHERS_SUPPORTED); } return numPresent; } /* Return PR_TRUE if suite is usable. This if the suite is permitted by policy, * enabled, has a certificate (as needed), has a viable key agreement method, is * usable with the negotiated TLS version, and is otherwise usable. */ PRBool ssl3_config_match(const ssl3CipherSuiteCfg *suite, PRUint8 policy, const SSLVersionRange *vrange, const sslSocket *ss) { const ssl3CipherSuiteDef *cipher_def; const ssl3KEADef *kea_def; if (!suite) { PORT_Assert(suite); return PR_FALSE; } PORT_Assert(policy != SSL_NOT_ALLOWED); if (policy == SSL_NOT_ALLOWED) return PR_FALSE; if (!suite->enabled || !suite->isPresent) return PR_FALSE; if ((suite->policy == SSL_NOT_ALLOWED) || (suite->policy > policy)) return PR_FALSE; PORT_Assert(ss != NULL); cipher_def = ssl_LookupCipherSuiteDef(suite->cipher_suite); PORT_Assert(cipher_def != NULL); kea_def = &kea_defs[cipher_def->key_exchange_alg]; PORT_Assert(kea_def != NULL); if (!ssl_KEAEnabled(ss, kea_def->exchKeyType)) { return PR_FALSE; } if (ss->sec.isServer && !ssl_HasCert(ss, vrange->max, kea_def->authKeyType)) { return PR_FALSE; } return ssl3_CipherSuiteAllowedForVersionRange(suite->cipher_suite, vrange); } /* Return the number of cipher suites that are usable. */ /* called from ssl3_SendClientHello */ static unsigned int count_cipher_suites(sslSocket *ss, PRUint8 policy) { unsigned int i, count = 0; if (SSL_ALL_VERSIONS_DISABLED(&ss->vrange)) { return 0; } for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) { if (ssl3_config_match(&ss->cipherSuites[i], policy, &ss->vrange, ss)) { count++; } } if (count == 0) { PORT_SetError(SSL_ERROR_SSL_DISABLED); } return count; } /* For TLS 1.3, when resuming, check for a ciphersuite that is both compatible * with the identified ciphersuite and enabled. */ static PRBool tls13_ResumptionCompatible(sslSocket *ss, ssl3CipherSuite suite) { SSLVersionRange vrange = { SSL_LIBRARY_VERSION_TLS_1_3, SSL_LIBRARY_VERSION_TLS_1_3 }; SSLHashType hash = tls13_GetHashForCipherSuite(suite); for (unsigned int i = 0; i < PR_ARRAY_SIZE(cipher_suite_defs); i++) { if (cipher_suite_defs[i].prf_hash == hash) { const ssl3CipherSuiteCfg *suiteCfg = ssl_LookupCipherSuiteCfg(cipher_suite_defs[i].cipher_suite, ss->cipherSuites); if (suite && ssl3_config_match(suiteCfg, ss->ssl3.policy, &vrange, ss)) { return PR_TRUE; } } } return PR_FALSE; } /* * Null compression, mac and encryption functions */ SECStatus Null_Cipher(void *ctx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (inputLen > maxOutputLen) { *outputLen = 0; /* Match PK11_CipherOp in setting outputLen */ PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } *outputLen = inputLen; if (inputLen > 0 && input != output) { PORT_Memcpy(output, input, inputLen); } return SECSuccess; } /* * SSL3 Utility functions */ static void ssl_SetSpecVersions(sslSocket *ss, ssl3CipherSpec *spec) { spec->version = ss->version; if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) { tls13_SetSpecRecordVersion(ss, spec); } else if (IS_DTLS(ss)) { spec->recordVersion = dtls_TLSVersionToDTLSVersion(ss->version); } else { spec->recordVersion = ss->version; } } /* allowLargerPeerVersion controls whether the function will select the * highest enabled SSL version or fail when peerVersion is greater than the * highest enabled version. * * If allowLargerPeerVersion is true, peerVersion is the peer's highest * enabled version rather than the peer's selected version. */ SECStatus ssl3_NegotiateVersion(sslSocket *ss, SSL3ProtocolVersion peerVersion, PRBool allowLargerPeerVersion) { SSL3ProtocolVersion negotiated; /* Prevent negotiating to a lower version in response to a TLS 1.3 HRR. */ if (ss->ssl3.hs.helloRetry) { PORT_SetError(SSL_ERROR_UNSUPPORTED_VERSION); return SECFailure; } if (SSL_ALL_VERSIONS_DISABLED(&ss->vrange)) { PORT_SetError(SSL_ERROR_SSL_DISABLED); return SECFailure; } if (peerVersion < ss->vrange.min || (peerVersion > ss->vrange.max && !allowLargerPeerVersion)) { PORT_SetError(SSL_ERROR_UNSUPPORTED_VERSION); return SECFailure; } negotiated = PR_MIN(peerVersion, ss->vrange.max); PORT_Assert(ssl3_VersionIsSupported(ss->protocolVariant, negotiated)); if (ss->firstHsDone && ss->version != negotiated) { PORT_SetError(SSL_ERROR_UNSUPPORTED_VERSION); return SECFailure; } ss->version = negotiated; return SECSuccess; } /* Used by the client when the server produces a version number. * This reads, validates, and normalizes the value. */ SECStatus ssl_ClientReadVersion(sslSocket *ss, PRUint8 **b, unsigned int *len, SSL3ProtocolVersion *version) { SSL3ProtocolVersion v; PRUint32 temp; SECStatus rv; rv = ssl3_ConsumeHandshakeNumber(ss, &temp, 2, b, len); if (rv != SECSuccess) { return SECFailure; /* alert has been sent */ } v = (SSL3ProtocolVersion)temp; if (IS_DTLS(ss)) { v = dtls_DTLSVersionToTLSVersion(v); /* Check for failure. */ if (!v || v > SSL_LIBRARY_VERSION_MAX_SUPPORTED) { SSL3_SendAlert(ss, alert_fatal, illegal_parameter); return SECFailure; } } /* You can't negotiate TLS 1.3 this way. */ if (v >= SSL_LIBRARY_VERSION_TLS_1_3) { SSL3_SendAlert(ss, alert_fatal, illegal_parameter); return SECFailure; } *version = v; return SECSuccess; } static SECStatus ssl3_GetNewRandom(SSL3Random random) { SECStatus rv; rv = PK11_GenerateRandom(random, SSL3_RANDOM_LENGTH); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_GENERATE_RANDOM_FAILURE); } return rv; } SECStatus ssl3_SignHashesWithPrivKey(SSL3Hashes *hash, SECKEYPrivateKey *key, SSLSignatureScheme scheme, PRBool isTls, SECItem *buf) { SECStatus rv = SECFailure; PRBool doDerEncode = PR_FALSE; PRBool useRsaPss = ssl_IsRsaPssSignatureScheme(scheme); SECItem hashItem; buf->data = NULL; switch (SECKEY_GetPrivateKeyType(key)) { case rsaKey: hashItem.data = hash->u.raw; hashItem.len = hash->len; break; case dsaKey: doDerEncode = isTls; /* ssl_hash_none is used to specify the MD5/SHA1 concatenated hash. * In that case, we use just the SHA1 part. */ if (hash->hashAlg == ssl_hash_none) { hashItem.data = hash->u.s.sha; hashItem.len = sizeof(hash->u.s.sha); } else { hashItem.data = hash->u.raw; hashItem.len = hash->len; } break; case ecKey: doDerEncode = PR_TRUE; /* ssl_hash_none is used to specify the MD5/SHA1 concatenated hash. * In that case, we use just the SHA1 part. */ if (hash->hashAlg == ssl_hash_none) { hashItem.data = hash->u.s.sha; hashItem.len = sizeof(hash->u.s.sha); } else { hashItem.data = hash->u.raw; hashItem.len = hash->len; } break; default: PORT_SetError(SEC_ERROR_INVALID_KEY); goto done; } PRINT_BUF(60, (NULL, "hash(es) to be signed", hashItem.data, hashItem.len)); if (useRsaPss || hash->hashAlg == ssl_hash_none) { CK_MECHANISM_TYPE mech = PK11_MapSignKeyType(key->keyType); int signatureLen = PK11_SignatureLen(key); SECItem *params = NULL; CK_RSA_PKCS_PSS_PARAMS pssParams; SECItem pssParamsItem = { siBuffer, (unsigned char *)&pssParams, sizeof(pssParams) }; if (signatureLen <= 0) { PORT_SetError(SEC_ERROR_INVALID_KEY); goto done; } buf->len = (unsigned)signatureLen; buf->data = (unsigned char *)PORT_Alloc(signatureLen); if (!buf->data) goto done; /* error code was set. */ if (useRsaPss) { pssParams.hashAlg = ssl3_GetHashMechanismByHashType(hash->hashAlg); pssParams.mgf = ssl3_GetMgfMechanismByHashType(hash->hashAlg); pssParams.sLen = hashItem.len; params = &pssParamsItem; mech = CKM_RSA_PKCS_PSS; } rv = PK11_SignWithMechanism(key, mech, params, buf, &hashItem); } else { SECOidTag hashOID = ssl3_HashTypeToOID(hash->hashAlg); rv = SGN_Digest(key, hashOID, buf, &hashItem); } if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SIGN_HASHES_FAILURE); } else if (doDerEncode) { SECItem derSig = { siBuffer, NULL, 0 }; /* This also works for an ECDSA signature */ rv = DSAU_EncodeDerSigWithLen(&derSig, buf, buf->len); if (rv == SECSuccess) { PORT_Free(buf->data); /* discard unencoded signature. */ *buf = derSig; /* give caller encoded signature. */ } else if (derSig.data) { PORT_Free(derSig.data); } } PRINT_BUF(60, (NULL, "signed hashes", (unsigned char *)buf->data, buf->len)); done: if (rv != SECSuccess && buf->data) { PORT_Free(buf->data); buf->data = NULL; } return rv; } /* Called by ssl3_SendServerKeyExchange and ssl3_SendCertificateVerify */ SECStatus ssl3_SignHashes(sslSocket *ss, SSL3Hashes *hash, SECKEYPrivateKey *key, SECItem *buf) { SECStatus rv = SECFailure; PRBool isTLS = (PRBool)(ss->version > SSL_LIBRARY_VERSION_3_0); SSLSignatureScheme scheme = ss->ssl3.hs.signatureScheme; rv = ssl3_SignHashesWithPrivKey(hash, key, scheme, isTLS, buf); if (rv != SECSuccess) { return SECFailure; } if (ss->sec.isServer) { ss->sec.signatureScheme = scheme; ss->sec.authType = ssl_SignatureSchemeToAuthType(scheme); } return SECSuccess; } /* Called from ssl3_VerifySignedHashes and tls13_HandleCertificateVerify. */ SECStatus ssl_VerifySignedHashesWithPubKey(sslSocket *ss, SECKEYPublicKey *key, SSLSignatureScheme scheme, SSL3Hashes *hash, SECItem *buf) { SECItem *signature = NULL; SECStatus rv = SECFailure; SECItem hashItem; SECOidTag encAlg; SECOidTag hashAlg; void *pwArg = ss->pkcs11PinArg; PRBool isRsaPssScheme = ssl_IsRsaPssSignatureScheme(scheme); PRINT_BUF(60, (NULL, "check signed hashes", buf->data, buf->len)); hashAlg = ssl3_HashTypeToOID(hash->hashAlg); switch (SECKEY_GetPublicKeyType(key)) { case rsaKey: encAlg = SEC_OID_PKCS1_RSA_ENCRYPTION; hashItem.data = hash->u.raw; hashItem.len = hash->len; if (scheme == ssl_sig_none) { scheme = ssl_sig_rsa_pkcs1_sha1md5; } break; case dsaKey: encAlg = SEC_OID_ANSIX9_DSA_SIGNATURE; /* ssl_hash_none is used to specify the MD5/SHA1 concatenated hash. * In that case, we use just the SHA1 part. */ if (hash->hashAlg == ssl_hash_none) { hashItem.data = hash->u.s.sha; hashItem.len = sizeof(hash->u.s.sha); } else { hashItem.data = hash->u.raw; hashItem.len = hash->len; } /* Allow DER encoded DSA signatures in SSL 3.0 */ if (ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0 || buf->len != SECKEY_SignatureLen(key)) { signature = DSAU_DecodeDerSigToLen(buf, SECKEY_SignatureLen(key)); if (!signature) { PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE); goto loser; } buf = signature; } if (scheme == ssl_sig_none) { scheme = ssl_sig_dsa_sha1; } break; case ecKey: encAlg = SEC_OID_ANSIX962_EC_PUBLIC_KEY; /* ssl_hash_none is used to specify the MD5/SHA1 concatenated hash. * In that case, we use just the SHA1 part. * ECDSA signatures always encode the integers r and s using ASN.1 * (unlike DSA where ASN.1 encoding is used with TLS but not with * SSL3). So we can use VFY_VerifyDigestDirect for ECDSA. */ if (hash->hashAlg == ssl_hash_none) { hashAlg = SEC_OID_SHA1; hashItem.data = hash->u.s.sha; hashItem.len = sizeof(hash->u.s.sha); } else { hashItem.data = hash->u.raw; hashItem.len = hash->len; } if (scheme == ssl_sig_none) { scheme = ssl_sig_ecdsa_sha1; } break; default: PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); goto loser; } PRINT_BUF(60, (NULL, "hash(es) to be verified", hashItem.data, hashItem.len)); if (isRsaPssScheme || hashAlg == SEC_OID_UNKNOWN || SECKEY_GetPublicKeyType(key) == dsaKey) { /* VFY_VerifyDigestDirect requires DSA signatures to be DER-encoded. * DSA signatures are DER-encoded in TLS but not in SSL3 and the code * above always removes the DER encoding of DSA signatures when * present. Thus DSA signatures are always verified with PK11_Verify. */ CK_MECHANISM_TYPE mech = PK11_MapSignKeyType(key->keyType); SECItem *params = NULL; CK_RSA_PKCS_PSS_PARAMS pssParams; SECItem pssParamsItem = { siBuffer, (unsigned char *)&pssParams, sizeof(pssParams) }; if (isRsaPssScheme) { pssParams.hashAlg = ssl3_GetHashMechanismByHashType(hash->hashAlg); pssParams.mgf = ssl3_GetMgfMechanismByHashType(hash->hashAlg); pssParams.sLen = hashItem.len; params = &pssParamsItem; mech = CKM_RSA_PKCS_PSS; } rv = PK11_VerifyWithMechanism(key, mech, params, buf, &hashItem, pwArg); } else { rv = VFY_VerifyDigestDirect(&hashItem, key, buf, encAlg, hashAlg, pwArg); } if (signature) { SECITEM_FreeItem(signature, PR_TRUE); } if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE); } if (!ss->sec.isServer) { ss->sec.signatureScheme = scheme; ss->sec.authType = ssl_SignatureSchemeToAuthType(scheme); } loser: #ifdef UNSAFE_FUZZER_MODE rv = SECSuccess; PORT_SetError(0); #endif return rv; } /* Called from ssl3_HandleServerKeyExchange, ssl3_HandleCertificateVerify */ SECStatus ssl3_VerifySignedHashes(sslSocket *ss, SSLSignatureScheme scheme, SSL3Hashes *hash, SECItem *buf) { SECKEYPublicKey *pubKey = SECKEY_ExtractPublicKey(&ss->sec.peerCert->subjectPublicKeyInfo); if (pubKey == NULL) { ssl_MapLowLevelError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE); return SECFailure; } SECStatus rv = ssl_VerifySignedHashesWithPubKey(ss, pubKey, scheme, hash, buf); SECKEY_DestroyPublicKey(pubKey); return rv; } /* Caller must set hiLevel error code. */ /* Called from ssl3_ComputeDHKeyHash * which are called from ssl3_HandleServerKeyExchange. * * hashAlg: ssl_hash_none indicates the pre-1.2, MD5/SHA1 combination hash. */ SECStatus ssl3_ComputeCommonKeyHash(SSLHashType hashAlg, PRUint8 *hashBuf, unsigned int bufLen, SSL3Hashes *hashes) { SECStatus rv; SECOidTag hashOID; PRUint32 policy; if (hashAlg == ssl_hash_none) { if ((NSS_GetAlgorithmPolicy(SEC_OID_SHA1, &policy) == SECSuccess) && !(policy & NSS_USE_ALG_IN_SSL_KX)) { ssl_MapLowLevelError(SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM); return SECFailure; } rv = PK11_HashBuf(SEC_OID_MD5, hashes->u.s.md5, hashBuf, bufLen); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); return rv; } rv = PK11_HashBuf(SEC_OID_SHA1, hashes->u.s.sha, hashBuf, bufLen); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); return rv; } hashes->len = MD5_LENGTH + SHA1_LENGTH; } else { hashOID = ssl3_HashTypeToOID(hashAlg); if ((NSS_GetAlgorithmPolicy(hashOID, &policy) == SECSuccess) && !(policy & NSS_USE_ALG_IN_SSL_KX)) { ssl_MapLowLevelError(SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM); return SECFailure; } hashes->len = HASH_ResultLenByOidTag(hashOID); if (hashes->len == 0 || hashes->len > sizeof(hashes->u.raw)) { ssl_MapLowLevelError(SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM); return SECFailure; } rv = PK11_HashBuf(hashOID, hashes->u.raw, hashBuf, bufLen); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); return rv; } } hashes->hashAlg = hashAlg; return SECSuccess; } /* Caller must set hiLevel error code. */ /* Called from ssl3_HandleServerKeyExchange. */ static SECStatus ssl3_ComputeDHKeyHash(sslSocket *ss, SSLHashType hashAlg, SSL3Hashes *hashes, SECItem dh_p, SECItem dh_g, SECItem dh_Ys, PRBool padY) { sslBuffer buf = SSL_BUFFER_EMPTY; SECStatus rv; unsigned int yLen; unsigned int i; PORT_Assert(dh_p.data); PORT_Assert(dh_g.data); PORT_Assert(dh_Ys.data); rv = sslBuffer_Append(&buf, ss->ssl3.hs.client_random, SSL3_RANDOM_LENGTH); if (rv != SECSuccess) { goto loser; } rv = sslBuffer_Append(&buf, ss->ssl3.hs.server_random, SSL3_RANDOM_LENGTH); if (rv != SECSuccess) { goto loser; } /* p */ rv = sslBuffer_AppendVariable(&buf, dh_p.data, dh_p.len, 2); if (rv != SECSuccess) { goto loser; } /* g */ rv = sslBuffer_AppendVariable(&buf, dh_g.data, dh_g.len, 2); if (rv != SECSuccess) { goto loser; } /* y - complicated by padding */ yLen = padY ? dh_p.len : dh_Ys.len; rv = sslBuffer_AppendNumber(&buf, yLen, 2); if (rv != SECSuccess) { goto loser; } /* If we're padding Y, dh_Ys can't be longer than dh_p. */ PORT_Assert(!padY || dh_p.len >= dh_Ys.len); for (i = dh_Ys.len; i < yLen; ++i) { rv = sslBuffer_AppendNumber(&buf, 0, 1); if (rv != SECSuccess) { goto loser; } } rv = sslBuffer_Append(&buf, dh_Ys.data, dh_Ys.len); if (rv != SECSuccess) { goto loser; } rv = ssl3_ComputeCommonKeyHash(hashAlg, SSL_BUFFER_BASE(&buf), SSL_BUFFER_LEN(&buf), hashes); if (rv != SECSuccess) { goto loser; } PRINT_BUF(95, (NULL, "DHkey hash: ", SSL_BUFFER_BASE(&buf), SSL_BUFFER_LEN(&buf))); if (hashAlg == ssl_hash_none) { PRINT_BUF(95, (NULL, "DHkey hash: MD5 result", hashes->u.s.md5, MD5_LENGTH)); PRINT_BUF(95, (NULL, "DHkey hash: SHA1 result", hashes->u.s.sha, SHA1_LENGTH)); } else { PRINT_BUF(95, (NULL, "DHkey hash: result", hashes->u.raw, hashes->len)); } sslBuffer_Clear(&buf); return SECSuccess; loser: sslBuffer_Clear(&buf); return SECFailure; } static SECStatus ssl3_SetupPendingCipherSpec(sslSocket *ss, SSLSecretDirection direction, const ssl3CipherSuiteDef *suiteDef, ssl3CipherSpec **specp) { ssl3CipherSpec *spec; const ssl3CipherSpec *prev; prev = (direction == ssl_secret_write) ? ss->ssl3.cwSpec : ss->ssl3.crSpec; if (prev->epoch == PR_UINT16_MAX) { PORT_SetError(SSL_ERROR_RENEGOTIATION_NOT_ALLOWED); return SECFailure; } spec = ssl_CreateCipherSpec(ss, direction); if (!spec) { return SECFailure; } spec->cipherDef = ssl_GetBulkCipherDef(suiteDef); spec->macDef = ssl_GetMacDef(ss, suiteDef); spec->epoch = prev->epoch + 1; spec->nextSeqNum = 0; if (IS_DTLS(ss) && direction == ssl_secret_read) { dtls_InitRecvdRecords(&spec->recvdRecords); } ssl_SetSpecVersions(ss, spec); ssl_SaveCipherSpec(ss, spec); *specp = spec; return SECSuccess; } /* Fill in the pending cipher spec with info from the selected ciphersuite. ** This is as much initialization as we can do without having key material. ** Called from ssl3_HandleServerHello(), ssl3_SendServerHello() ** Caller must hold the ssl3 handshake lock. ** Acquires & releases SpecWriteLock. */ SECStatus ssl3_SetupBothPendingCipherSpecs(sslSocket *ss) { ssl3CipherSuite suite = ss->ssl3.hs.cipher_suite; SSL3KeyExchangeAlgorithm kea; const ssl3CipherSuiteDef *suiteDef; SECStatus rv; PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->version < SSL_LIBRARY_VERSION_TLS_1_3); ssl_GetSpecWriteLock(ss); /*******************************/ /* This hack provides maximal interoperability with SSL 3 servers. */ if (ss->ssl3.cwSpec->macDef->mac == ssl_mac_null) { /* SSL records are not being MACed. */ ss->ssl3.cwSpec->version = ss->version; } SSL_TRC(3, ("%d: SSL3[%d]: Set XXX Pending Cipher Suite to 0x%04x", SSL_GETPID(), ss->fd, suite)); suiteDef = ssl_LookupCipherSuiteDef(suite); if (suiteDef == NULL) { goto loser; } if (IS_DTLS(ss)) { /* Double-check that we did not pick an RC4 suite */ PORT_Assert(suiteDef->bulk_cipher_alg != cipher_rc4); } ss->ssl3.hs.suite_def = suiteDef; kea = suiteDef->key_exchange_alg; ss->ssl3.hs.kea_def = &kea_defs[kea]; PORT_Assert(ss->ssl3.hs.kea_def->kea == kea); rv = ssl3_SetupPendingCipherSpec(ss, ssl_secret_read, suiteDef, &ss->ssl3.prSpec); if (rv != SECSuccess) { goto loser; } rv = ssl3_SetupPendingCipherSpec(ss, ssl_secret_write, suiteDef, &ss->ssl3.pwSpec); if (rv != SECSuccess) { goto loser; } if (ssl3_ExtensionNegotiated(ss, ssl_record_size_limit_xtn)) { ss->ssl3.prSpec->recordSizeLimit = PR_MIN(MAX_FRAGMENT_LENGTH, ss->opt.recordSizeLimit); ss->ssl3.pwSpec->recordSizeLimit = PR_MIN(MAX_FRAGMENT_LENGTH, ss->xtnData.recordSizeLimit); } ssl_ReleaseSpecWriteLock(ss); /*******************************/ return SECSuccess; loser: ssl_ReleaseSpecWriteLock(ss); return SECFailure; } /* ssl3_BuildRecordPseudoHeader writes the SSL/TLS pseudo-header (the data which * is included in the MAC or AEAD additional data) to |buf|. See * https://tools.ietf.org/html/rfc5246#section-6.2.3.3 for the definition of the * AEAD additional data. * * TLS pseudo-header includes the record's version field, SSL's doesn't. Which * pseudo-header definition to use should be decided based on the version of * the protocol that was negotiated when the cipher spec became current, NOT * based on the version value in the record itself, and the decision is passed * to this function as the |includesVersion| argument. But, the |version| * argument should be the record's version value. */ static SECStatus ssl3_BuildRecordPseudoHeader(DTLSEpoch epoch, sslSequenceNumber seqNum, SSLContentType ct, PRBool includesVersion, SSL3ProtocolVersion version, PRBool isDTLS, int length, sslBuffer *buf) { SECStatus rv; if (isDTLS) { rv = sslBuffer_AppendNumber(buf, epoch, 2); if (rv != SECSuccess) { return SECFailure; } rv = sslBuffer_AppendNumber(buf, seqNum, 6); } else { rv = sslBuffer_AppendNumber(buf, seqNum, 8); } if (rv != SECSuccess) { return SECFailure; } rv = sslBuffer_AppendNumber(buf, ct, 1); if (rv != SECSuccess) { return SECFailure; } /* SSL3 MAC doesn't include the record's version field. */ if (includesVersion) { /* TLS MAC and AEAD additional data include version. */ rv = sslBuffer_AppendNumber(buf, version, 2); if (rv != SECSuccess) { return SECFailure; } } rv = sslBuffer_AppendNumber(buf, length, 2); if (rv != SECSuccess) { return SECFailure; } return SECSuccess; } static SECStatus ssl3_AESGCM(const ssl3KeyMaterial *keys, PRBool doDecrypt, unsigned char *out, unsigned int *outlen, unsigned int maxout, const unsigned char *in, unsigned int inlen, const unsigned char *additionalData, unsigned int additionalDataLen) { SECItem param; SECStatus rv = SECFailure; unsigned char nonce[12]; unsigned int uOutLen; CK_GCM_PARAMS gcmParams; const int tagSize = 16; const int explicitNonceLen = 8; /* See https://tools.ietf.org/html/rfc5288#section-3 for details of how the * nonce is formed. */ memcpy(nonce, keys->iv, 4); if (doDecrypt) { memcpy(nonce + 4, in, explicitNonceLen); in += explicitNonceLen; inlen -= explicitNonceLen; *outlen = 0; } else { if (maxout < explicitNonceLen) { PORT_SetError(SEC_ERROR_INPUT_LEN); return SECFailure; } /* Use the 64-bit sequence number as the explicit nonce. */ memcpy(nonce + 4, additionalData, explicitNonceLen); memcpy(out, additionalData, explicitNonceLen); out += explicitNonceLen; maxout -= explicitNonceLen; *outlen = explicitNonceLen; } param.type = siBuffer; param.data = (unsigned char *)&gcmParams; param.len = sizeof(gcmParams); gcmParams.pIv = nonce; gcmParams.ulIvLen = sizeof(nonce); gcmParams.pAAD = (unsigned char *)additionalData; /* const cast */ gcmParams.ulAADLen = additionalDataLen; gcmParams.ulTagBits = tagSize * 8; if (doDecrypt) { rv = PK11_Decrypt(keys->key, CKM_AES_GCM, ¶m, out, &uOutLen, maxout, in, inlen); } else { rv = PK11_Encrypt(keys->key, CKM_AES_GCM, ¶m, out, &uOutLen, maxout, in, inlen); } *outlen += (int)uOutLen; return rv; } static SECStatus ssl3_ChaCha20Poly1305(const ssl3KeyMaterial *keys, PRBool doDecrypt, unsigned char *out, unsigned int *outlen, unsigned int maxout, const unsigned char *in, unsigned int inlen, const unsigned char *additionalData, unsigned int additionalDataLen) { size_t i; SECItem param; SECStatus rv = SECFailure; unsigned int uOutLen; unsigned char nonce[12]; CK_NSS_AEAD_PARAMS aeadParams; const int tagSize = 16; /* See * https://tools.ietf.org/html/draft-ietf-tls-chacha20-poly1305-04#section-2 * for details of how the nonce is formed. */ PORT_Memcpy(nonce, keys->iv, 12); /* XOR the last 8 bytes of the IV with the sequence number. */ PORT_Assert(additionalDataLen >= 8); for (i = 0; i < 8; ++i) { nonce[4 + i] ^= additionalData[i]; } param.type = siBuffer; param.len = sizeof(aeadParams); param.data = (unsigned char *)&aeadParams; memset(&aeadParams, 0, sizeof(aeadParams)); aeadParams.pNonce = nonce; aeadParams.ulNonceLen = sizeof(nonce); aeadParams.pAAD = (unsigned char *)additionalData; aeadParams.ulAADLen = additionalDataLen; aeadParams.ulTagLen = tagSize; if (doDecrypt) { rv = PK11_Decrypt(keys->key, CKM_NSS_CHACHA20_POLY1305, ¶m, out, &uOutLen, maxout, in, inlen); } else { rv = PK11_Encrypt(keys->key, CKM_NSS_CHACHA20_POLY1305, ¶m, out, &uOutLen, maxout, in, inlen); } *outlen = (int)uOutLen; return rv; } /* Initialize encryption and MAC contexts for pending spec. * Master Secret already is derived. * Caller holds Spec write lock. */ static SECStatus ssl3_InitPendingContexts(sslSocket *ss, ssl3CipherSpec *spec) { CK_MECHANISM_TYPE encMechanism; CK_ATTRIBUTE_TYPE encMode; SECItem macParam; CK_ULONG macLength; SECItem iv; SSLCipherAlgorithm calg; PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSpecWriteLock(ss)); macLength = spec->macDef->mac_size; calg = spec->cipherDef->calg; PORT_Assert(alg2Mech[calg].calg == calg); if (spec->cipherDef->type == type_aead) { spec->cipher = NULL; spec->cipherContext = NULL; switch (calg) { case ssl_calg_aes_gcm: spec->aead = ssl3_AESGCM; break; case ssl_calg_chacha20: spec->aead = ssl3_ChaCha20Poly1305; break; default: PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } return SECSuccess; } /* ** Now setup the MAC contexts, ** crypto contexts are setup below. */ macParam.data = (unsigned char *)&macLength; macParam.len = sizeof(macLength); macParam.type = siBuffer; spec->keyMaterial.macContext = PK11_CreateContextBySymKey( spec->macDef->mmech, CKA_SIGN, spec->keyMaterial.macKey, &macParam); if (!spec->keyMaterial.macContext) { ssl_MapLowLevelError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE); return SECFailure; } /* ** Now setup the crypto contexts. */ if (calg == ssl_calg_null) { spec->cipher = Null_Cipher; return SECSuccess; } spec->cipher = (SSLCipher)PK11_CipherOp; encMechanism = ssl3_Alg2Mech(calg); encMode = (spec->direction == ssl_secret_write) ? CKA_ENCRYPT : CKA_DECRYPT; /* * build the context */ iv.data = spec->keyMaterial.iv; iv.len = spec->cipherDef->iv_size; spec->cipherContext = PK11_CreateContextBySymKey(encMechanism, encMode, spec->keyMaterial.key, &iv); if (!spec->cipherContext) { ssl_MapLowLevelError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE); return SECFailure; } return SECSuccess; } /* Complete the initialization of all keys, ciphers, MACs and their contexts * for the pending Cipher Spec. * Called from: ssl3_SendClientKeyExchange (for Full handshake) * ssl3_HandleRSAClientKeyExchange (for Full handshake) * ssl3_HandleServerHello (for session restart) * ssl3_HandleClientHello (for session restart) * Sets error code, but caller probably should override to disambiguate. * * If |secret| is a master secret from a previous connection is reused, |derive| * is PR_FALSE. If the secret is a pre-master secret, then |derive| is PR_TRUE * and the master secret is derived from |secret|. */ SECStatus ssl3_InitPendingCipherSpecs(sslSocket *ss, PK11SymKey *secret, PRBool derive) { PK11SymKey *masterSecret; ssl3CipherSpec *pwSpec; ssl3CipherSpec *prSpec; SECStatus rv; PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(secret); ssl_GetSpecWriteLock(ss); /**************************************/ PORT_Assert(ss->ssl3.pwSpec); PORT_Assert(ss->ssl3.cwSpec->epoch == ss->ssl3.crSpec->epoch); prSpec = ss->ssl3.prSpec; pwSpec = ss->ssl3.pwSpec; if (ss->ssl3.cwSpec->epoch == PR_UINT16_MAX) { /* The problem here is that we have rehandshaked too many * times (you are not allowed to wrap the epoch). The * spec says you should be discarding the connection * and start over, so not much we can do here. */ PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); goto loser; } if (derive) { rv = ssl3_ComputeMasterSecret(ss, secret, &masterSecret); if (rv != SECSuccess) { goto loser; } } else { masterSecret = secret; } PORT_Assert(masterSecret); rv = ssl3_DeriveConnectionKeys(ss, masterSecret); if (rv != SECSuccess) { if (derive) { /* masterSecret was created here. */ PK11_FreeSymKey(masterSecret); } goto loser; } /* Both cipher specs maintain a reference to the master secret, since each * is managed and freed independently. */ prSpec->masterSecret = masterSecret; pwSpec->masterSecret = PK11_ReferenceSymKey(masterSecret); rv = ssl3_InitPendingContexts(ss, ss->ssl3.prSpec); if (rv != SECSuccess) { goto loser; } rv = ssl3_InitPendingContexts(ss, ss->ssl3.pwSpec); if (rv != SECSuccess) { goto loser; } ssl_ReleaseSpecWriteLock(ss); /******************************/ return SECSuccess; loser: ssl_ReleaseSpecWriteLock(ss); /******************************/ ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE); return SECFailure; } /* * 60 bytes is 3 times the maximum length MAC size that is supported. */ static const unsigned char mac_pad_1[60] = { 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36 }; static const unsigned char mac_pad_2[60] = { 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c }; /* Called from: ssl3_SendRecord() ** Caller must already hold the SpecReadLock. (wish we could assert that!) */ static SECStatus ssl3_ComputeRecordMAC( ssl3CipherSpec *spec, const unsigned char *header, unsigned int headerLen, const PRUint8 *input, int inputLen, unsigned char *outbuf, unsigned int *outLen) { PK11Context *context; int macSize = spec->macDef->mac_size; SECStatus rv; PRINT_BUF(95, (NULL, "frag hash1: header", header, headerLen)); PRINT_BUF(95, (NULL, "frag hash1: input", input, inputLen)); if (spec->macDef->mac == ssl_mac_null) { *outLen = 0; return SECSuccess; } context = spec->keyMaterial.macContext; rv = PK11_DigestBegin(context); rv |= PK11_DigestOp(context, header, headerLen); rv |= PK11_DigestOp(context, input, inputLen); rv |= PK11_DigestFinal(context, outbuf, outLen, macSize); PORT_Assert(rv != SECSuccess || *outLen == (unsigned)macSize); PRINT_BUF(95, (NULL, "frag hash2: result", outbuf, *outLen)); if (rv != SECSuccess) { rv = SECFailure; ssl_MapLowLevelError(SSL_ERROR_MAC_COMPUTATION_FAILURE); } return rv; } /* Called from: ssl3_HandleRecord() * Caller must already hold the SpecReadLock. (wish we could assert that!) * * On entry: * originalLen >= inputLen >= MAC size */ static SECStatus ssl3_ComputeRecordMACConstantTime( ssl3CipherSpec *spec, const unsigned char *header, unsigned int headerLen, const PRUint8 *input, int inputLen, int originalLen, unsigned char *outbuf, unsigned int *outLen) { CK_MECHANISM_TYPE macType; CK_NSS_MAC_CONSTANT_TIME_PARAMS params; SECItem param, inputItem, outputItem; int macSize = spec->macDef->mac_size; SECStatus rv; PORT_Assert(inputLen >= spec->macDef->mac_size); PORT_Assert(originalLen >= inputLen); if (spec->macDef->mac == ssl_mac_null) { *outLen = 0; return SECSuccess; } macType = CKM_NSS_HMAC_CONSTANT_TIME; if (spec->version == SSL_LIBRARY_VERSION_3_0) { macType = CKM_NSS_SSL3_MAC_CONSTANT_TIME; } params.macAlg = spec->macDef->mmech; params.ulBodyTotalLen = originalLen; params.pHeader = (unsigned char *)header; /* const cast */ params.ulHeaderLen = headerLen; param.data = (unsigned char *)¶ms; param.len = sizeof(params); param.type = 0; inputItem.data = (unsigned char *)input; inputItem.len = inputLen; inputItem.type = 0; outputItem.data = outbuf; outputItem.len = *outLen; outputItem.type = 0; rv = PK11_SignWithSymKey(spec->keyMaterial.macKey, macType, ¶m, &outputItem, &inputItem); if (rv != SECSuccess) { if (PORT_GetError() == SEC_ERROR_INVALID_ALGORITHM) { /* ssl3_ComputeRecordMAC() expects the MAC to have been removed * from the input length already. */ return ssl3_ComputeRecordMAC(spec, header, headerLen, input, inputLen - macSize, outbuf, outLen); } *outLen = 0; rv = SECFailure; ssl_MapLowLevelError(SSL_ERROR_MAC_COMPUTATION_FAILURE); return rv; } PORT_Assert(outputItem.len == (unsigned)macSize); *outLen = outputItem.len; return rv; } static PRBool ssl3_ClientAuthTokenPresent(sslSessionID *sid) { PK11SlotInfo *slot = NULL; PRBool isPresent = PR_TRUE; /* we only care if we are doing client auth */ if (!sid || !sid->u.ssl3.clAuthValid) { return PR_TRUE; } /* get the slot */ slot = SECMOD_LookupSlot(sid->u.ssl3.clAuthModuleID, sid->u.ssl3.clAuthSlotID); if (slot == NULL || !PK11_IsPresent(slot) || sid->u.ssl3.clAuthSeries != PK11_GetSlotSeries(slot) || sid->u.ssl3.clAuthSlotID != PK11_GetSlotID(slot) || sid->u.ssl3.clAuthModuleID != PK11_GetModuleID(slot) || (PK11_NeedLogin(slot) && !PK11_IsLoggedIn(slot, NULL))) { isPresent = PR_FALSE; } if (slot) { PK11_FreeSlot(slot); } return isPresent; } /* Caller must hold the spec read lock. */ SECStatus ssl3_MACEncryptRecord(ssl3CipherSpec *cwSpec, PRBool isServer, PRBool isDTLS, SSLContentType ct, const PRUint8 *pIn, PRUint32 contentLen, sslBuffer *wrBuf) { SECStatus rv; PRUint32 macLen = 0; PRUint32 fragLen; PRUint32 p1Len, p2Len, oddLen = 0; unsigned int ivLen = 0; unsigned char pseudoHeaderBuf[13]; sslBuffer pseudoHeader = SSL_BUFFER(pseudoHeaderBuf); unsigned int len; if (cwSpec->cipherDef->type == type_block && cwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_1) { /* Prepend the per-record explicit IV using technique 2b from * RFC 4346 section 6.2.3.2: The IV is a cryptographically * strong random number XORed with the CBC residue from the previous * record. */ ivLen = cwSpec->cipherDef->iv_size; if (ivLen > SSL_BUFFER_SPACE(wrBuf)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } rv = PK11_GenerateRandom(SSL_BUFFER_NEXT(wrBuf), ivLen); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_GENERATE_RANDOM_FAILURE); return rv; } rv = cwSpec->cipher(cwSpec->cipherContext, SSL_BUFFER_NEXT(wrBuf), /* output */ &len, /* outlen */ ivLen, /* max outlen */ SSL_BUFFER_NEXT(wrBuf), /* input */ ivLen); /* input len */ if (rv != SECSuccess || len != ivLen) { PORT_SetError(SSL_ERROR_ENCRYPTION_FAILURE); return SECFailure; } rv = sslBuffer_Skip(wrBuf, len, NULL); PORT_Assert(rv == SECSuccess); /* Can't fail. */ } rv = ssl3_BuildRecordPseudoHeader( cwSpec->epoch, cwSpec->nextSeqNum, ct, cwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_0, cwSpec->recordVersion, isDTLS, contentLen, &pseudoHeader); PORT_Assert(rv == SECSuccess); if (cwSpec->cipherDef->type == type_aead) { const int nonceLen = cwSpec->cipherDef->explicit_nonce_size; const int tagLen = cwSpec->cipherDef->tag_size; if (nonceLen + contentLen + tagLen > SSL_BUFFER_SPACE(wrBuf)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } rv = cwSpec->aead( &cwSpec->keyMaterial, PR_FALSE, /* do encrypt */ SSL_BUFFER_NEXT(wrBuf), /* output */ &len, /* out len */ SSL_BUFFER_SPACE(wrBuf), /* max out */ pIn, contentLen, /* input */ SSL_BUFFER_BASE(&pseudoHeader), SSL_BUFFER_LEN(&pseudoHeader)); if (rv != SECSuccess) { PORT_SetError(SSL_ERROR_ENCRYPTION_FAILURE); return SECFailure; } rv = sslBuffer_Skip(wrBuf, len, NULL); PORT_Assert(rv == SECSuccess); /* Can't fail. */ } else { int blockSize = cwSpec->cipherDef->block_size; /* * Add the MAC */ rv = ssl3_ComputeRecordMAC(cwSpec, SSL_BUFFER_BASE(&pseudoHeader), SSL_BUFFER_LEN(&pseudoHeader), pIn, contentLen, SSL_BUFFER_NEXT(wrBuf) + contentLen, &macLen); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MAC_COMPUTATION_FAILURE); return SECFailure; } p1Len = contentLen; p2Len = macLen; fragLen = contentLen + macLen; /* needs to be encrypted */ PORT_Assert(fragLen <= MAX_FRAGMENT_LENGTH + 1024); /* * Pad the text (if we're doing a block cipher) * then Encrypt it */ if (cwSpec->cipherDef->type == type_block) { unsigned char *pBuf; int padding_length; int i; oddLen = contentLen % blockSize; /* Assume blockSize is a power of two */ padding_length = blockSize - 1 - ((fragLen) & (blockSize - 1)); fragLen += padding_length + 1; PORT_Assert((fragLen % blockSize) == 0); /* Pad according to TLS rules (also acceptable to SSL3). */ pBuf = SSL_BUFFER_NEXT(wrBuf) + fragLen - 1; for (i = padding_length + 1; i > 0; --i) { *pBuf-- = padding_length; } /* now, if contentLen is not a multiple of block size, fix it */ p2Len = fragLen - p1Len; } if (p1Len < 256) { oddLen = p1Len; p1Len = 0; } else { p1Len -= oddLen; } if (oddLen) { p2Len += oddLen; PORT_Assert((blockSize < 2) || (p2Len % blockSize) == 0); memmove(SSL_BUFFER_NEXT(wrBuf) + p1Len, pIn + p1Len, oddLen); } if (p1Len > 0) { unsigned int cipherBytesPart1 = 0; rv = cwSpec->cipher(cwSpec->cipherContext, SSL_BUFFER_NEXT(wrBuf), /* output */ &cipherBytesPart1, /* actual outlen */ p1Len, /* max outlen */ pIn, p1Len); /* input, and inputlen */ PORT_Assert(rv == SECSuccess && cipherBytesPart1 == p1Len); if (rv != SECSuccess || cipherBytesPart1 != p1Len) { PORT_SetError(SSL_ERROR_ENCRYPTION_FAILURE); return SECFailure; } rv = sslBuffer_Skip(wrBuf, p1Len, NULL); PORT_Assert(rv == SECSuccess); } if (p2Len > 0) { unsigned int cipherBytesPart2 = 0; rv = cwSpec->cipher(cwSpec->cipherContext, SSL_BUFFER_NEXT(wrBuf), &cipherBytesPart2, /* output and actual outLen */ p2Len, /* max outlen */ SSL_BUFFER_NEXT(wrBuf), p2Len); /* input and inputLen*/ PORT_Assert(rv == SECSuccess && cipherBytesPart2 == p2Len); if (rv != SECSuccess || cipherBytesPart2 != p2Len) { PORT_SetError(SSL_ERROR_ENCRYPTION_FAILURE); return SECFailure; } rv = sslBuffer_Skip(wrBuf, p2Len, NULL); PORT_Assert(rv == SECSuccess); } } return SECSuccess; } /* Note: though this can report failure, it shouldn't. */ SECStatus ssl_InsertRecordHeader(const sslSocket *ss, ssl3CipherSpec *cwSpec, SSLContentType contentType, sslBuffer *wrBuf, PRBool *needsLength) { SECStatus rv; #ifndef UNSAFE_FUZZER_MODE if (cwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_3 && cwSpec->epoch > TrafficKeyClearText) { if (IS_DTLS(ss)) { return dtls13_InsertCipherTextHeader(ss, cwSpec, wrBuf, needsLength); } contentType = ssl_ct_application_data; } #endif rv = sslBuffer_AppendNumber(wrBuf, contentType, 1); if (rv != SECSuccess) { return SECFailure; } rv = sslBuffer_AppendNumber(wrBuf, cwSpec->recordVersion, 2); if (rv != SECSuccess) { return SECFailure; } if (IS_DTLS(ss)) { rv = sslBuffer_AppendNumber(wrBuf, cwSpec->epoch, 2); if (rv != SECSuccess) { return SECFailure; } rv = sslBuffer_AppendNumber(wrBuf, cwSpec->nextSeqNum, 6); if (rv != SECSuccess) { return SECFailure; } } *needsLength = PR_TRUE; return SECSuccess; } SECStatus ssl_ProtectRecord(sslSocket *ss, ssl3CipherSpec *cwSpec, SSLContentType ct, const PRUint8 *pIn, PRUint32 contentLen, sslBuffer *wrBuf) { PRBool needsLength; unsigned int lenOffset; SECStatus rv; PORT_Assert(cwSpec->direction == ssl_secret_write); PORT_Assert(SSL_BUFFER_LEN(wrBuf) == 0); PORT_Assert(cwSpec->cipherDef->max_records <= RECORD_SEQ_MAX); if (cwSpec->nextSeqNum >= cwSpec->cipherDef->max_records) { /* We should have automatically updated before here in TLS 1.3. */ PORT_Assert(cwSpec->version < SSL_LIBRARY_VERSION_TLS_1_3); SSL_TRC(3, ("%d: SSL[-]: write sequence number at limit 0x%0llx", SSL_GETPID(), cwSpec->nextSeqNum)); PORT_SetError(SSL_ERROR_TOO_MANY_RECORDS); return SECFailure; } rv = ssl_InsertRecordHeader(ss, cwSpec, ct, wrBuf, &needsLength); if (rv != SECSuccess) { return SECFailure; } if (needsLength) { rv = sslBuffer_Skip(wrBuf, 2, &lenOffset); if (rv != SECSuccess) { return SECFailure; } } #ifdef UNSAFE_FUZZER_MODE { unsigned int len; rv = Null_Cipher(NULL, SSL_BUFFER_NEXT(wrBuf), &len, SSL_BUFFER_SPACE(wrBuf), pIn, contentLen); if (rv != SECSuccess) { return SECFailure; /* error was set */ } rv = sslBuffer_Skip(wrBuf, len, NULL); PORT_Assert(rv == SECSuccess); /* Can't fail. */ } #else if (cwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_3) { rv = tls13_ProtectRecord(ss, cwSpec, ct, pIn, contentLen, wrBuf); } else { rv = ssl3_MACEncryptRecord(cwSpec, ss->sec.isServer, IS_DTLS(ss), ct, pIn, contentLen, wrBuf); } #endif if (rv != SECSuccess) { return SECFailure; /* error was set */ } if (needsLength) { /* Insert the length. */ rv = sslBuffer_InsertLength(wrBuf, lenOffset, 2); if (rv != SECSuccess) { PORT_Assert(0); /* Can't fail. */ return SECFailure; } } ++cwSpec->nextSeqNum; return SECSuccess; } SECStatus ssl_ProtectNextRecord(sslSocket *ss, ssl3CipherSpec *spec, SSLContentType ct, const PRUint8 *pIn, unsigned int nIn, unsigned int *written) { sslBuffer *wrBuf = &ss->sec.writeBuf; unsigned int contentLen; unsigned int spaceNeeded; SECStatus rv; contentLen = PR_MIN(nIn, spec->recordSizeLimit); spaceNeeded = contentLen + SSL3_BUFFER_FUDGE; if (spec->version >= SSL_LIBRARY_VERSION_TLS_1_1 && spec->cipherDef->type == type_block) { spaceNeeded += spec->cipherDef->iv_size; } if (spaceNeeded > SSL_BUFFER_SPACE(wrBuf)) { rv = sslBuffer_Grow(wrBuf, spaceNeeded); if (rv != SECSuccess) { SSL_DBG(("%d: SSL3[%d]: failed to expand write buffer to %d", SSL_GETPID(), ss->fd, spaceNeeded)); return SECFailure; } } rv = ssl_ProtectRecord(ss, spec, ct, pIn, contentLen, wrBuf); if (rv != SECSuccess) { return SECFailure; } PRINT_BUF(50, (ss, "send (encrypted) record data:", SSL_BUFFER_BASE(wrBuf), SSL_BUFFER_LEN(wrBuf))); *written = contentLen; return SECSuccess; } /* Process the plain text before sending it. * Returns the number of bytes of plaintext that were successfully sent * plus the number of bytes of plaintext that were copied into the * output (write) buffer. * Returns -1 on an error. PR_WOULD_BLOCK_ERROR is set if the error is blocking * and not terminal. * * Notes on the use of the private ssl flags: * (no private SSL flags) * Attempt to make and send SSL records for all plaintext * If non-blocking and a send gets WOULD_BLOCK, * or if the pending (ciphertext) buffer is not empty, * then buffer remaining bytes of ciphertext into pending buf, * and continue to do that for all succssive records until all * bytes are used. * ssl_SEND_FLAG_FORCE_INTO_BUFFER * As above, except this suppresses all write attempts, and forces * all ciphertext into the pending ciphertext buffer. * ssl_SEND_FLAG_USE_EPOCH (for DTLS) * Forces the use of the provided epoch */ PRInt32 ssl3_SendRecord(sslSocket *ss, ssl3CipherSpec *cwSpec, /* non-NULL for DTLS retransmits */ SSLContentType ct, const PRUint8 *pIn, /* input buffer */ PRInt32 nIn, /* bytes of input */ PRInt32 flags) { sslBuffer *wrBuf = &ss->sec.writeBuf; ssl3CipherSpec *spec; SECStatus rv; PRInt32 totalSent = 0; SSL_TRC(3, ("%d: SSL3[%d] SendRecord type: %s nIn=%d", SSL_GETPID(), ss->fd, ssl3_DecodeContentType(ct), nIn)); PRINT_BUF(50, (ss, "Send record (plain text)", pIn, nIn)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert(SSL_BUFFER_LEN(wrBuf) == 0); if (ss->ssl3.fatalAlertSent) { SSL_TRC(3, ("%d: SSL3[%d] Suppress write, fatal alert already sent", SSL_GETPID(), ss->fd)); if (ct != ssl_ct_alert) { /* If we are sending an alert, then we already have an * error, so don't overwrite. */ PORT_SetError(SSL_ERROR_HANDSHAKE_FAILED); } return -1; } /* check for Token Presence */ if (!ssl3_ClientAuthTokenPresent(ss->sec.ci.sid)) { PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL); return -1; } if (ss->recordWriteCallback) { PRUint16 epoch; ssl_GetSpecReadLock(ss); epoch = ss->ssl3.cwSpec->epoch; ssl_ReleaseSpecReadLock(ss); rv = ss->recordWriteCallback(ss->fd, epoch, ct, pIn, nIn, ss->recordWriteCallbackArg); if (rv != SECSuccess) { return -1; } return nIn; } if (cwSpec) { /* cwSpec can only be set for retransmissions of the DTLS handshake. */ PORT_Assert(IS_DTLS(ss) && (ct == ssl_ct_handshake || ct == ssl_ct_change_cipher_spec)); spec = cwSpec; } else { spec = ss->ssl3.cwSpec; } while (nIn > 0) { unsigned int written = 0; PRInt32 sent; ssl_GetSpecReadLock(ss); rv = ssl_ProtectNextRecord(ss, spec, ct, pIn, nIn, &written); ssl_ReleaseSpecReadLock(ss); if (rv != SECSuccess) { goto loser; } PORT_Assert(written > 0); /* DTLS should not fragment non-application data here. */ if (IS_DTLS(ss) && ct != ssl_ct_application_data) { PORT_Assert(written == nIn); } pIn += written; nIn -= written; PORT_Assert(nIn >= 0); /* If there's still some previously saved ciphertext, * or the caller doesn't want us to send the data yet, * then add all our new ciphertext to the amount previously saved. */ if ((ss->pendingBuf.len > 0) || (flags & ssl_SEND_FLAG_FORCE_INTO_BUFFER)) { rv = ssl_SaveWriteData(ss, SSL_BUFFER_BASE(wrBuf), SSL_BUFFER_LEN(wrBuf)); if (rv != SECSuccess) { /* presumably a memory error, SEC_ERROR_NO_MEMORY */ goto loser; } if (!(flags & ssl_SEND_FLAG_FORCE_INTO_BUFFER)) { ss->handshakeBegun = 1; sent = ssl_SendSavedWriteData(ss); if (sent < 0 && PR_GetError() != PR_WOULD_BLOCK_ERROR) { ssl_MapLowLevelError(SSL_ERROR_SOCKET_WRITE_FAILURE); goto loser; } if (ss->pendingBuf.len) { flags |= ssl_SEND_FLAG_FORCE_INTO_BUFFER; } } } else { PORT_Assert(SSL_BUFFER_LEN(wrBuf) > 0); ss->handshakeBegun = 1; sent = ssl_DefSend(ss, SSL_BUFFER_BASE(wrBuf), SSL_BUFFER_LEN(wrBuf), flags & ~ssl_SEND_FLAG_MASK); if (sent < 0) { if (PORT_GetError() != PR_WOULD_BLOCK_ERROR) { ssl_MapLowLevelError(SSL_ERROR_SOCKET_WRITE_FAILURE); goto loser; } /* we got PR_WOULD_BLOCK_ERROR, which means none was sent. */ sent = 0; } if (SSL_BUFFER_LEN(wrBuf) > (unsigned int)sent) { if (IS_DTLS(ss)) { /* DTLS just says no in this case. No buffering */ PORT_SetError(PR_WOULD_BLOCK_ERROR); goto loser; } /* now take all the remaining unsent new ciphertext and * append it to the buffer of previously unsent ciphertext. */ rv = ssl_SaveWriteData(ss, SSL_BUFFER_BASE(wrBuf) + sent, SSL_BUFFER_LEN(wrBuf) - sent); if (rv != SECSuccess) { /* presumably a memory error, SEC_ERROR_NO_MEMORY */ goto loser; } } } wrBuf->len = 0; totalSent += written; } return totalSent; loser: /* Don't leave bits of buffer lying around. */ wrBuf->len = 0; return -1; } #define SSL3_PENDING_HIGH_WATER 1024 /* Attempt to send the content of "in" in an SSL application_data record. * Returns "len" or -1 on failure. */ int ssl3_SendApplicationData(sslSocket *ss, const unsigned char *in, PRInt32 len, PRInt32 flags) { PRInt32 totalSent = 0; PRInt32 discarded = 0; PRBool splitNeeded = PR_FALSE; PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); /* These flags for internal use only */ PORT_Assert(!(flags & ssl_SEND_FLAG_NO_RETRANSMIT)); if (len < 0 || !in) { PORT_SetError(PR_INVALID_ARGUMENT_ERROR); return -1; } if (ss->pendingBuf.len > SSL3_PENDING_HIGH_WATER && !ssl_SocketIsBlocking(ss)) { PORT_Assert(!ssl_SocketIsBlocking(ss)); PORT_SetError(PR_WOULD_BLOCK_ERROR); return -1; } if (ss->appDataBuffered && len) { PORT_Assert(in[0] == (unsigned char)(ss->appDataBuffered)); if (in[0] != (unsigned char)(ss->appDataBuffered)) { PORT_SetError(PR_INVALID_ARGUMENT_ERROR); return -1; } in++; len--; discarded = 1; } /* We will split the first byte of the record into its own record, as * explained in the documentation for SSL_CBC_RANDOM_IV in ssl.h. */ if (len > 1 && ss->opt.cbcRandomIV && ss->version < SSL_LIBRARY_VERSION_TLS_1_1 && ss->ssl3.cwSpec->cipherDef->type == type_block /* CBC */) { splitNeeded = PR_TRUE; } while (len > totalSent) { PRInt32 sent, toSend; if (totalSent > 0) { /* * The thread yield is intended to give the reader thread a * chance to get some cycles while the writer thread is in * the middle of a large application data write. (See * Bugzilla bug 127740, comment #1.) */ ssl_ReleaseXmitBufLock(ss); PR_Sleep(PR_INTERVAL_NO_WAIT); /* PR_Yield(); */ ssl_GetXmitBufLock(ss); } if (splitNeeded) { toSend = 1; splitNeeded = PR_FALSE; } else { toSend = PR_MIN(len - totalSent, MAX_FRAGMENT_LENGTH); } /* * Note that the 0 epoch is OK because flags will never require * its use, as guaranteed by the PORT_Assert above. */ sent = ssl3_SendRecord(ss, NULL, ssl_ct_application_data, in + totalSent, toSend, flags); if (sent < 0) { if (totalSent > 0 && PR_GetError() == PR_WOULD_BLOCK_ERROR) { PORT_Assert(ss->lastWriteBlocked); break; } return -1; /* error code set by ssl3_SendRecord */ } totalSent += sent; if (ss->pendingBuf.len) { /* must be a non-blocking socket */ PORT_Assert(!ssl_SocketIsBlocking(ss)); PORT_Assert(ss->lastWriteBlocked); break; } } if (ss->pendingBuf.len) { /* Must be non-blocking. */ PORT_Assert(!ssl_SocketIsBlocking(ss)); if (totalSent > 0) { ss->appDataBuffered = 0x100 | in[totalSent - 1]; } totalSent = totalSent + discarded - 1; if (totalSent <= 0) { PORT_SetError(PR_WOULD_BLOCK_ERROR); totalSent = SECFailure; } return totalSent; } ss->appDataBuffered = 0; return totalSent + discarded; } /* Attempt to send buffered handshake messages. * Always set sendBuf.len to 0, even when returning SECFailure. * * Depending on whether we are doing DTLS or not, this either calls * * - ssl3_FlushHandshakeMessages if non-DTLS * - dtls_FlushHandshakeMessages if DTLS * * Called from SSL3_SendAlert(), ssl3_SendChangeCipherSpecs(), * ssl3_AppendHandshake(), ssl3_SendClientHello(), * ssl3_SendHelloRequest(), ssl3_SendServerHelloDone(), * ssl3_SendFinished(), */ SECStatus ssl3_FlushHandshake(sslSocket *ss, PRInt32 flags) { if (IS_DTLS(ss)) { return dtls_FlushHandshakeMessages(ss, flags); } return ssl3_FlushHandshakeMessages(ss, flags); } /* Attempt to send the content of sendBuf buffer in an SSL handshake record. * Always set sendBuf.len to 0, even when returning SECFailure. * * Called from ssl3_FlushHandshake */ static SECStatus ssl3_FlushHandshakeMessages(sslSocket *ss, PRInt32 flags) { static const PRInt32 allowedFlags = ssl_SEND_FLAG_FORCE_INTO_BUFFER; PRInt32 count = -1; SECStatus rv; PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); if (!ss->sec.ci.sendBuf.buf || !ss->sec.ci.sendBuf.len) return SECSuccess; /* only these flags are allowed */ PORT_Assert(!(flags & ~allowedFlags)); if ((flags & ~allowedFlags) != 0) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } count = ssl3_SendRecord(ss, NULL, ssl_ct_handshake, ss->sec.ci.sendBuf.buf, ss->sec.ci.sendBuf.len, flags); if (count < 0) { int err = PORT_GetError(); PORT_Assert(err != PR_WOULD_BLOCK_ERROR); if (err == PR_WOULD_BLOCK_ERROR) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); } rv = SECFailure; } else if ((unsigned int)count < ss->sec.ci.sendBuf.len) { /* short write should never happen */ PORT_Assert((unsigned int)count >= ss->sec.ci.sendBuf.len); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); rv = SECFailure; } else { rv = SECSuccess; } /* Whether we succeeded or failed, toss the old handshake data. */ ss->sec.ci.sendBuf.len = 0; return rv; } /* * Called from ssl3_HandleAlert and from ssl3_HandleCertificate when * the remote client sends a negative response to our certificate request. * Returns SECFailure if the application has required client auth. * SECSuccess otherwise. */ SECStatus ssl3_HandleNoCertificate(sslSocket *ss) { ssl3_CleanupPeerCerts(ss); /* If the server has required client-auth blindly but doesn't * actually look at the certificate it won't know that no * certificate was presented so we shutdown the socket to ensure * an error. We only do this if we haven't already completed the * first handshake because if we're redoing the handshake we * know the server is paying attention to the certificate. */ if ((ss->opt.requireCertificate == SSL_REQUIRE_ALWAYS) || (!ss->firstHsDone && (ss->opt.requireCertificate == SSL_REQUIRE_FIRST_HANDSHAKE))) { PRFileDesc *lower; ssl_UncacheSessionID(ss); if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) { SSL3_SendAlert(ss, alert_fatal, certificate_required); } else { SSL3_SendAlert(ss, alert_fatal, bad_certificate); } lower = ss->fd->lower; #ifdef _WIN32 lower->methods->shutdown(lower, PR_SHUTDOWN_SEND); #else lower->methods->shutdown(lower, PR_SHUTDOWN_BOTH); #endif PORT_SetError(SSL_ERROR_NO_CERTIFICATE); return SECFailure; } return SECSuccess; } /************************************************************************ * Alerts */ /* ** Acquires both handshake and XmitBuf locks. ** Called from: ssl3_IllegalParameter <- ** ssl3_HandshakeFailure <- ** ssl3_HandleAlert <- ssl3_HandleRecord. ** ssl3_HandleChangeCipherSpecs <- ssl3_HandleRecord ** ssl3_ConsumeHandshakeVariable <- ** ssl3_HandleHelloRequest <- ** ssl3_HandleServerHello <- ** ssl3_HandleServerKeyExchange <- ** ssl3_HandleCertificateRequest <- ** ssl3_HandleServerHelloDone <- ** ssl3_HandleClientHello <- ** ssl3_HandleV2ClientHello <- ** ssl3_HandleCertificateVerify <- ** ssl3_HandleClientKeyExchange <- ** ssl3_HandleCertificate <- ** ssl3_HandleFinished <- ** ssl3_HandleHandshakeMessage <- ** ssl3_HandlePostHelloHandshakeMessage <- ** ssl3_HandleRecord <- ** */ SECStatus SSL3_SendAlert(sslSocket *ss, SSL3AlertLevel level, SSL3AlertDescription desc) { PRUint8 bytes[2]; SECStatus rv; PRBool needHsLock = !ssl_HaveSSL3HandshakeLock(ss); /* Check that if I need the HS lock I also need the Xmit lock */ PORT_Assert(!needHsLock || !ssl_HaveXmitBufLock(ss)); SSL_TRC(3, ("%d: SSL3[%d]: send alert record, level=%d desc=%d", SSL_GETPID(), ss->fd, level, desc)); bytes[0] = level; bytes[1] = desc; if (needHsLock) { ssl_GetSSL3HandshakeLock(ss); } if (level == alert_fatal) { if (ss->sec.ci.sid) { ssl_UncacheSessionID(ss); } } rv = tls13_SetAlertCipherSpec(ss); if (rv != SECSuccess) { if (needHsLock) { ssl_ReleaseSSL3HandshakeLock(ss); } return rv; } ssl_GetXmitBufLock(ss); rv = ssl3_FlushHandshake(ss, ssl_SEND_FLAG_FORCE_INTO_BUFFER); if (rv == SECSuccess) { PRInt32 sent; sent = ssl3_SendRecord(ss, NULL, ssl_ct_alert, bytes, 2, (desc == no_certificate) ? ssl_SEND_FLAG_FORCE_INTO_BUFFER : 0); rv = (sent >= 0) ? SECSuccess : (SECStatus)sent; } if (level == alert_fatal) { ss->ssl3.fatalAlertSent = PR_TRUE; } ssl_ReleaseXmitBufLock(ss); if (needHsLock) { ssl_ReleaseSSL3HandshakeLock(ss); } if (rv == SECSuccess && ss->alertSentCallback) { SSLAlert alert = { level, desc }; ss->alertSentCallback(ss->fd, ss->alertSentCallbackArg, &alert); } return rv; /* error set by ssl3_FlushHandshake or ssl3_SendRecord */ } /* * Send illegal_parameter alert. Set generic error number. */ static SECStatus ssl3_IllegalParameter(sslSocket *ss) { (void)SSL3_SendAlert(ss, alert_fatal, illegal_parameter); PORT_SetError(ss->sec.isServer ? SSL_ERROR_BAD_CLIENT : SSL_ERROR_BAD_SERVER); return SECFailure; } /* * Send handshake_Failure alert. Set generic error number. */ static SECStatus ssl3_HandshakeFailure(sslSocket *ss) { (void)SSL3_SendAlert(ss, alert_fatal, handshake_failure); PORT_SetError(ss->sec.isServer ? SSL_ERROR_BAD_CLIENT : SSL_ERROR_BAD_SERVER); return SECFailure; } void ssl3_SendAlertForCertError(sslSocket *ss, PRErrorCode errCode) { SSL3AlertDescription desc = bad_certificate; PRBool isTLS = ss->version >= SSL_LIBRARY_VERSION_3_1_TLS; switch (errCode) { case SEC_ERROR_LIBRARY_FAILURE: desc = unsupported_certificate; break; case SEC_ERROR_EXPIRED_CERTIFICATE: desc = certificate_expired; break; case SEC_ERROR_REVOKED_CERTIFICATE: desc = certificate_revoked; break; case SEC_ERROR_INADEQUATE_KEY_USAGE: case SEC_ERROR_INADEQUATE_CERT_TYPE: desc = certificate_unknown; break; case SEC_ERROR_UNTRUSTED_CERT: desc = isTLS ? access_denied : certificate_unknown; break; case SEC_ERROR_UNKNOWN_ISSUER: case SEC_ERROR_UNTRUSTED_ISSUER: desc = isTLS ? unknown_ca : certificate_unknown; break; case SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE: desc = isTLS ? unknown_ca : certificate_expired; break; case SEC_ERROR_CERT_NOT_IN_NAME_SPACE: case SEC_ERROR_PATH_LEN_CONSTRAINT_INVALID: case SEC_ERROR_CA_CERT_INVALID: case SEC_ERROR_BAD_SIGNATURE: default: desc = bad_certificate; break; } SSL_DBG(("%d: SSL3[%d]: peer certificate is no good: error=%d", SSL_GETPID(), ss->fd, errCode)); (void)SSL3_SendAlert(ss, alert_fatal, desc); } /* * Send decode_error alert. Set generic error number. */ SECStatus ssl3_DecodeError(sslSocket *ss) { (void)SSL3_SendAlert(ss, alert_fatal, ss->version > SSL_LIBRARY_VERSION_3_0 ? decode_error : illegal_parameter); PORT_SetError(ss->sec.isServer ? SSL_ERROR_BAD_CLIENT : SSL_ERROR_BAD_SERVER); return SECFailure; } /* Called from ssl3_HandleRecord. ** Caller must hold both RecvBuf and Handshake locks. */ static SECStatus ssl3_HandleAlert(sslSocket *ss, sslBuffer *buf) { SSL3AlertLevel level; SSL3AlertDescription desc; int error; PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); SSL_TRC(3, ("%d: SSL3[%d]: handle alert record", SSL_GETPID(), ss->fd)); if (buf->len != 2) { (void)ssl3_DecodeError(ss); PORT_SetError(SSL_ERROR_RX_MALFORMED_ALERT); return SECFailure; } level = (SSL3AlertLevel)buf->buf[0]; desc = (SSL3AlertDescription)buf->buf[1]; buf->len = 0; SSL_TRC(5, ("%d: SSL3[%d] received alert, level = %d, description = %d", SSL_GETPID(), ss->fd, level, desc)); if (ss->alertReceivedCallback) { SSLAlert alert = { level, desc }; ss->alertReceivedCallback(ss->fd, ss->alertReceivedCallbackArg, &alert); } switch (desc) { case close_notify: ss->recvdCloseNotify = 1; error = SSL_ERROR_CLOSE_NOTIFY_ALERT; break; case unexpected_message: error = SSL_ERROR_HANDSHAKE_UNEXPECTED_ALERT; break; case bad_record_mac: error = SSL_ERROR_BAD_MAC_ALERT; break; case decryption_failed_RESERVED: error = SSL_ERROR_DECRYPTION_FAILED_ALERT; break; case record_overflow: error = SSL_ERROR_RECORD_OVERFLOW_ALERT; break; case decompression_failure: error = SSL_ERROR_DECOMPRESSION_FAILURE_ALERT; break; case handshake_failure: error = SSL_ERROR_HANDSHAKE_FAILURE_ALERT; break; case no_certificate: error = SSL_ERROR_NO_CERTIFICATE; break; case certificate_required: error = SSL_ERROR_RX_CERTIFICATE_REQUIRED_ALERT; break; case bad_certificate: error = SSL_ERROR_BAD_CERT_ALERT; break; case unsupported_certificate: error = SSL_ERROR_UNSUPPORTED_CERT_ALERT; break; case certificate_revoked: error = SSL_ERROR_REVOKED_CERT_ALERT; break; case certificate_expired: error = SSL_ERROR_EXPIRED_CERT_ALERT; break; case certificate_unknown: error = SSL_ERROR_CERTIFICATE_UNKNOWN_ALERT; break; case illegal_parameter: error = SSL_ERROR_ILLEGAL_PARAMETER_ALERT; break; case inappropriate_fallback: error = SSL_ERROR_INAPPROPRIATE_FALLBACK_ALERT; break; /* All alerts below are TLS only. */ case unknown_ca: error = SSL_ERROR_UNKNOWN_CA_ALERT; break; case access_denied: error = SSL_ERROR_ACCESS_DENIED_ALERT; break; case decode_error: error = SSL_ERROR_DECODE_ERROR_ALERT; break; case decrypt_error: error = SSL_ERROR_DECRYPT_ERROR_ALERT; break; case export_restriction: error = SSL_ERROR_EXPORT_RESTRICTION_ALERT; break; case protocol_version: error = SSL_ERROR_PROTOCOL_VERSION_ALERT; break; case insufficient_security: error = SSL_ERROR_INSUFFICIENT_SECURITY_ALERT; break; case internal_error: error = SSL_ERROR_INTERNAL_ERROR_ALERT; break; case user_canceled: error = SSL_ERROR_USER_CANCELED_ALERT; break; case no_renegotiation: error = SSL_ERROR_NO_RENEGOTIATION_ALERT; break; /* Alerts for TLS client hello extensions */ case missing_extension: error = SSL_ERROR_MISSING_EXTENSION_ALERT; break; case unsupported_extension: error = SSL_ERROR_UNSUPPORTED_EXTENSION_ALERT; break; case certificate_unobtainable: error = SSL_ERROR_CERTIFICATE_UNOBTAINABLE_ALERT; break; case unrecognized_name: error = SSL_ERROR_UNRECOGNIZED_NAME_ALERT; break; case bad_certificate_status_response: error = SSL_ERROR_BAD_CERT_STATUS_RESPONSE_ALERT; break; case bad_certificate_hash_value: error = SSL_ERROR_BAD_CERT_HASH_VALUE_ALERT; break; default: error = SSL_ERROR_RX_UNKNOWN_ALERT; break; } if ((ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) && (ss->ssl3.hs.ws != wait_server_hello)) { /* TLS 1.3 requires all but "end of data" alerts to be * treated as fatal. */ switch (desc) { case close_notify: case user_canceled: break; default: level = alert_fatal; } } if (level == alert_fatal) { ssl_UncacheSessionID(ss); if ((ss->ssl3.hs.ws == wait_server_hello) && (desc == handshake_failure)) { /* XXX This is a hack. We're assuming that any handshake failure * XXX on the client hello is a failure to match ciphers. */ error = SSL_ERROR_NO_CYPHER_OVERLAP; } PORT_SetError(error); return SECFailure; } if ((desc == no_certificate) && (ss->ssl3.hs.ws == wait_client_cert)) { /* I'm a server. I've requested a client cert. He hasn't got one. */ SECStatus rv; PORT_Assert(ss->sec.isServer); ss->ssl3.hs.ws = wait_client_key; rv = ssl3_HandleNoCertificate(ss); return rv; } return SECSuccess; } /* * Change Cipher Specs * Called from ssl3_HandleServerHelloDone, * ssl3_HandleClientHello, * and ssl3_HandleFinished * * Acquires and releases spec write lock, to protect switching the current * and pending write spec pointers. */ SECStatus ssl3_SendChangeCipherSpecsInt(sslSocket *ss) { PRUint8 change = change_cipher_spec_choice; SECStatus rv; SSL_TRC(3, ("%d: SSL3[%d]: send change_cipher_spec record", SSL_GETPID(), ss->fd)); rv = ssl3_FlushHandshake(ss, ssl_SEND_FLAG_FORCE_INTO_BUFFER); if (rv != SECSuccess) { return SECFailure; /* error code set by ssl3_FlushHandshake */ } if (!IS_DTLS(ss)) { PRInt32 sent; sent = ssl3_SendRecord(ss, NULL, ssl_ct_change_cipher_spec, &change, 1, ssl_SEND_FLAG_FORCE_INTO_BUFFER); if (sent < 0) { return SECFailure; /* error code set by ssl3_SendRecord */ } } else { rv = dtls_QueueMessage(ss, ssl_ct_change_cipher_spec, &change, 1); if (rv != SECSuccess) { return SECFailure; } } return SECSuccess; } static SECStatus ssl3_SendChangeCipherSpecs(sslSocket *ss) { SECStatus rv; PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); rv = ssl3_SendChangeCipherSpecsInt(ss); if (rv != SECSuccess) { return rv; /* Error code set. */ } /* swap the pending and current write specs. */ ssl_GetSpecWriteLock(ss); /**************************************/ ssl_CipherSpecRelease(ss->ssl3.cwSpec); ss->ssl3.cwSpec = ss->ssl3.pwSpec; ss->ssl3.pwSpec = NULL; SSL_TRC(3, ("%d: SSL3[%d] Set Current Write Cipher Suite to Pending", SSL_GETPID(), ss->fd)); /* With DTLS, we need to set a holddown timer in case the final * message got lost */ if (IS_DTLS(ss) && ss->ssl3.crSpec->epoch == ss->ssl3.cwSpec->epoch) { rv = dtls_StartHolddownTimer(ss); } ssl_ReleaseSpecWriteLock(ss); /**************************************/ return rv; } /* Called from ssl3_HandleRecord. ** Caller must hold both RecvBuf and Handshake locks. * * Acquires and releases spec write lock, to protect switching the current * and pending write spec pointers. */ static SECStatus ssl3_HandleChangeCipherSpecs(sslSocket *ss, sslBuffer *buf) { SSL3WaitState ws = ss->ssl3.hs.ws; SSL3ChangeCipherSpecChoice change; PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); SSL_TRC(3, ("%d: SSL3[%d]: handle change_cipher_spec record", SSL_GETPID(), ss->fd)); /* For DTLS: Ignore this if we aren't expecting it. Don't kill a connection * as a result of receiving trash. * For TLS: Maybe ignore, but only after checking format. */ if (ws != wait_change_cipher && IS_DTLS(ss)) { /* Ignore this because it's out of order. */ SSL_TRC(3, ("%d: SSL3[%d]: discard out of order " "DTLS change_cipher_spec", SSL_GETPID(), ss->fd)); buf->len = 0; return SECSuccess; } /* Handshake messages should not span ChangeCipherSpec. */ if (ss->ssl3.hs.header_bytes) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CHANGE_CIPHER); return SECFailure; } if (buf->len != 1) { (void)ssl3_DecodeError(ss); PORT_SetError(SSL_ERROR_RX_MALFORMED_CHANGE_CIPHER); return SECFailure; } change = (SSL3ChangeCipherSpecChoice)buf->buf[0]; if (change != change_cipher_spec_choice) { /* illegal_parameter is correct here for both SSL3 and TLS. */ (void)ssl3_IllegalParameter(ss); PORT_SetError(SSL_ERROR_RX_MALFORMED_CHANGE_CIPHER); return SECFailure; } buf->len = 0; if (ws != wait_change_cipher) { /* Ignore a CCS for TLS 1.3. This only happens if the server sends a * HelloRetryRequest. In other cases, the CCS will fail decryption and * will be discarded by ssl3_HandleRecord(). */ if (ws == wait_server_hello && ss->version >= SSL_LIBRARY_VERSION_TLS_1_3 && ss->ssl3.hs.helloRetry) { PORT_Assert(!ss->sec.isServer); return SECSuccess; } /* Note: For a server, we can't test ss->ssl3.hs.helloRetry or * ss->version because the server might be stateless (and so it won't * have set either value yet). Set a flag so that at least we will * guarantee that the server will treat any ClientHello properly. */ if (ws == wait_client_hello && ss->vrange.max >= SSL_LIBRARY_VERSION_TLS_1_3 && !ss->ssl3.hs.receivedCcs) { PORT_Assert(ss->sec.isServer); ss->ssl3.hs.receivedCcs = PR_TRUE; return SECSuccess; } (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CHANGE_CIPHER); return SECFailure; } SSL_TRC(3, ("%d: SSL3[%d] Set Current Read Cipher Suite to Pending", SSL_GETPID(), ss->fd)); ssl_GetSpecWriteLock(ss); /*************************************/ PORT_Assert(ss->ssl3.prSpec); ssl_CipherSpecRelease(ss->ssl3.crSpec); ss->ssl3.crSpec = ss->ssl3.prSpec; ss->ssl3.prSpec = NULL; ssl_ReleaseSpecWriteLock(ss); /*************************************/ ss->ssl3.hs.ws = wait_finished; return SECSuccess; } static CK_MECHANISM_TYPE ssl3_GetMgfMechanismByHashType(SSLHashType hash) { switch (hash) { case ssl_hash_sha256: return CKG_MGF1_SHA256; case ssl_hash_sha384: return CKG_MGF1_SHA384; case ssl_hash_sha512: return CKG_MGF1_SHA512; default: PORT_Assert(0); } return CKG_MGF1_SHA256; } /* Function valid for >= TLS 1.2, only. */ static CK_MECHANISM_TYPE ssl3_GetHashMechanismByHashType(SSLHashType hashType) { switch (hashType) { case ssl_hash_sha512: return CKM_SHA512; case ssl_hash_sha384: return CKM_SHA384; case ssl_hash_sha256: case ssl_hash_none: /* ssl_hash_none is for pre-1.2 suites, which use SHA-256. */ return CKM_SHA256; case ssl_hash_sha1: return CKM_SHA_1; default: PORT_Assert(0); } return CKM_SHA256; } /* Function valid for >= TLS 1.2, only. */ static CK_MECHANISM_TYPE ssl3_GetPrfHashMechanism(sslSocket *ss) { return ssl3_GetHashMechanismByHashType(ss->ssl3.hs.suite_def->prf_hash); } static SSLHashType ssl3_GetSuitePrfHash(sslSocket *ss) { /* ssl_hash_none is for pre-1.2 suites, which use SHA-256. */ if (ss->ssl3.hs.suite_def->prf_hash == ssl_hash_none) { return ssl_hash_sha256; } return ss->ssl3.hs.suite_def->prf_hash; } /* This method completes the derivation of the MS from the PMS. ** ** 1. Derive the MS, if possible, else return an error. ** ** 2. Check the version if |pms_version| is non-zero and if wrong, ** return an error. ** ** 3. If |msp| is nonzero, return MS in |*msp|. ** Called from: ** ssl3_ComputeMasterSecretInt ** tls_ComputeExtendedMasterSecretInt */ static SECStatus ssl3_ComputeMasterSecretFinish(sslSocket *ss, CK_MECHANISM_TYPE master_derive, CK_MECHANISM_TYPE key_derive, CK_VERSION *pms_version, SECItem *params, CK_FLAGS keyFlags, PK11SymKey *pms, PK11SymKey **msp) { PK11SymKey *ms = NULL; ms = PK11_DeriveWithFlags(pms, master_derive, params, key_derive, CKA_DERIVE, 0, keyFlags); if (!ms) { ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE); return SECFailure; } if (pms_version && ss->opt.detectRollBack) { SSL3ProtocolVersion client_version; client_version = pms_version->major << 8 | pms_version->minor; if (IS_DTLS(ss)) { client_version = dtls_DTLSVersionToTLSVersion(client_version); } if (client_version != ss->clientHelloVersion) { /* Destroy MS. Version roll-back detected. */ PK11_FreeSymKey(ms); ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE); return SECFailure; } } if (msp) { *msp = ms; } else { PK11_FreeSymKey(ms); } return SECSuccess; } /* Compute the ordinary (pre draft-ietf-tls-session-hash) master ** secret and return it in |*msp|. ** ** Called from: ssl3_ComputeMasterSecret */ static SECStatus ssl3_ComputeMasterSecretInt(sslSocket *ss, PK11SymKey *pms, PK11SymKey **msp) { PRBool isTLS = (PRBool)(ss->version > SSL_LIBRARY_VERSION_3_0); PRBool isTLS12 = (PRBool)(ss->version >= SSL_LIBRARY_VERSION_TLS_1_2); /* * Whenever isDH is true, we need to use CKM_TLS_MASTER_KEY_DERIVE_DH * which, unlike CKM_TLS_MASTER_KEY_DERIVE, converts arbitrary size * data into a 48-byte value, and does not expect to return the version. */ PRBool isDH = (PRBool)((ss->ssl3.hs.kea_def->exchKeyType == ssl_kea_dh) || (ss->ssl3.hs.kea_def->exchKeyType == ssl_kea_ecdh)); CK_MECHANISM_TYPE master_derive; CK_MECHANISM_TYPE key_derive; SECItem params; CK_FLAGS keyFlags; CK_VERSION pms_version; CK_VERSION *pms_version_ptr = NULL; /* master_params may be used as a CK_SSL3_MASTER_KEY_DERIVE_PARAMS */ CK_TLS12_MASTER_KEY_DERIVE_PARAMS master_params; unsigned int master_params_len; if (isTLS12) { if (isDH) master_derive = CKM_TLS12_MASTER_KEY_DERIVE_DH; else master_derive = CKM_TLS12_MASTER_KEY_DERIVE; key_derive = CKM_TLS12_KEY_AND_MAC_DERIVE; keyFlags = CKF_SIGN | CKF_VERIFY; } else if (isTLS) { if (isDH) master_derive = CKM_TLS_MASTER_KEY_DERIVE_DH; else master_derive = CKM_TLS_MASTER_KEY_DERIVE; key_derive = CKM_TLS_KEY_AND_MAC_DERIVE; keyFlags = CKF_SIGN | CKF_VERIFY; } else { if (isDH) master_derive = CKM_SSL3_MASTER_KEY_DERIVE_DH; else master_derive = CKM_SSL3_MASTER_KEY_DERIVE; key_derive = CKM_SSL3_KEY_AND_MAC_DERIVE; keyFlags = 0; } if (!isDH) { pms_version_ptr = &pms_version; } master_params.pVersion = pms_version_ptr; master_params.RandomInfo.pClientRandom = ss->ssl3.hs.client_random; master_params.RandomInfo.ulClientRandomLen = SSL3_RANDOM_LENGTH; master_params.RandomInfo.pServerRandom = ss->ssl3.hs.server_random; master_params.RandomInfo.ulServerRandomLen = SSL3_RANDOM_LENGTH; if (isTLS12) { master_params.prfHashMechanism = ssl3_GetPrfHashMechanism(ss); master_params_len = sizeof(CK_TLS12_MASTER_KEY_DERIVE_PARAMS); } else { /* prfHashMechanism is not relevant with this PRF */ master_params_len = sizeof(CK_SSL3_MASTER_KEY_DERIVE_PARAMS); } params.data = (unsigned char *)&master_params; params.len = master_params_len; return ssl3_ComputeMasterSecretFinish(ss, master_derive, key_derive, pms_version_ptr, ¶ms, keyFlags, pms, msp); } /* Compute the draft-ietf-tls-session-hash master ** secret and return it in |*msp|. ** ** Called from: ssl3_ComputeMasterSecret */ static SECStatus tls_ComputeExtendedMasterSecretInt(sslSocket *ss, PK11SymKey *pms, PK11SymKey **msp) { ssl3CipherSpec *pwSpec = ss->ssl3.pwSpec; CK_NSS_TLS_EXTENDED_MASTER_KEY_DERIVE_PARAMS extended_master_params; SSL3Hashes hashes; /* * Determine whether to use the DH/ECDH or RSA derivation modes. */ /* * TODO(ekr@rtfm.com): Verify that the slot can handle this key expansion * mode. Bug 1198298 */ PRBool isDH = (PRBool)((ss->ssl3.hs.kea_def->exchKeyType == ssl_kea_dh) || (ss->ssl3.hs.kea_def->exchKeyType == ssl_kea_ecdh)); CK_MECHANISM_TYPE master_derive; CK_MECHANISM_TYPE key_derive; SECItem params; const CK_FLAGS keyFlags = CKF_SIGN | CKF_VERIFY; CK_VERSION pms_version; CK_VERSION *pms_version_ptr = NULL; SECStatus rv; rv = ssl3_ComputeHandshakeHashes(ss, pwSpec, &hashes, 0); if (rv != SECSuccess) { PORT_Assert(0); /* Should never fail */ ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE); return SECFailure; } if (isDH) { master_derive = CKM_NSS_TLS_EXTENDED_MASTER_KEY_DERIVE_DH; } else { master_derive = CKM_NSS_TLS_EXTENDED_MASTER_KEY_DERIVE; pms_version_ptr = &pms_version; } if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_2) { /* TLS 1.2+ */ extended_master_params.prfHashMechanism = ssl3_GetPrfHashMechanism(ss); key_derive = CKM_TLS12_KEY_AND_MAC_DERIVE; } else { /* TLS < 1.2 */ extended_master_params.prfHashMechanism = CKM_TLS_PRF; key_derive = CKM_TLS_KEY_AND_MAC_DERIVE; } extended_master_params.pVersion = pms_version_ptr; extended_master_params.pSessionHash = hashes.u.raw; extended_master_params.ulSessionHashLen = hashes.len; params.data = (unsigned char *)&extended_master_params; params.len = sizeof extended_master_params; return ssl3_ComputeMasterSecretFinish(ss, master_derive, key_derive, pms_version_ptr, ¶ms, keyFlags, pms, msp); } /* Wrapper method to compute the master secret and return it in |*msp|. ** ** Called from ssl3_ComputeMasterSecret */ static SECStatus ssl3_ComputeMasterSecret(sslSocket *ss, PK11SymKey *pms, PK11SymKey **msp) { PORT_Assert(pms != NULL); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn)) { return tls_ComputeExtendedMasterSecretInt(ss, pms, msp); } else { return ssl3_ComputeMasterSecretInt(ss, pms, msp); } } /* * Derive encryption and MAC Keys (and IVs) from master secret * Sets a useful error code when returning SECFailure. * * Called only from ssl3_InitPendingCipherSpec(), * which in turn is called from * ssl3_SendRSAClientKeyExchange (for Full handshake) * ssl3_SendDHClientKeyExchange (for Full handshake) * ssl3_HandleClientKeyExchange (for Full handshake) * ssl3_HandleServerHello (for session restart) * ssl3_HandleClientHello (for session restart) * Caller MUST hold the specWriteLock, and SSL3HandshakeLock. * ssl3_InitPendingCipherSpec does that. * */ static SECStatus ssl3_DeriveConnectionKeys(sslSocket *ss, PK11SymKey *masterSecret) { ssl3CipherSpec *pwSpec = ss->ssl3.pwSpec; ssl3CipherSpec *prSpec = ss->ssl3.prSpec; ssl3CipherSpec *clientSpec; ssl3CipherSpec *serverSpec; PRBool isTLS = (PRBool)(ss->version > SSL_LIBRARY_VERSION_3_0); PRBool isTLS12 = (PRBool)(isTLS && ss->version >= SSL_LIBRARY_VERSION_TLS_1_2); const ssl3BulkCipherDef *cipher_def = pwSpec->cipherDef; PK11SlotInfo *slot = NULL; PK11SymKey *derivedKeyHandle = NULL; void *pwArg = ss->pkcs11PinArg; int keySize; CK_TLS12_KEY_MAT_PARAMS key_material_params; /* may be used as a * CK_SSL3_KEY_MAT_PARAMS */ unsigned int key_material_params_len; CK_SSL3_KEY_MAT_OUT returnedKeys; CK_MECHANISM_TYPE key_derive; CK_MECHANISM_TYPE bulk_mechanism; SSLCipherAlgorithm calg; SECItem params; PRBool skipKeysAndIVs = (PRBool)(cipher_def->calg == ssl_calg_null); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSpecWriteLock(ss)); PORT_Assert(masterSecret); /* These functions operate in terms of who is writing specs. */ if (ss->sec.isServer) { clientSpec = prSpec; serverSpec = pwSpec; } else { clientSpec = pwSpec; serverSpec = prSpec; } /* * generate the key material */ if (cipher_def->type == type_block && ss->version >= SSL_LIBRARY_VERSION_TLS_1_1) { /* Block ciphers in >= TLS 1.1 use a per-record, explicit IV. */ key_material_params.ulIVSizeInBits = 0; PORT_Memset(clientSpec->keyMaterial.iv, 0, cipher_def->iv_size); PORT_Memset(serverSpec->keyMaterial.iv, 0, cipher_def->iv_size); } key_material_params.bIsExport = PR_FALSE; key_material_params.RandomInfo.pClientRandom = ss->ssl3.hs.client_random; key_material_params.RandomInfo.ulClientRandomLen = SSL3_RANDOM_LENGTH; key_material_params.RandomInfo.pServerRandom = ss->ssl3.hs.server_random; key_material_params.RandomInfo.ulServerRandomLen = SSL3_RANDOM_LENGTH; key_material_params.pReturnedKeyMaterial = &returnedKeys; if (skipKeysAndIVs) { keySize = 0; returnedKeys.pIVClient = NULL; returnedKeys.pIVServer = NULL; key_material_params.ulKeySizeInBits = 0; key_material_params.ulIVSizeInBits = 0; } else { keySize = cipher_def->key_size; returnedKeys.pIVClient = clientSpec->keyMaterial.iv; returnedKeys.pIVServer = serverSpec->keyMaterial.iv; key_material_params.ulKeySizeInBits = cipher_def->secret_key_size * BPB; key_material_params.ulIVSizeInBits = cipher_def->iv_size * BPB; } key_material_params.ulMacSizeInBits = pwSpec->macDef->mac_size * BPB; calg = cipher_def->calg; bulk_mechanism = ssl3_Alg2Mech(calg); if (isTLS12) { key_derive = CKM_TLS12_KEY_AND_MAC_DERIVE; key_material_params.prfHashMechanism = ssl3_GetPrfHashMechanism(ss); key_material_params_len = sizeof(CK_TLS12_KEY_MAT_PARAMS); } else if (isTLS) { key_derive = CKM_TLS_KEY_AND_MAC_DERIVE; key_material_params_len = sizeof(CK_SSL3_KEY_MAT_PARAMS); } else { key_derive = CKM_SSL3_KEY_AND_MAC_DERIVE; key_material_params_len = sizeof(CK_SSL3_KEY_MAT_PARAMS); } params.data = (unsigned char *)&key_material_params; params.len = key_material_params_len; /* CKM_SSL3_KEY_AND_MAC_DERIVE is defined to set ENCRYPT, DECRYPT, and * DERIVE by DEFAULT */ derivedKeyHandle = PK11_Derive(masterSecret, key_derive, ¶ms, bulk_mechanism, CKA_ENCRYPT, keySize); if (!derivedKeyHandle) { ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE); return SECFailure; } /* we really should use the actual mac'ing mechanism here, but we * don't because these types are used to map keytype anyway and both * mac's map to the same keytype. */ slot = PK11_GetSlotFromKey(derivedKeyHandle); PK11_FreeSlot(slot); /* slot is held until the key is freed */ clientSpec->keyMaterial.macKey = PK11_SymKeyFromHandle(slot, derivedKeyHandle, PK11_OriginDerive, CKM_SSL3_SHA1_MAC, returnedKeys.hClientMacSecret, PR_TRUE, pwArg); if (clientSpec->keyMaterial.macKey == NULL) { goto loser; /* loser sets err */ } serverSpec->keyMaterial.macKey = PK11_SymKeyFromHandle(slot, derivedKeyHandle, PK11_OriginDerive, CKM_SSL3_SHA1_MAC, returnedKeys.hServerMacSecret, PR_TRUE, pwArg); if (serverSpec->keyMaterial.macKey == NULL) { goto loser; /* loser sets err */ } if (!skipKeysAndIVs) { clientSpec->keyMaterial.key = PK11_SymKeyFromHandle(slot, derivedKeyHandle, PK11_OriginDerive, bulk_mechanism, returnedKeys.hClientKey, PR_TRUE, pwArg); if (clientSpec->keyMaterial.key == NULL) { goto loser; /* loser sets err */ } serverSpec->keyMaterial.key = PK11_SymKeyFromHandle(slot, derivedKeyHandle, PK11_OriginDerive, bulk_mechanism, returnedKeys.hServerKey, PR_TRUE, pwArg); if (serverSpec->keyMaterial.key == NULL) { goto loser; /* loser sets err */ } } PK11_FreeSymKey(derivedKeyHandle); return SECSuccess; loser: PK11_FreeSymKey(derivedKeyHandle); ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE); return SECFailure; } /* ssl3_InitHandshakeHashes creates handshake hash contexts and hashes in * buffered messages in ss->ssl3.hs.messages. Called from * ssl3_NegotiateCipherSuite(), tls13_HandleClientHelloPart2(), * and ssl3_HandleServerHello. */ SECStatus ssl3_InitHandshakeHashes(sslSocket *ss) { SSL_TRC(30, ("%d: SSL3[%d]: start handshake hashes", SSL_GETPID(), ss->fd)); PORT_Assert(ss->ssl3.hs.hashType == handshake_hash_unknown); if (ss->version == SSL_LIBRARY_VERSION_TLS_1_2) { ss->ssl3.hs.hashType = handshake_hash_record; } else { PORT_Assert(!ss->ssl3.hs.md5 && !ss->ssl3.hs.sha); /* * note: We should probably lookup an SSL3 slot for these * handshake hashes in hopes that we wind up with the same slots * that the master secret will wind up in ... */ if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) { /* determine the hash from the prf */ const SECOidData *hash_oid = SECOID_FindOIDByMechanism(ssl3_GetPrfHashMechanism(ss)); /* Get the PKCS #11 mechanism for the Hash from the cipher suite (prf_hash) * Convert that to the OidTag. We can then use that OidTag to create our * PK11Context */ PORT_Assert(hash_oid != NULL); if (hash_oid == NULL) { ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); return SECFailure; } ss->ssl3.hs.sha = PK11_CreateDigestContext(hash_oid->offset); if (ss->ssl3.hs.sha == NULL) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); return SECFailure; } ss->ssl3.hs.hashType = handshake_hash_single; if (PK11_DigestBegin(ss->ssl3.hs.sha) != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); return SECFailure; } } else { /* Both ss->ssl3.hs.md5 and ss->ssl3.hs.sha should be NULL or * created successfully. */ ss->ssl3.hs.md5 = PK11_CreateDigestContext(SEC_OID_MD5); if (ss->ssl3.hs.md5 == NULL) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); return SECFailure; } ss->ssl3.hs.sha = PK11_CreateDigestContext(SEC_OID_SHA1); if (ss->ssl3.hs.sha == NULL) { PK11_DestroyContext(ss->ssl3.hs.md5, PR_TRUE); ss->ssl3.hs.md5 = NULL; ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); return SECFailure; } ss->ssl3.hs.hashType = handshake_hash_combo; if (PK11_DigestBegin(ss->ssl3.hs.md5) != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); return SECFailure; } if (PK11_DigestBegin(ss->ssl3.hs.sha) != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); return SECFailure; } } } if (ss->ssl3.hs.hashType != handshake_hash_record && ss->ssl3.hs.messages.len > 0) { if (ssl3_UpdateHandshakeHashes(ss, ss->ssl3.hs.messages.buf, ss->ssl3.hs.messages.len) != SECSuccess) { return SECFailure; } sslBuffer_Clear(&ss->ssl3.hs.messages); } return SECSuccess; } void ssl3_RestartHandshakeHashes(sslSocket *ss) { SSL_TRC(30, ("%d: SSL3[%d]: reset handshake hashes", SSL_GETPID(), ss->fd)); ss->ssl3.hs.hashType = handshake_hash_unknown; ss->ssl3.hs.messages.len = 0; if (ss->ssl3.hs.md5) { PK11_DestroyContext(ss->ssl3.hs.md5, PR_TRUE); ss->ssl3.hs.md5 = NULL; } if (ss->ssl3.hs.sha) { PK11_DestroyContext(ss->ssl3.hs.sha, PR_TRUE); ss->ssl3.hs.sha = NULL; } if (ss->ssl3.hs.shaPostHandshake) { PK11_DestroyContext(ss->ssl3.hs.shaPostHandshake, PR_TRUE); ss->ssl3.hs.shaPostHandshake = NULL; } } /* * Handshake messages */ /* Called from ssl3_InitHandshakeHashes() ** ssl3_AppendHandshake() ** ssl3_HandleV2ClientHello() ** ssl3_HandleHandshakeMessage() ** Caller must hold the ssl3Handshake lock. */ SECStatus ssl3_UpdateHandshakeHashes(sslSocket *ss, const unsigned char *b, unsigned int l) { SECStatus rv = SECSuccess; PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); /* With TLS 1.3, and versions TLS.1.1 and older, we keep the hash(es) * always up to date. However, we must initially buffer the handshake * messages, until we know what to do. * If ss->ssl3.hs.hashType != handshake_hash_unknown, * it means we know what to do. We calculate (hash our input), * and we stop appending to the buffer. * * With TLS 1.2, we always append all handshake messages, * and never update the hash, because the hash function we must use for * certificate_verify might be different from the hash function we use * when signing other handshake hashes. */ if (ss->ssl3.hs.hashType == handshake_hash_unknown || ss->ssl3.hs.hashType == handshake_hash_record) { return sslBuffer_Append(&ss->ssl3.hs.messages, b, l); } PRINT_BUF(90, (ss, "handshake hash input:", b, l)); if (ss->ssl3.hs.hashType == handshake_hash_single) { PORT_Assert(ss->version >= SSL_LIBRARY_VERSION_TLS_1_3); rv = PK11_DigestOp(ss->ssl3.hs.sha, b, l); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); return rv; } } else if (ss->ssl3.hs.hashType == handshake_hash_combo) { rv = PK11_DigestOp(ss->ssl3.hs.md5, b, l); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); return rv; } rv = PK11_DigestOp(ss->ssl3.hs.sha, b, l); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); return rv; } } return rv; } SECStatus ssl3_UpdatePostHandshakeHashes(sslSocket *ss, const unsigned char *b, unsigned int l) { SECStatus rv = SECSuccess; PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PRINT_BUF(90, (ss, "post handshake hash input:", b, l)); PORT_Assert(ss->ssl3.hs.hashType == handshake_hash_single); PORT_Assert(ss->version >= SSL_LIBRARY_VERSION_TLS_1_3); rv = PK11_DigestOp(ss->ssl3.hs.shaPostHandshake, b, l); if (rv != SECSuccess) { PORT_SetError(SSL_ERROR_DIGEST_FAILURE); } return rv; } SECStatus ssl3_AppendHandshakeHeader(sslSocket *ss, SSLHandshakeType t, PRUint32 length) { SECStatus rv; /* If we already have a message in place, we need to enqueue it. * This empties the buffer. This is a convenient place to call * dtls_StageHandshakeMessage to mark the message boundary. */ if (IS_DTLS(ss)) { rv = dtls_StageHandshakeMessage(ss); if (rv != SECSuccess) { return rv; } } SSL_TRC(30, ("%d: SSL3[%d]: append handshake header: type %s", SSL_GETPID(), ss->fd, ssl3_DecodeHandshakeType(t))); rv = ssl3_AppendHandshakeNumber(ss, t, 1); if (rv != SECSuccess) { return rv; /* error code set by AppendHandshake, if applicable. */ } rv = ssl3_AppendHandshakeNumber(ss, length, 3); if (rv != SECSuccess) { return rv; /* error code set by AppendHandshake, if applicable. */ } if (IS_DTLS(ss)) { /* Note that we make an unfragmented message here. We fragment in the * transmission code, if necessary */ rv = ssl3_AppendHandshakeNumber(ss, ss->ssl3.hs.sendMessageSeq, 2); if (rv != SECSuccess) { return rv; /* error code set by AppendHandshake, if applicable. */ } ss->ssl3.hs.sendMessageSeq++; /* 0 is the fragment offset, because it's not fragmented yet */ rv = ssl3_AppendHandshakeNumber(ss, 0, 3); if (rv != SECSuccess) { return rv; /* error code set by AppendHandshake, if applicable. */ } /* Fragment length -- set to the packet length because not fragmented */ rv = ssl3_AppendHandshakeNumber(ss, length, 3); if (rv != SECSuccess) { return rv; /* error code set by AppendHandshake, if applicable. */ } } return rv; /* error code set by AppendHandshake, if applicable. */ } /************************************************************************** * Consume Handshake functions. * * All data used in these functions is protected by two locks, * the RecvBufLock and the SSL3HandshakeLock **************************************************************************/ /* Read up the next "bytes" number of bytes from the (decrypted) input * stream "b" (which is *length bytes long). Copy them into buffer "v". * Reduces *length by bytes. Advances *b by bytes. * * If this function returns SECFailure, it has already sent an alert, * and has set a generic error code. The caller should probably * override the generic error code by setting another. */ SECStatus ssl3_ConsumeHandshake(sslSocket *ss, void *v, PRUint32 bytes, PRUint8 **b, PRUint32 *length) { PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if ((PRUint32)bytes > *length) { return ssl3_DecodeError(ss); } PORT_Memcpy(v, *b, bytes); PRINT_BUF(60, (ss, "consume bytes:", *b, bytes)); *b += bytes; *length -= bytes; return SECSuccess; } /* Read up the next "bytes" number of bytes from the (decrypted) input * stream "b" (which is *length bytes long), and interpret them as an * integer in network byte order. Sets *num to the received value. * Reduces *length by bytes. Advances *b by bytes. * * On error, an alert has been sent, and a generic error code has been set. */ SECStatus ssl3_ConsumeHandshakeNumber64(sslSocket *ss, PRUint64 *num, PRUint32 bytes, PRUint8 **b, PRUint32 *length) { PRUint8 *buf = *b; PRUint32 i; PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); *num = 0; if (bytes > sizeof(*num)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } if (bytes > *length) { return ssl3_DecodeError(ss); } PRINT_BUF(60, (ss, "consume bytes:", *b, bytes)); for (i = 0; i < bytes; i++) { *num = (*num << 8) + buf[i]; } *b += bytes; *length -= bytes; return SECSuccess; } SECStatus ssl3_ConsumeHandshakeNumber(sslSocket *ss, PRUint32 *num, PRUint32 bytes, PRUint8 **b, PRUint32 *length) { PRUint64 num64; SECStatus rv; PORT_Assert(bytes <= sizeof(*num)); if (bytes > sizeof(*num)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } rv = ssl3_ConsumeHandshakeNumber64(ss, &num64, bytes, b, length); if (rv != SECSuccess) { return SECFailure; } *num = num64 & 0xffffffff; return SECSuccess; } /* Read in two values from the incoming decrypted byte stream "b", which is * *length bytes long. The first value is a number whose size is "bytes" * bytes long. The second value is a byte-string whose size is the value * of the first number received. The latter byte-string, and its length, * is returned in the SECItem i. * * Returns SECFailure (-1) on failure. * On error, an alert has been sent, and a generic error code has been set. * * RADICAL CHANGE for NSS 3.11. All callers of this function make copies * of the data returned in the SECItem *i, so making a copy of it here * is simply wasteful. So, This function now just sets SECItem *i to * point to the values in the buffer **b. */ SECStatus ssl3_ConsumeHandshakeVariable(sslSocket *ss, SECItem *i, PRUint32 bytes, PRUint8 **b, PRUint32 *length) { PRUint32 count; SECStatus rv; PORT_Assert(bytes <= 3); i->len = 0; i->data = NULL; i->type = siBuffer; rv = ssl3_ConsumeHandshakeNumber(ss, &count, bytes, b, length); if (rv != SECSuccess) { return SECFailure; } if (count > 0) { if (count > *length) { return ssl3_DecodeError(ss); } i->data = *b; i->len = count; *b += count; *length -= count; } return SECSuccess; } /* ssl3_TLSHashAlgorithmToOID converts a TLS hash identifier into an OID value. * If the hash is not recognised, SEC_OID_UNKNOWN is returned. * * See https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 */ SECOidTag ssl3_HashTypeToOID(SSLHashType hashType) { switch (hashType) { case ssl_hash_sha1: return SEC_OID_SHA1; case ssl_hash_sha256: return SEC_OID_SHA256; case ssl_hash_sha384: return SEC_OID_SHA384; case ssl_hash_sha512: return SEC_OID_SHA512; default: break; } return SEC_OID_UNKNOWN; } SSLHashType ssl_SignatureSchemeToHashType(SSLSignatureScheme scheme) { switch (scheme) { case ssl_sig_rsa_pkcs1_sha1: case ssl_sig_dsa_sha1: case ssl_sig_ecdsa_sha1: return ssl_hash_sha1; case ssl_sig_rsa_pkcs1_sha256: case ssl_sig_ecdsa_secp256r1_sha256: case ssl_sig_rsa_pss_rsae_sha256: case ssl_sig_rsa_pss_pss_sha256: case ssl_sig_dsa_sha256: return ssl_hash_sha256; case ssl_sig_rsa_pkcs1_sha384: case ssl_sig_ecdsa_secp384r1_sha384: case ssl_sig_rsa_pss_rsae_sha384: case ssl_sig_rsa_pss_pss_sha384: case ssl_sig_dsa_sha384: return ssl_hash_sha384; case ssl_sig_rsa_pkcs1_sha512: case ssl_sig_ecdsa_secp521r1_sha512: case ssl_sig_rsa_pss_rsae_sha512: case ssl_sig_rsa_pss_pss_sha512: case ssl_sig_dsa_sha512: return ssl_hash_sha512; case ssl_sig_rsa_pkcs1_sha1md5: return ssl_hash_none; /* Special for TLS 1.0/1.1. */ case ssl_sig_none: case ssl_sig_ed25519: case ssl_sig_ed448: break; } PORT_Assert(0); return ssl_hash_none; } static PRBool ssl_SignatureSchemeMatchesSpkiOid(SSLSignatureScheme scheme, SECOidTag spkiOid) { switch (scheme) { case ssl_sig_rsa_pkcs1_sha256: case ssl_sig_rsa_pkcs1_sha384: case ssl_sig_rsa_pkcs1_sha512: case ssl_sig_rsa_pkcs1_sha1: case ssl_sig_rsa_pss_rsae_sha256: case ssl_sig_rsa_pss_rsae_sha384: case ssl_sig_rsa_pss_rsae_sha512: case ssl_sig_rsa_pkcs1_sha1md5: return (spkiOid == SEC_OID_X500_RSA_ENCRYPTION) || (spkiOid == SEC_OID_PKCS1_RSA_ENCRYPTION); case ssl_sig_rsa_pss_pss_sha256: case ssl_sig_rsa_pss_pss_sha384: case ssl_sig_rsa_pss_pss_sha512: return spkiOid == SEC_OID_PKCS1_RSA_PSS_SIGNATURE; case ssl_sig_ecdsa_secp256r1_sha256: case ssl_sig_ecdsa_secp384r1_sha384: case ssl_sig_ecdsa_secp521r1_sha512: case ssl_sig_ecdsa_sha1: return spkiOid == SEC_OID_ANSIX962_EC_PUBLIC_KEY; case ssl_sig_dsa_sha256: case ssl_sig_dsa_sha384: case ssl_sig_dsa_sha512: case ssl_sig_dsa_sha1: return spkiOid == SEC_OID_ANSIX9_DSA_SIGNATURE; case ssl_sig_none: case ssl_sig_ed25519: case ssl_sig_ed448: break; } PORT_Assert(0); return PR_FALSE; } /* Validate that the signature scheme works for the given key type. */ PRBool ssl_SignatureSchemeValid(SSLSignatureScheme scheme, SECOidTag spkiOid, PRBool isTls13) { if (!ssl_IsSupportedSignatureScheme(scheme)) { return PR_FALSE; } if (!ssl_SignatureSchemeMatchesSpkiOid(scheme, spkiOid)) { return PR_FALSE; } if (isTls13) { if (ssl_SignatureSchemeToHashType(scheme) == ssl_hash_sha1) { return PR_FALSE; } if (ssl_IsRsaPkcs1SignatureScheme(scheme)) { return PR_FALSE; } if (ssl_IsDsaSignatureScheme(scheme)) { return PR_FALSE; } /* With TLS 1.3, EC keys should have been selected based on calling * ssl_SignatureSchemeFromSpki(), reject them otherwise. */ return spkiOid != SEC_OID_ANSIX962_EC_PUBLIC_KEY; } return PR_TRUE; } static SECStatus ssl_SignatureSchemeFromPssSpki(const CERTSubjectPublicKeyInfo *spki, SSLSignatureScheme *scheme) { SECKEYRSAPSSParams pssParam = { 0 }; PORTCheapArenaPool arena; SECStatus rv; /* The key doesn't have parameters, boo. */ if (!spki->algorithm.parameters.len) { *scheme = ssl_sig_none; return SECSuccess; } PORT_InitCheapArena(&arena, DER_DEFAULT_CHUNKSIZE); rv = SEC_QuickDERDecodeItem(&arena.arena, &pssParam, SEC_ASN1_GET(SECKEY_RSAPSSParamsTemplate), &spki->algorithm.parameters); if (rv != SECSuccess) { goto loser; } /* Not having hashAlg means SHA-1 and we don't accept that. */ if (!pssParam.hashAlg) { goto loser; } switch (SECOID_GetAlgorithmTag(pssParam.hashAlg)) { case SEC_OID_SHA256: *scheme = ssl_sig_rsa_pss_pss_sha256; break; case SEC_OID_SHA384: *scheme = ssl_sig_rsa_pss_pss_sha384; break; case SEC_OID_SHA512: *scheme = ssl_sig_rsa_pss_pss_sha512; break; default: goto loser; } PORT_DestroyCheapArena(&arena); return SECSuccess; loser: PORT_DestroyCheapArena(&arena); PORT_SetError(SSL_ERROR_BAD_CERTIFICATE); return SECFailure; } static SECStatus ssl_SignatureSchemeFromEcSpki(const CERTSubjectPublicKeyInfo *spki, SSLSignatureScheme *scheme) { const sslNamedGroupDef *group; SECKEYPublicKey *key; key = SECKEY_ExtractPublicKey(spki); if (!key) { PORT_SetError(SSL_ERROR_BAD_CERTIFICATE); return SECFailure; } group = ssl_ECPubKey2NamedGroup(key); SECKEY_DestroyPublicKey(key); if (!group) { PORT_SetError(SSL_ERROR_BAD_CERTIFICATE); return SECFailure; } switch (group->name) { case ssl_grp_ec_secp256r1: *scheme = ssl_sig_ecdsa_secp256r1_sha256; return SECSuccess; case ssl_grp_ec_secp384r1: *scheme = ssl_sig_ecdsa_secp384r1_sha384; return SECSuccess; case ssl_grp_ec_secp521r1: *scheme = ssl_sig_ecdsa_secp521r1_sha512; return SECSuccess; default: break; } PORT_SetError(SSL_ERROR_BAD_CERTIFICATE); return SECFailure; } /* Newer signature schemes are designed so that a single SPKI can be used with * that scheme. This determines that scheme from the SPKI. If the SPKI doesn't * have a single scheme, |*scheme| is set to ssl_sig_none. */ SECStatus ssl_SignatureSchemeFromSpki(const CERTSubjectPublicKeyInfo *spki, PRBool isTls13, SSLSignatureScheme *scheme) { SECOidTag spkiOid = SECOID_GetAlgorithmTag(&spki->algorithm); if (spkiOid == SEC_OID_PKCS1_RSA_PSS_SIGNATURE) { return ssl_SignatureSchemeFromPssSpki(spki, scheme); } /* Only do this lookup for TLS 1.3, where the scheme can be determined from * the SPKI alone because the ECDSA key size determines the hash. Earlier * TLS versions allow the same EC key to be used with different hashes. */ if (isTls13 && spkiOid == SEC_OID_ANSIX962_EC_PUBLIC_KEY) { return ssl_SignatureSchemeFromEcSpki(spki, scheme); } *scheme = ssl_sig_none; return SECSuccess; } /* Check that a signature scheme is enabled by configuration. */ PRBool ssl_SignatureSchemeEnabled(const sslSocket *ss, SSLSignatureScheme scheme) { unsigned int i; for (i = 0; i < ss->ssl3.signatureSchemeCount; ++i) { if (scheme == ss->ssl3.signatureSchemes[i]) { return PR_TRUE; } } return PR_FALSE; } static PRBool ssl_SignatureKeyMatchesSpkiOid(const ssl3KEADef *keaDef, SECOidTag spkiOid) { switch (spkiOid) { case SEC_OID_X500_RSA_ENCRYPTION: case SEC_OID_PKCS1_RSA_ENCRYPTION: case SEC_OID_PKCS1_RSA_PSS_SIGNATURE: return keaDef->signKeyType == rsaKey; case SEC_OID_ANSIX9_DSA_SIGNATURE: return keaDef->signKeyType == dsaKey; case SEC_OID_ANSIX962_EC_PUBLIC_KEY: return keaDef->signKeyType == ecKey; default: break; } return PR_FALSE; } /* ssl3_CheckSignatureSchemeConsistency checks that the signature algorithm * identifier in |scheme| is consistent with the public key in |spki|. It also * checks the hash algorithm against the configured signature algorithms. If * all the tests pass, SECSuccess is returned. Otherwise, PORT_SetError is * called and SECFailure is returned. */ SECStatus ssl_CheckSignatureSchemeConsistency(sslSocket *ss, SSLSignatureScheme scheme, CERTSubjectPublicKeyInfo *spki) { SSLSignatureScheme spkiScheme; PRBool isTLS13 = ss->version == SSL_LIBRARY_VERSION_TLS_1_3; SECOidTag spkiOid; SECStatus rv; rv = ssl_SignatureSchemeFromSpki(spki, isTLS13, &spkiScheme); if (rv != SECSuccess) { return SECFailure; } if (spkiScheme != ssl_sig_none) { /* The SPKI in the certificate can only be used for a single scheme. */ if (spkiScheme != scheme || !ssl_SignatureSchemeEnabled(ss, scheme)) { PORT_SetError(SSL_ERROR_INCORRECT_SIGNATURE_ALGORITHM); return SECFailure; } return SECSuccess; } spkiOid = SECOID_GetAlgorithmTag(&spki->algorithm); /* If we're a client, check that the signature algorithm matches the signing * key type of the cipher suite. */ if (!isTLS13 && !ss->sec.isServer) { if (!ssl_SignatureKeyMatchesSpkiOid(ss->ssl3.hs.kea_def, spkiOid)) { PORT_SetError(SSL_ERROR_INCORRECT_SIGNATURE_ALGORITHM); return SECFailure; } } /* Verify that the signature scheme matches the signing key. */ if (!ssl_SignatureSchemeValid(scheme, spkiOid, isTLS13)) { PORT_SetError(SSL_ERROR_INCORRECT_SIGNATURE_ALGORITHM); return SECFailure; } if (!ssl_SignatureSchemeEnabled(ss, scheme)) { PORT_SetError(SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM); return SECFailure; } return SECSuccess; } PRBool ssl_IsSupportedSignatureScheme(SSLSignatureScheme scheme) { switch (scheme) { case ssl_sig_rsa_pkcs1_sha1: case ssl_sig_rsa_pkcs1_sha256: case ssl_sig_rsa_pkcs1_sha384: case ssl_sig_rsa_pkcs1_sha512: case ssl_sig_rsa_pss_rsae_sha256: case ssl_sig_rsa_pss_rsae_sha384: case ssl_sig_rsa_pss_rsae_sha512: case ssl_sig_rsa_pss_pss_sha256: case ssl_sig_rsa_pss_pss_sha384: case ssl_sig_rsa_pss_pss_sha512: case ssl_sig_ecdsa_secp256r1_sha256: case ssl_sig_ecdsa_secp384r1_sha384: case ssl_sig_ecdsa_secp521r1_sha512: case ssl_sig_dsa_sha1: case ssl_sig_dsa_sha256: case ssl_sig_dsa_sha384: case ssl_sig_dsa_sha512: case ssl_sig_ecdsa_sha1: return PR_TRUE; case ssl_sig_rsa_pkcs1_sha1md5: case ssl_sig_none: case ssl_sig_ed25519: case ssl_sig_ed448: return PR_FALSE; } return PR_FALSE; } PRBool ssl_IsRsaPssSignatureScheme(SSLSignatureScheme scheme) { switch (scheme) { case ssl_sig_rsa_pss_rsae_sha256: case ssl_sig_rsa_pss_rsae_sha384: case ssl_sig_rsa_pss_rsae_sha512: case ssl_sig_rsa_pss_pss_sha256: case ssl_sig_rsa_pss_pss_sha384: case ssl_sig_rsa_pss_pss_sha512: return PR_TRUE; default: return PR_FALSE; } return PR_FALSE; } PRBool ssl_IsRsaPkcs1SignatureScheme(SSLSignatureScheme scheme) { switch (scheme) { case ssl_sig_rsa_pkcs1_sha256: case ssl_sig_rsa_pkcs1_sha384: case ssl_sig_rsa_pkcs1_sha512: case ssl_sig_rsa_pkcs1_sha1: return PR_TRUE; default: return PR_FALSE; } return PR_FALSE; } PRBool ssl_IsDsaSignatureScheme(SSLSignatureScheme scheme) { switch (scheme) { case ssl_sig_dsa_sha256: case ssl_sig_dsa_sha384: case ssl_sig_dsa_sha512: case ssl_sig_dsa_sha1: return PR_TRUE; default: return PR_FALSE; } return PR_FALSE; } SSLAuthType ssl_SignatureSchemeToAuthType(SSLSignatureScheme scheme) { switch (scheme) { case ssl_sig_rsa_pkcs1_sha1: case ssl_sig_rsa_pkcs1_sha1md5: case ssl_sig_rsa_pkcs1_sha256: case ssl_sig_rsa_pkcs1_sha384: case ssl_sig_rsa_pkcs1_sha512: /* We report based on the key type for PSS signatures. */ case ssl_sig_rsa_pss_rsae_sha256: case ssl_sig_rsa_pss_rsae_sha384: case ssl_sig_rsa_pss_rsae_sha512: return ssl_auth_rsa_sign; case ssl_sig_rsa_pss_pss_sha256: case ssl_sig_rsa_pss_pss_sha384: case ssl_sig_rsa_pss_pss_sha512: return ssl_auth_rsa_pss; case ssl_sig_ecdsa_secp256r1_sha256: case ssl_sig_ecdsa_secp384r1_sha384: case ssl_sig_ecdsa_secp521r1_sha512: case ssl_sig_ecdsa_sha1: return ssl_auth_ecdsa; case ssl_sig_dsa_sha1: case ssl_sig_dsa_sha256: case ssl_sig_dsa_sha384: case ssl_sig_dsa_sha512: return ssl_auth_dsa; default: PORT_Assert(0); } return ssl_auth_null; } /* ssl_ConsumeSignatureScheme reads a SSLSignatureScheme (formerly * SignatureAndHashAlgorithm) structure from |b| and puts the resulting value * into |out|. |b| and |length| are updated accordingly. * * See https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 */ SECStatus ssl_ConsumeSignatureScheme(sslSocket *ss, PRUint8 **b, PRUint32 *length, SSLSignatureScheme *out) { PRUint32 tmp; SECStatus rv; rv = ssl3_ConsumeHandshakeNumber(ss, &tmp, 2, b, length); if (rv != SECSuccess) { return SECFailure; /* Error code set already. */ } if (!ssl_IsSupportedSignatureScheme((SSLSignatureScheme)tmp)) { PORT_SetError(SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM); return SECFailure; } *out = (SSLSignatureScheme)tmp; return SECSuccess; } /************************************************************************** * end of Consume Handshake functions. **************************************************************************/ static SECStatus ssl3_ComputeHandshakeHash(unsigned char *buf, unsigned int len, SSLHashType hashAlg, SSL3Hashes *hashes) { SECStatus rv = SECFailure; PK11Context *hashContext = PK11_CreateDigestContext( ssl3_HashTypeToOID(hashAlg)); if (!hashContext) { return rv; } rv = PK11_DigestBegin(hashContext); if (rv == SECSuccess) { rv = PK11_DigestOp(hashContext, buf, len); } if (rv == SECSuccess) { rv = PK11_DigestFinal(hashContext, hashes->u.raw, &hashes->len, sizeof(hashes->u.raw)); } if (rv == SECSuccess) { hashes->hashAlg = hashAlg; } PK11_DestroyContext(hashContext, PR_TRUE); return rv; } /* Extract the hashes of handshake messages to this point. * Called from ssl3_SendCertificateVerify * ssl3_SendFinished * ssl3_HandleHandshakeMessage * * Caller must hold the SSL3HandshakeLock. * Caller must hold a read or write lock on the Spec R/W lock. * (There is presently no way to assert on a Read lock.) */ SECStatus ssl3_ComputeHandshakeHashes(sslSocket *ss, ssl3CipherSpec *spec, /* uses ->master_secret */ SSL3Hashes *hashes, /* output goes here. */ PRUint32 sender) { SECStatus rv = SECSuccess; PRBool isTLS = (PRBool)(spec->version > SSL_LIBRARY_VERSION_3_0); unsigned int outLength; PRUint8 md5_inner[MAX_MAC_LENGTH]; PRUint8 sha_inner[MAX_MAC_LENGTH]; PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (ss->ssl3.hs.hashType == handshake_hash_unknown) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } hashes->hashAlg = ssl_hash_none; if (ss->ssl3.hs.hashType == handshake_hash_single) { PK11Context *h; unsigned int stateLen; unsigned char stackBuf[1024]; unsigned char *stateBuf = NULL; h = ss->ssl3.hs.sha; stateBuf = PK11_SaveContextAlloc(h, stackBuf, sizeof(stackBuf), &stateLen); if (stateBuf == NULL) { ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); rv = SECFailure; goto tls12_loser; } rv |= PK11_DigestFinal(h, hashes->u.raw, &hashes->len, sizeof(hashes->u.raw)); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); rv = SECFailure; goto tls12_loser; } hashes->hashAlg = ssl3_GetSuitePrfHash(ss); tls12_loser: if (stateBuf) { if (PK11_RestoreContext(h, stateBuf, stateLen) != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); rv = SECFailure; } if (stateBuf != stackBuf) { PORT_ZFree(stateBuf, stateLen); } } } else if (ss->ssl3.hs.hashType == handshake_hash_record) { rv = ssl3_ComputeHandshakeHash(ss->ssl3.hs.messages.buf, ss->ssl3.hs.messages.len, ssl3_GetSuitePrfHash(ss), hashes); } else { PK11Context *md5; PK11Context *sha = NULL; unsigned char *md5StateBuf = NULL; unsigned char *shaStateBuf = NULL; unsigned int md5StateLen, shaStateLen; unsigned char md5StackBuf[256]; unsigned char shaStackBuf[512]; const int md5Pad = ssl_GetMacDefByAlg(ssl_mac_md5)->pad_size; const int shaPad = ssl_GetMacDefByAlg(ssl_mac_sha)->pad_size; md5StateBuf = PK11_SaveContextAlloc(ss->ssl3.hs.md5, md5StackBuf, sizeof md5StackBuf, &md5StateLen); if (md5StateBuf == NULL) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); rv = SECFailure; goto loser; } md5 = ss->ssl3.hs.md5; shaStateBuf = PK11_SaveContextAlloc(ss->ssl3.hs.sha, shaStackBuf, sizeof shaStackBuf, &shaStateLen); if (shaStateBuf == NULL) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); rv = SECFailure; goto loser; } sha = ss->ssl3.hs.sha; if (!isTLS) { /* compute hashes for SSL3. */ unsigned char s[4]; if (!spec->masterSecret) { PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HANDSHAKE); rv = SECFailure; goto loser; } s[0] = (unsigned char)(sender >> 24); s[1] = (unsigned char)(sender >> 16); s[2] = (unsigned char)(sender >> 8); s[3] = (unsigned char)sender; if (sender != 0) { rv |= PK11_DigestOp(md5, s, 4); PRINT_BUF(95, (NULL, "MD5 inner: sender", s, 4)); } PRINT_BUF(95, (NULL, "MD5 inner: MAC Pad 1", mac_pad_1, md5Pad)); rv |= PK11_DigestKey(md5, spec->masterSecret); rv |= PK11_DigestOp(md5, mac_pad_1, md5Pad); rv |= PK11_DigestFinal(md5, md5_inner, &outLength, MD5_LENGTH); PORT_Assert(rv != SECSuccess || outLength == MD5_LENGTH); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); rv = SECFailure; goto loser; } PRINT_BUF(95, (NULL, "MD5 inner: result", md5_inner, outLength)); if (sender != 0) { rv |= PK11_DigestOp(sha, s, 4); PRINT_BUF(95, (NULL, "SHA inner: sender", s, 4)); } PRINT_BUF(95, (NULL, "SHA inner: MAC Pad 1", mac_pad_1, shaPad)); rv |= PK11_DigestKey(sha, spec->masterSecret); rv |= PK11_DigestOp(sha, mac_pad_1, shaPad); rv |= PK11_DigestFinal(sha, sha_inner, &outLength, SHA1_LENGTH); PORT_Assert(rv != SECSuccess || outLength == SHA1_LENGTH); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); rv = SECFailure; goto loser; } PRINT_BUF(95, (NULL, "SHA inner: result", sha_inner, outLength)); PRINT_BUF(95, (NULL, "MD5 outer: MAC Pad 2", mac_pad_2, md5Pad)); PRINT_BUF(95, (NULL, "MD5 outer: MD5 inner", md5_inner, MD5_LENGTH)); rv |= PK11_DigestBegin(md5); rv |= PK11_DigestKey(md5, spec->masterSecret); rv |= PK11_DigestOp(md5, mac_pad_2, md5Pad); rv |= PK11_DigestOp(md5, md5_inner, MD5_LENGTH); } rv |= PK11_DigestFinal(md5, hashes->u.s.md5, &outLength, MD5_LENGTH); PORT_Assert(rv != SECSuccess || outLength == MD5_LENGTH); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); rv = SECFailure; goto loser; } PRINT_BUF(60, (NULL, "MD5 outer: result", hashes->u.s.md5, MD5_LENGTH)); if (!isTLS) { PRINT_BUF(95, (NULL, "SHA outer: MAC Pad 2", mac_pad_2, shaPad)); PRINT_BUF(95, (NULL, "SHA outer: SHA inner", sha_inner, SHA1_LENGTH)); rv |= PK11_DigestBegin(sha); rv |= PK11_DigestKey(sha, spec->masterSecret); rv |= PK11_DigestOp(sha, mac_pad_2, shaPad); rv |= PK11_DigestOp(sha, sha_inner, SHA1_LENGTH); } rv |= PK11_DigestFinal(sha, hashes->u.s.sha, &outLength, SHA1_LENGTH); PORT_Assert(rv != SECSuccess || outLength == SHA1_LENGTH); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); rv = SECFailure; goto loser; } PRINT_BUF(60, (NULL, "SHA outer: result", hashes->u.s.sha, SHA1_LENGTH)); hashes->len = MD5_LENGTH + SHA1_LENGTH; loser: if (md5StateBuf) { if (PK11_RestoreContext(ss->ssl3.hs.md5, md5StateBuf, md5StateLen) != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); rv = SECFailure; } if (md5StateBuf != md5StackBuf) { PORT_ZFree(md5StateBuf, md5StateLen); } } if (shaStateBuf) { if (PK11_RestoreContext(ss->ssl3.hs.sha, shaStateBuf, shaStateLen) != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); rv = SECFailure; } if (shaStateBuf != shaStackBuf) { PORT_ZFree(shaStateBuf, shaStateLen); } } } return rv; } /************************************************************************** * end of Handshake Hash functions. * Begin Send and Handle functions for handshakes. **************************************************************************/ #ifdef TRACE #define CHTYPE(t) \ case client_hello_##t: \ return #t; static const char * ssl_ClientHelloTypeName(sslClientHelloType type) { switch (type) { CHTYPE(initial); CHTYPE(retry); CHTYPE(retransmit); /* DTLS only */ CHTYPE(renegotiation); /* TLS <= 1.2 only */ } PORT_Assert(0); return NULL; } #undef CHTYPE #endif PR_STATIC_ASSERT(SSL3_SESSIONID_BYTES == SSL3_RANDOM_LENGTH); static void ssl_MakeFakeSid(sslSocket *ss, PRUint8 *buf) { PRUint8 x = 0x5a; int i; for (i = 0; i < SSL3_SESSIONID_BYTES; ++i) { x += ss->ssl3.hs.client_random[i]; buf[i] = x; } } /* Set the version fields of the cipher spec for a ClientHello. */ static void ssl_SetClientHelloSpecVersion(sslSocket *ss, ssl3CipherSpec *spec) { ssl_GetSpecWriteLock(ss); PORT_Assert(spec->cipherDef->cipher == cipher_null); /* This is - a best guess - but it doesn't matter here. */ spec->version = ss->vrange.max; if (IS_DTLS(ss)) { spec->recordVersion = SSL_LIBRARY_VERSION_DTLS_1_0_WIRE; } else { /* For new connections, cap the record layer version number of TLS * ClientHello to { 3, 1 } (TLS 1.0). Some TLS 1.0 servers (which seem * to use F5 BIG-IP) ignore ClientHello.client_version and use the * record layer version number (TLSPlaintext.version) instead when * negotiating protocol versions. In addition, if the record layer * version number of ClientHello is { 3, 2 } (TLS 1.1) or higher, these * servers reset the TCP connections. Lastly, some F5 BIG-IP servers * hang if a record containing a ClientHello has a version greater than * { 3, 1 } and a length greater than 255. Set this flag to work around * such servers. * * The final version is set when a version is negotiated. */ spec->recordVersion = PR_MIN(SSL_LIBRARY_VERSION_TLS_1_0, ss->vrange.max); } ssl_ReleaseSpecWriteLock(ss); } /* Called from ssl3_HandleHelloRequest(), * ssl3_RedoHandshake() * ssl_BeginClientHandshake (when resuming ssl3 session) * dtls_HandleHelloVerifyRequest(with resending=PR_TRUE) * * The |type| argument indicates what is going on here: * - client_hello_initial is set for the very first ClientHello * - client_hello_retry indicates that this is a second attempt after receiving * a HelloRetryRequest (in TLS 1.3) * - client_hello_retransmit is used in DTLS when resending * - client_hello_renegotiation is used to renegotiate (in TLS <1.3) */ SECStatus ssl3_SendClientHello(sslSocket *ss, sslClientHelloType type) { sslSessionID *sid; SECStatus rv; unsigned int i; unsigned int length; unsigned int num_suites; unsigned int actual_count = 0; PRBool isTLS = PR_FALSE; PRBool requestingResume = PR_FALSE, fallbackSCSV = PR_FALSE; PRBool unlockNeeded = PR_FALSE; sslBuffer extensionBuf = SSL_BUFFER_EMPTY; PRUint16 version = ss->vrange.max; PRInt32 flags; unsigned int cookieLen = ss->ssl3.hs.cookie.len; SSL_TRC(3, ("%d: SSL3[%d]: send %s ClientHello handshake", SSL_GETPID(), ss->fd, ssl_ClientHelloTypeName(type))); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); /* shouldn't get here if SSL3 is disabled, but ... */ if (SSL_ALL_VERSIONS_DISABLED(&ss->vrange)) { PR_NOT_REACHED("No versions of SSL 3.0 or later are enabled"); PORT_SetError(SSL_ERROR_SSL_DISABLED); return SECFailure; } /* If we are responding to a HelloRetryRequest, don't reinitialize. We need * to maintain the handshake hashes. */ if (ss->ssl3.hs.helloRetry) { PORT_Assert(type == client_hello_retry); /* This cookieLen applies to the cookie that appears in the DTLS ClientHello, which isn't used in DTLS 1.3. */ cookieLen = 0; } else { ssl3_RestartHandshakeHashes(ss); } if (type == client_hello_initial) { ssl_SetClientHelloSpecVersion(ss, ss->ssl3.cwSpec); } /* These must be reset every handshake. */ ssl3_ResetExtensionData(&ss->xtnData, ss); ss->ssl3.hs.sendingSCSV = PR_FALSE; ss->ssl3.hs.preliminaryInfo = 0; PORT_Assert(IS_DTLS(ss) || type != client_hello_retransmit); SECITEM_FreeItem(&ss->ssl3.hs.newSessionTicket.ticket, PR_FALSE); ss->ssl3.hs.receivedNewSessionTicket = PR_FALSE; /* How many suites does our PKCS11 support (regardless of policy)? */ if (ssl3_config_match_init(ss) == 0) { return SECFailure; /* ssl3_config_match_init has set error code. */ } /* * During a renegotiation, ss->clientHelloVersion will be used again to * work around a Windows SChannel bug. Ensure that it is still enabled. */ if (ss->firstHsDone) { PORT_Assert(type != client_hello_initial); if (SSL_ALL_VERSIONS_DISABLED(&ss->vrange)) { PORT_SetError(SSL_ERROR_SSL_DISABLED); return SECFailure; } if (ss->clientHelloVersion < ss->vrange.min || ss->clientHelloVersion > ss->vrange.max) { PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP); return SECFailure; } } /* Check if we have a ss->sec.ci.sid. * Check that it's not expired. * If we have an sid and it comes from an external cache, we use it. */ if (ss->sec.ci.sid && ss->sec.ci.sid->cached == in_external_cache) { PORT_Assert(!ss->sec.isServer); sid = ssl_ReferenceSID(ss->sec.ci.sid); SSL_TRC(3, ("%d: SSL3[%d]: using external resumption token in ClientHello", SSL_GETPID(), ss->fd)); } else if (ss->sec.ci.sid && ss->statelessResume && type == client_hello_retry) { /* If we are sending a second ClientHello, reuse the same SID * as the original one. */ sid = ssl_ReferenceSID(ss->sec.ci.sid); } else if (!ss->opt.noCache) { /* We ignore ss->sec.ci.sid here, and use ssl_Lookup because Lookup * handles expired entries and other details. * XXX If we've been called from ssl_BeginClientHandshake, then * this lookup is duplicative and wasteful. */ sid = ssl_LookupSID(ssl_Time(ss), &ss->sec.ci.peer, ss->sec.ci.port, ss->peerID, ss->url); } else { sid = NULL; } /* We can't resume based on a different token. If the sid exists, * make sure the token that holds the master secret still exists ... * If we previously did client-auth, make sure that the token that holds * the private key still exists, is logged in, hasn't been removed, etc. */ if (sid) { PRBool sidOK = PR_TRUE; if (sid->version >= SSL_LIBRARY_VERSION_TLS_1_3) { if (!tls13_ResumptionCompatible(ss, sid->u.ssl3.cipherSuite)) { sidOK = PR_FALSE; } } else { /* Check that the cipher suite we need is enabled. */ const ssl3CipherSuiteCfg *suite = ssl_LookupCipherSuiteCfg(sid->u.ssl3.cipherSuite, ss->cipherSuites); SSLVersionRange vrange = { sid->version, sid->version }; if (!suite || !ssl3_config_match(suite, ss->ssl3.policy, &vrange, ss)) { sidOK = PR_FALSE; } } /* Check that we can recover the master secret. */ if (sidOK) { PK11SlotInfo *slot = NULL; if (sid->u.ssl3.masterValid) { slot = SECMOD_LookupSlot(sid->u.ssl3.masterModuleID, sid->u.ssl3.masterSlotID); } if (slot == NULL) { sidOK = PR_FALSE; } else { PK11SymKey *wrapKey = NULL; if (!PK11_IsPresent(slot) || ((wrapKey = PK11_GetWrapKey(slot, sid->u.ssl3.masterWrapIndex, sid->u.ssl3.masterWrapMech, sid->u.ssl3.masterWrapSeries, ss->pkcs11PinArg)) == NULL)) { sidOK = PR_FALSE; } if (wrapKey) PK11_FreeSymKey(wrapKey); PK11_FreeSlot(slot); slot = NULL; } } /* If we previously did client-auth, make sure that the token that ** holds the private key still exists, is logged in, hasn't been ** removed, etc. */ if (sidOK && !ssl3_ClientAuthTokenPresent(sid)) { sidOK = PR_FALSE; } if (sidOK) { /* Set version based on the sid. */ if (ss->firstHsDone) { /* * Windows SChannel compares the client_version inside the RSA * EncryptedPreMasterSecret of a renegotiation with the * client_version of the initial ClientHello rather than the * ClientHello in the renegotiation. To work around this bug, we * continue to use the client_version used in the initial * ClientHello when renegotiating. * * The client_version of the initial ClientHello is still * available in ss->clientHelloVersion. Ensure that * sid->version is bounded within * [ss->vrange.min, ss->clientHelloVersion], otherwise we * can't use sid. */ if (sid->version >= ss->vrange.min && sid->version <= ss->clientHelloVersion) { version = ss->clientHelloVersion; } else { sidOK = PR_FALSE; } } else { /* * Check sid->version is OK first. * Previously, we would cap the version based on sid->version, * but that prevents negotiation of a higher version if the * previous session was reduced (e.g., with version fallback) */ if (sid->version < ss->vrange.min || sid->version > ss->vrange.max) { sidOK = PR_FALSE; } } } if (!sidOK) { SSL_AtomicIncrementLong(&ssl3stats.sch_sid_cache_not_ok); ssl_UncacheSessionID(ss); ssl_FreeSID(sid); sid = NULL; } } if (sid) { requestingResume = PR_TRUE; SSL_AtomicIncrementLong(&ssl3stats.sch_sid_cache_hits); PRINT_BUF(4, (ss, "client, found session-id:", sid->u.ssl3.sessionID, sid->u.ssl3.sessionIDLength)); ss->ssl3.policy = sid->u.ssl3.policy; } else { SSL_AtomicIncrementLong(&ssl3stats.sch_sid_cache_misses); /* * Windows SChannel compares the client_version inside the RSA * EncryptedPreMasterSecret of a renegotiation with the * client_version of the initial ClientHello rather than the * ClientHello in the renegotiation. To work around this bug, we * continue to use the client_version used in the initial * ClientHello when renegotiating. */ if (ss->firstHsDone) { version = ss->clientHelloVersion; } sid = ssl3_NewSessionID(ss, PR_FALSE); if (!sid) { return SECFailure; /* memory error is set */ } /* ss->version isn't set yet, but the sid needs a sane value. */ sid->version = version; } isTLS = (version > SSL_LIBRARY_VERSION_3_0); ssl_GetSpecWriteLock(ss); if (ss->ssl3.cwSpec->macDef->mac == ssl_mac_null) { /* SSL records are not being MACed. */ ss->ssl3.cwSpec->version = version; } ssl_ReleaseSpecWriteLock(ss); ssl_FreeSID(ss->sec.ci.sid); /* release the old sid */ ss->sec.ci.sid = sid; /* HACK for SCSV in SSL 3.0. On initial handshake, prepend SCSV, * only if TLS is disabled. */ if (!ss->firstHsDone && !isTLS) { /* Must set this before calling Hello Extension Senders, * to suppress sending of empty RI extension. */ ss->ssl3.hs.sendingSCSV = PR_TRUE; } /* When we attempt session resumption (only), we must lock the sid to * prevent races with other resumption connections that receive a * NewSessionTicket that will cause the ticket in the sid to be replaced. * Once we've copied the session ticket into our ClientHello message, it * is OK for the ticket to change, so we just need to make sure we hold * the lock across the calls to ssl_ConstructExtensions. */ if (sid->u.ssl3.lock) { unlockNeeded = PR_TRUE; PR_RWLock_Rlock(sid->u.ssl3.lock); } /* Generate a new random if this is the first attempt or renegotiation. */ if (type == client_hello_initial || type == client_hello_renegotiation) { rv = ssl3_GetNewRandom(ss->ssl3.hs.client_random); if (rv != SECSuccess) { goto loser; /* err set by GetNewRandom. */ } } if (ss->vrange.max >= SSL_LIBRARY_VERSION_TLS_1_3) { rv = tls13_SetupClientHello(ss, type); if (rv != SECSuccess) { goto loser; } } if (isTLS || (ss->firstHsDone && ss->peerRequestedProtection)) { rv = ssl_ConstructExtensions(ss, &extensionBuf, ssl_hs_client_hello); if (rv != SECSuccess) { goto loser; } } if (IS_DTLS(ss)) { ssl3_DisableNonDTLSSuites(ss); } /* how many suites are permitted by policy and user preference? */ num_suites = count_cipher_suites(ss, ss->ssl3.policy); if (!num_suites) { goto loser; /* count_cipher_suites has set error code. */ } fallbackSCSV = ss->opt.enableFallbackSCSV && (!requestingResume || version < sid->version); /* make room for SCSV */ if (ss->ssl3.hs.sendingSCSV) { ++num_suites; } if (fallbackSCSV) { ++num_suites; } length = sizeof(SSL3ProtocolVersion) + SSL3_RANDOM_LENGTH + 1 + /* session id */ 2 + num_suites * sizeof(ssl3CipherSuite) + 1 + 1 /* compression methods */; if (sid->version < SSL_LIBRARY_VERSION_TLS_1_3) { length += sid->u.ssl3.sessionIDLength; } else if (ss->opt.enableTls13CompatMode && !IS_DTLS(ss)) { length += SSL3_SESSIONID_BYTES; } if (IS_DTLS(ss)) { length += 1 + cookieLen; } if (extensionBuf.len) { rv = ssl_InsertPaddingExtension(ss, length, &extensionBuf); if (rv != SECSuccess) { goto loser; /* err set by ssl_InsertPaddingExtension */ } length += 2 + extensionBuf.len; } rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_client_hello, length); if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } if (ss->firstHsDone) { /* The client hello version must stay unchanged to work around * the Windows SChannel bug described above. */ PORT_Assert(version == ss->clientHelloVersion); } ss->clientHelloVersion = PR_MIN(version, SSL_LIBRARY_VERSION_TLS_1_2); if (IS_DTLS(ss)) { PRUint16 dtlsVersion; dtlsVersion = dtls_TLSVersionToDTLSVersion(ss->clientHelloVersion); rv = ssl3_AppendHandshakeNumber(ss, dtlsVersion, 2); } else { rv = ssl3_AppendHandshakeNumber(ss, ss->clientHelloVersion, 2); } if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } rv = ssl3_AppendHandshake(ss, ss->ssl3.hs.client_random, SSL3_RANDOM_LENGTH); if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } if (sid->version < SSL_LIBRARY_VERSION_TLS_1_3) { rv = ssl3_AppendHandshakeVariable( ss, sid->u.ssl3.sessionID, sid->u.ssl3.sessionIDLength, 1); } else if (ss->opt.enableTls13CompatMode && !IS_DTLS(ss)) { /* We're faking session resumption, so rather than create new * randomness, just mix up the client random a little. */ PRUint8 buf[SSL3_SESSIONID_BYTES]; ssl_MakeFakeSid(ss, buf); rv = ssl3_AppendHandshakeVariable(ss, buf, SSL3_SESSIONID_BYTES, 1); } else { rv = ssl3_AppendHandshakeNumber(ss, 0, 1); } if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } if (IS_DTLS(ss)) { rv = ssl3_AppendHandshakeVariable( ss, ss->ssl3.hs.cookie.data, cookieLen, 1); if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } } rv = ssl3_AppendHandshakeNumber(ss, num_suites * sizeof(ssl3CipherSuite), 2); if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } if (ss->ssl3.hs.sendingSCSV) { /* Add the actual SCSV */ rv = ssl3_AppendHandshakeNumber(ss, TLS_EMPTY_RENEGOTIATION_INFO_SCSV, sizeof(ssl3CipherSuite)); if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } actual_count++; } if (fallbackSCSV) { rv = ssl3_AppendHandshakeNumber(ss, TLS_FALLBACK_SCSV, sizeof(ssl3CipherSuite)); if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } actual_count++; } /* CipherSuites are appended to Hello message here */ for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) { ssl3CipherSuiteCfg *suite = &ss->cipherSuites[i]; if (ssl3_config_match(suite, ss->ssl3.policy, &ss->vrange, ss)) { actual_count++; if (actual_count > num_suites) { /* set error card removal/insertion error */ PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL); goto loser; } rv = ssl3_AppendHandshakeNumber(ss, suite->cipher_suite, sizeof(ssl3CipherSuite)); if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } } } /* if cards were removed or inserted between count_cipher_suites and * generating our list, detect the error here rather than send it off to * the server.. */ if (actual_count != num_suites) { /* Card removal/insertion error */ PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL); goto loser; } /* Compression methods: count is always 1, null compression. */ rv = ssl3_AppendHandshakeNumber(ss, 1, 1); if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } rv = ssl3_AppendHandshakeNumber(ss, ssl_compression_null, 1); if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } if (extensionBuf.len) { /* If we are sending a PSK binder, replace the dummy value. Note that * we only set statelessResume on the client in TLS 1.3. */ if (ss->statelessResume && ss->xtnData.sentSessionTicketInClientHello) { rv = tls13_WriteExtensionsWithBinder(ss, &extensionBuf); } else { rv = ssl3_AppendBufferToHandshakeVariable(ss, &extensionBuf, 2); } if (rv != SECSuccess) { goto loser; /* err set by AppendHandshake. */ } } sslBuffer_Clear(&extensionBuf); if (unlockNeeded) { /* Note: goto loser can't be used past this point. */ PR_RWLock_Unlock(sid->u.ssl3.lock); } if (ss->xtnData.sentSessionTicketInClientHello) { SSL_AtomicIncrementLong(&ssl3stats.sch_sid_stateless_resumes); } if (ss->ssl3.hs.sendingSCSV) { /* Since we sent the SCSV, pretend we sent empty RI extension. */ TLSExtensionData *xtnData = &ss->xtnData; xtnData->advertised[xtnData->numAdvertised++] = ssl_renegotiation_info_xtn; } flags = 0; rv = ssl3_FlushHandshake(ss, flags); if (rv != SECSuccess) { return rv; /* error code set by ssl3_FlushHandshake */ } if (version >= SSL_LIBRARY_VERSION_TLS_1_3) { rv = tls13_MaybeDo0RTTHandshake(ss); if (rv != SECSuccess) { return SECFailure; /* error code set already. */ } } ss->ssl3.hs.ws = wait_server_hello; return SECSuccess; loser: if (unlockNeeded) { PR_RWLock_Unlock(sid->u.ssl3.lock); } sslBuffer_Clear(&extensionBuf); return SECFailure; } /* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered a * complete ssl3 Hello Request. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleHelloRequest(sslSocket *ss) { sslSessionID *sid = ss->sec.ci.sid; SECStatus rv; SSL_TRC(3, ("%d: SSL3[%d]: handle hello_request handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->version < SSL_LIBRARY_VERSION_TLS_1_3); if (ss->ssl3.hs.ws == wait_server_hello) return SECSuccess; if (ss->ssl3.hs.ws != idle_handshake || ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_REQUEST); return SECFailure; } if (ss->opt.enableRenegotiation == SSL_RENEGOTIATE_NEVER) { (void)SSL3_SendAlert(ss, alert_warning, no_renegotiation); PORT_SetError(SSL_ERROR_RENEGOTIATION_NOT_ALLOWED); return SECFailure; } if (sid) { ssl_UncacheSessionID(ss); ssl_FreeSID(sid); ss->sec.ci.sid = NULL; } if (IS_DTLS(ss)) { dtls_RehandshakeCleanup(ss); } ssl_GetXmitBufLock(ss); rv = ssl3_SendClientHello(ss, client_hello_renegotiation); ssl_ReleaseXmitBufLock(ss); return rv; } static const CK_MECHANISM_TYPE wrapMechanismList[SSL_NUM_WRAP_MECHS] = { CKM_DES3_ECB, CKM_CAST5_ECB, CKM_DES_ECB, CKM_KEY_WRAP_LYNKS, CKM_IDEA_ECB, CKM_CAST3_ECB, CKM_CAST_ECB, CKM_RC5_ECB, CKM_RC2_ECB, CKM_CDMF_ECB, CKM_SKIPJACK_WRAP, CKM_SKIPJACK_CBC64, CKM_AES_ECB, CKM_CAMELLIA_ECB, CKM_SEED_ECB }; static SECStatus ssl_FindIndexByWrapMechanism(CK_MECHANISM_TYPE mech, unsigned int *wrapMechIndex) { unsigned int i; for (i = 0; i < SSL_NUM_WRAP_MECHS; ++i) { if (wrapMechanismList[i] == mech) { *wrapMechIndex = i; return SECSuccess; } } PORT_Assert(0); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } /* Each process sharing the server session ID cache has its own array of SymKey * pointers for the symmetric wrapping keys that are used to wrap the master * secrets. There is one key for each authentication type. These Symkeys * correspond to the wrapped SymKeys kept in the server session cache. */ const SSLAuthType ssl_wrap_key_auth_type[SSL_NUM_WRAP_KEYS] = { ssl_auth_rsa_decrypt, ssl_auth_rsa_sign, ssl_auth_rsa_pss, ssl_auth_ecdsa, ssl_auth_ecdh_rsa, ssl_auth_ecdh_ecdsa }; static SECStatus ssl_FindIndexByWrapKey(const sslServerCert *serverCert, unsigned int *wrapKeyIndex) { unsigned int i; for (i = 0; i < SSL_NUM_WRAP_KEYS; ++i) { if (SSL_CERT_IS(serverCert, ssl_wrap_key_auth_type[i])) { *wrapKeyIndex = i; return SECSuccess; } } /* Can't assert here because we still get people using DSA certificates. */ PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } static PK11SymKey * ssl_UnwrapSymWrappingKey( SSLWrappedSymWrappingKey *pWswk, SECKEYPrivateKey *svrPrivKey, unsigned int wrapKeyIndex, CK_MECHANISM_TYPE masterWrapMech, void *pwArg) { PK11SymKey *unwrappedWrappingKey = NULL; SECItem wrappedKey; PK11SymKey *Ks; SECKEYPublicKey pubWrapKey; ECCWrappedKeyInfo *ecWrapped; /* found the wrapping key on disk. */ PORT_Assert(pWswk->symWrapMechanism == masterWrapMech); PORT_Assert(pWswk->wrapKeyIndex == wrapKeyIndex); if (pWswk->symWrapMechanism != masterWrapMech || pWswk->wrapKeyIndex != wrapKeyIndex) { goto loser; } wrappedKey.type = siBuffer; wrappedKey.data = pWswk->wrappedSymmetricWrappingkey; wrappedKey.len = pWswk->wrappedSymKeyLen; PORT_Assert(wrappedKey.len <= sizeof pWswk->wrappedSymmetricWrappingkey); switch (ssl_wrap_key_auth_type[wrapKeyIndex]) { case ssl_auth_rsa_decrypt: case ssl_auth_rsa_sign: /* bad: see Bug 1248320 */ unwrappedWrappingKey = PK11_PubUnwrapSymKey(svrPrivKey, &wrappedKey, masterWrapMech, CKA_UNWRAP, 0); break; case ssl_auth_ecdsa: case ssl_auth_ecdh_rsa: case ssl_auth_ecdh_ecdsa: /* * For ssl_auth_ecd*, we first create an EC public key based on * data stored with the wrappedSymmetricWrappingkey. Next, * we do an ECDH computation involving this public key and * the SSL server's (long-term) EC private key. The resulting * shared secret is treated the same way as Fortezza's Ks, i.e., * it is used to recover the symmetric wrapping key. * * The data in wrappedSymmetricWrappingkey is laid out as defined * in the ECCWrappedKeyInfo structure. */ ecWrapped = (ECCWrappedKeyInfo *)pWswk->wrappedSymmetricWrappingkey; PORT_Assert(ecWrapped->encodedParamLen + ecWrapped->pubValueLen + ecWrapped->wrappedKeyLen <= MAX_EC_WRAPPED_KEY_BUFLEN); if (ecWrapped->encodedParamLen + ecWrapped->pubValueLen + ecWrapped->wrappedKeyLen > MAX_EC_WRAPPED_KEY_BUFLEN) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); goto loser; } pubWrapKey.keyType = ecKey; pubWrapKey.u.ec.size = ecWrapped->size; pubWrapKey.u.ec.DEREncodedParams.len = ecWrapped->encodedParamLen; pubWrapKey.u.ec.DEREncodedParams.data = ecWrapped->var; pubWrapKey.u.ec.publicValue.len = ecWrapped->pubValueLen; pubWrapKey.u.ec.publicValue.data = ecWrapped->var + ecWrapped->encodedParamLen; wrappedKey.len = ecWrapped->wrappedKeyLen; wrappedKey.data = ecWrapped->var + ecWrapped->encodedParamLen + ecWrapped->pubValueLen; /* Derive Ks using ECDH */ Ks = PK11_PubDeriveWithKDF(svrPrivKey, &pubWrapKey, PR_FALSE, NULL, NULL, CKM_ECDH1_DERIVE, masterWrapMech, CKA_DERIVE, 0, CKD_NULL, NULL, NULL); if (Ks == NULL) { goto loser; } /* Use Ks to unwrap the wrapping key */ unwrappedWrappingKey = PK11_UnwrapSymKey(Ks, masterWrapMech, NULL, &wrappedKey, masterWrapMech, CKA_UNWRAP, 0); PK11_FreeSymKey(Ks); break; default: PORT_Assert(0); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); goto loser; } loser: return unwrappedWrappingKey; } typedef struct { PK11SymKey *symWrapKey[SSL_NUM_WRAP_KEYS]; } ssl3SymWrapKey; static PZLock *symWrapKeysLock = NULL; static ssl3SymWrapKey symWrapKeys[SSL_NUM_WRAP_MECHS]; SECStatus ssl_FreeSymWrapKeysLock(void) { if (symWrapKeysLock) { PZ_DestroyLock(symWrapKeysLock); symWrapKeysLock = NULL; return SECSuccess; } PORT_SetError(SEC_ERROR_NOT_INITIALIZED); return SECFailure; } SECStatus SSL3_ShutdownServerCache(void) { int i, j; if (!symWrapKeysLock) return SECSuccess; /* lock was never initialized */ PZ_Lock(symWrapKeysLock); /* get rid of all symWrapKeys */ for (i = 0; i < SSL_NUM_WRAP_MECHS; ++i) { for (j = 0; j < SSL_NUM_WRAP_KEYS; ++j) { PK11SymKey **pSymWrapKey; pSymWrapKey = &symWrapKeys[i].symWrapKey[j]; if (*pSymWrapKey) { PK11_FreeSymKey(*pSymWrapKey); *pSymWrapKey = NULL; } } } PZ_Unlock(symWrapKeysLock); ssl_FreeSessionCacheLocks(); return SECSuccess; } SECStatus ssl_InitSymWrapKeysLock(void) { symWrapKeysLock = PZ_NewLock(nssILockOther); return symWrapKeysLock ? SECSuccess : SECFailure; } /* Try to get wrapping key for mechanism from in-memory array. * If that fails, look for one on disk. * If that fails, generate a new one, put the new one on disk, * Put the new key in the in-memory array. * * Note that this function performs some fairly inadvisable functions with * certificate private keys. ECDSA keys are used with ECDH; similarly, RSA * signing keys are used to encrypt. Bug 1248320. */ PK11SymKey * ssl3_GetWrappingKey(sslSocket *ss, PK11SlotInfo *masterSecretSlot, CK_MECHANISM_TYPE masterWrapMech, void *pwArg) { SSLAuthType authType; SECKEYPrivateKey *svrPrivKey; SECKEYPublicKey *svrPubKey = NULL; PK11SymKey *unwrappedWrappingKey = NULL; PK11SymKey **pSymWrapKey; CK_MECHANISM_TYPE asymWrapMechanism = CKM_INVALID_MECHANISM; int length; unsigned int wrapMechIndex; unsigned int wrapKeyIndex; SECStatus rv; SECItem wrappedKey; SSLWrappedSymWrappingKey wswk; PK11SymKey *Ks = NULL; SECKEYPublicKey *pubWrapKey = NULL; SECKEYPrivateKey *privWrapKey = NULL; ECCWrappedKeyInfo *ecWrapped; const sslServerCert *serverCert = ss->sec.serverCert; PORT_Assert(serverCert); PORT_Assert(serverCert->serverKeyPair); PORT_Assert(serverCert->serverKeyPair->privKey); PORT_Assert(serverCert->serverKeyPair->pubKey); if (!serverCert || !serverCert->serverKeyPair || !serverCert->serverKeyPair->privKey || !serverCert->serverKeyPair->pubKey) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return NULL; /* hmm */ } rv = ssl_FindIndexByWrapKey(serverCert, &wrapKeyIndex); if (rv != SECSuccess) return NULL; /* unusable wrapping key. */ rv = ssl_FindIndexByWrapMechanism(masterWrapMech, &wrapMechIndex); if (rv != SECSuccess) return NULL; /* invalid masterWrapMech. */ authType = ssl_wrap_key_auth_type[wrapKeyIndex]; svrPrivKey = serverCert->serverKeyPair->privKey; pSymWrapKey = &symWrapKeys[wrapMechIndex].symWrapKey[wrapKeyIndex]; ssl_InitSessionCacheLocks(PR_TRUE); PZ_Lock(symWrapKeysLock); unwrappedWrappingKey = *pSymWrapKey; if (unwrappedWrappingKey != NULL) { if (PK11_VerifyKeyOK(unwrappedWrappingKey)) { unwrappedWrappingKey = PK11_ReferenceSymKey(unwrappedWrappingKey); goto done; } /* slot series has changed, so this key is no good any more. */ PK11_FreeSymKey(unwrappedWrappingKey); *pSymWrapKey = unwrappedWrappingKey = NULL; } /* Try to get wrapped SymWrapping key out of the (disk) cache. */ /* Following call fills in wswk on success. */ rv = ssl_GetWrappingKey(wrapMechIndex, wrapKeyIndex, &wswk); if (rv == SECSuccess) { /* found the wrapped sym wrapping key on disk. */ unwrappedWrappingKey = ssl_UnwrapSymWrappingKey(&wswk, svrPrivKey, wrapKeyIndex, masterWrapMech, pwArg); if (unwrappedWrappingKey) { goto install; } } if (!masterSecretSlot) /* caller doesn't want to create a new one. */ goto loser; length = PK11_GetBestKeyLength(masterSecretSlot, masterWrapMech); /* Zero length means fixed key length algorithm, or error. * It's ambiguous. */ unwrappedWrappingKey = PK11_KeyGen(masterSecretSlot, masterWrapMech, NULL, length, pwArg); if (!unwrappedWrappingKey) { goto loser; } /* Prepare the buffer to receive the wrappedWrappingKey, * the symmetric wrapping key wrapped using the server's pub key. */ PORT_Memset(&wswk, 0, sizeof wswk); /* eliminate UMRs. */ svrPubKey = serverCert->serverKeyPair->pubKey; wrappedKey.type = siBuffer; wrappedKey.len = SECKEY_PublicKeyStrength(svrPubKey); wrappedKey.data = wswk.wrappedSymmetricWrappingkey; PORT_Assert(wrappedKey.len <= sizeof wswk.wrappedSymmetricWrappingkey); if (wrappedKey.len > sizeof wswk.wrappedSymmetricWrappingkey) goto loser; /* wrap symmetric wrapping key in server's public key. */ switch (authType) { case ssl_auth_rsa_decrypt: case ssl_auth_rsa_sign: /* bad: see Bug 1248320 */ case ssl_auth_rsa_pss: asymWrapMechanism = CKM_RSA_PKCS; rv = PK11_PubWrapSymKey(asymWrapMechanism, svrPubKey, unwrappedWrappingKey, &wrappedKey); break; case ssl_auth_ecdsa: case ssl_auth_ecdh_rsa: case ssl_auth_ecdh_ecdsa: /* * We generate an ephemeral EC key pair. Perform an ECDH * computation involving this ephemeral EC public key and * the SSL server's (long-term) EC private key. The resulting * shared secret is treated in the same way as Fortezza's Ks, * i.e., it is used to wrap the wrapping key. To facilitate * unwrapping in ssl_UnwrapWrappingKey, we also store all * relevant info about the ephemeral EC public key in * wswk.wrappedSymmetricWrappingkey and lay it out as * described in the ECCWrappedKeyInfo structure. */ PORT_Assert(SECKEY_GetPublicKeyType(svrPubKey) == ecKey); if (SECKEY_GetPublicKeyType(svrPubKey) != ecKey) { /* something is wrong in sslsecur.c if this isn't an ecKey */ PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); rv = SECFailure; goto ec_cleanup; } privWrapKey = SECKEY_CreateECPrivateKey( &svrPubKey->u.ec.DEREncodedParams, &pubWrapKey, NULL); if ((privWrapKey == NULL) || (pubWrapKey == NULL)) { rv = SECFailure; goto ec_cleanup; } /* Set the key size in bits */ if (pubWrapKey->u.ec.size == 0) { pubWrapKey->u.ec.size = SECKEY_PublicKeyStrengthInBits(svrPubKey); } PORT_Assert(pubWrapKey->u.ec.DEREncodedParams.len + pubWrapKey->u.ec.publicValue.len < MAX_EC_WRAPPED_KEY_BUFLEN); if (pubWrapKey->u.ec.DEREncodedParams.len + pubWrapKey->u.ec.publicValue.len >= MAX_EC_WRAPPED_KEY_BUFLEN) { PORT_SetError(SEC_ERROR_INVALID_KEY); rv = SECFailure; goto ec_cleanup; } /* Derive Ks using ECDH */ Ks = PK11_PubDeriveWithKDF(svrPrivKey, pubWrapKey, PR_FALSE, NULL, NULL, CKM_ECDH1_DERIVE, masterWrapMech, CKA_DERIVE, 0, CKD_NULL, NULL, NULL); if (Ks == NULL) { rv = SECFailure; goto ec_cleanup; } ecWrapped = (ECCWrappedKeyInfo *)(wswk.wrappedSymmetricWrappingkey); ecWrapped->size = pubWrapKey->u.ec.size; ecWrapped->encodedParamLen = pubWrapKey->u.ec.DEREncodedParams.len; PORT_Memcpy(ecWrapped->var, pubWrapKey->u.ec.DEREncodedParams.data, pubWrapKey->u.ec.DEREncodedParams.len); ecWrapped->pubValueLen = pubWrapKey->u.ec.publicValue.len; PORT_Memcpy(ecWrapped->var + ecWrapped->encodedParamLen, pubWrapKey->u.ec.publicValue.data, pubWrapKey->u.ec.publicValue.len); wrappedKey.len = MAX_EC_WRAPPED_KEY_BUFLEN - (ecWrapped->encodedParamLen + ecWrapped->pubValueLen); wrappedKey.data = ecWrapped->var + ecWrapped->encodedParamLen + ecWrapped->pubValueLen; /* wrap symmetricWrapping key with the local Ks */ rv = PK11_WrapSymKey(masterWrapMech, NULL, Ks, unwrappedWrappingKey, &wrappedKey); if (rv != SECSuccess) { goto ec_cleanup; } /* Write down the length of wrapped key in the buffer * wswk.wrappedSymmetricWrappingkey at the appropriate offset */ ecWrapped->wrappedKeyLen = wrappedKey.len; ec_cleanup: if (privWrapKey) SECKEY_DestroyPrivateKey(privWrapKey); if (pubWrapKey) SECKEY_DestroyPublicKey(pubWrapKey); if (Ks) PK11_FreeSymKey(Ks); asymWrapMechanism = masterWrapMech; break; default: rv = SECFailure; break; } if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); goto loser; } PORT_Assert(asymWrapMechanism != CKM_INVALID_MECHANISM); wswk.symWrapMechanism = masterWrapMech; wswk.asymWrapMechanism = asymWrapMechanism; wswk.wrapMechIndex = wrapMechIndex; wswk.wrapKeyIndex = wrapKeyIndex; wswk.wrappedSymKeyLen = wrappedKey.len; /* put it on disk. */ /* If the wrapping key for this KEA type has already been set, * then abandon the value we just computed and * use the one we got from the disk. */ rv = ssl_SetWrappingKey(&wswk); if (rv == SECSuccess) { /* somebody beat us to it. The original contents of our wswk * has been replaced with the content on disk. Now, discard * the key we just created and unwrap this new one. */ PK11_FreeSymKey(unwrappedWrappingKey); unwrappedWrappingKey = ssl_UnwrapSymWrappingKey(&wswk, svrPrivKey, wrapKeyIndex, masterWrapMech, pwArg); } install: if (unwrappedWrappingKey) { *pSymWrapKey = PK11_ReferenceSymKey(unwrappedWrappingKey); } loser: done: PZ_Unlock(symWrapKeysLock); return unwrappedWrappingKey; } #ifdef NSS_ALLOW_SSLKEYLOGFILE /* hexEncode hex encodes |length| bytes from |in| and writes it as |length*2| * bytes to |out|. */ static void hexEncode(char *out, const unsigned char *in, unsigned int length) { static const char hextable[] = "0123456789abcdef"; unsigned int i; for (i = 0; i < length; i++) { *(out++) = hextable[in[i] >> 4]; *(out++) = hextable[in[i] & 15]; } } #endif /* Called from ssl3_SendClientKeyExchange(). */ static SECStatus ssl3_SendRSAClientKeyExchange(sslSocket *ss, SECKEYPublicKey *svrPubKey) { PK11SymKey *pms = NULL; SECStatus rv = SECFailure; SECItem enc_pms = { siBuffer, NULL, 0 }; PRBool isTLS; PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); /* Generate the pre-master secret ... */ ssl_GetSpecWriteLock(ss); isTLS = (PRBool)(ss->version > SSL_LIBRARY_VERSION_3_0); pms = ssl3_GenerateRSAPMS(ss, ss->ssl3.pwSpec, NULL); ssl_ReleaseSpecWriteLock(ss); if (pms == NULL) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); goto loser; } /* Get the wrapped (encrypted) pre-master secret, enc_pms */ unsigned int svrPubKeyBits = SECKEY_PublicKeyStrengthInBits(svrPubKey); enc_pms.len = (svrPubKeyBits + 7) / 8; /* Check that the RSA key isn't larger than 8k bit. */ if (svrPubKeyBits > SSL_MAX_RSA_KEY_BITS) { (void)SSL3_SendAlert(ss, alert_fatal, illegal_parameter); ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); goto loser; } enc_pms.data = (unsigned char *)PORT_Alloc(enc_pms.len); if (enc_pms.data == NULL) { goto loser; /* err set by PORT_Alloc */ } /* Wrap pre-master secret in server's public key. */ rv = PK11_PubWrapSymKey(CKM_RSA_PKCS, svrPubKey, pms, &enc_pms); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); goto loser; } #ifdef TRACE if (ssl_trace >= 100) { SECStatus extractRV = PK11_ExtractKeyValue(pms); if (extractRV == SECSuccess) { SECItem *keyData = PK11_GetKeyData(pms); if (keyData && keyData->data && keyData->len) { ssl_PrintBuf(ss, "Pre-Master Secret", keyData->data, keyData->len); } } } #endif rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_client_key_exchange, isTLS ? enc_pms.len + 2 : enc_pms.len); if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } if (isTLS) { rv = ssl3_AppendHandshakeVariable(ss, enc_pms.data, enc_pms.len, 2); } else { rv = ssl3_AppendHandshake(ss, enc_pms.data, enc_pms.len); } if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } rv = ssl3_InitPendingCipherSpecs(ss, pms, PR_TRUE); PK11_FreeSymKey(pms); pms = NULL; if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); goto loser; } rv = SECSuccess; loser: if (enc_pms.data != NULL) { PORT_Free(enc_pms.data); } if (pms != NULL) { PK11_FreeSymKey(pms); } return rv; } /* DH shares need to be padded to the size of their prime. Some implementations * require this. TLS 1.3 also requires this. */ SECStatus ssl_AppendPaddedDHKeyShare(sslBuffer *buf, const SECKEYPublicKey *pubKey, PRBool appendLength) { SECStatus rv; unsigned int pad = pubKey->u.dh.prime.len - pubKey->u.dh.publicValue.len; if (appendLength) { rv = sslBuffer_AppendNumber(buf, pubKey->u.dh.prime.len, 2); if (rv != SECSuccess) { return rv; } } while (pad) { rv = sslBuffer_AppendNumber(buf, 0, 1); if (rv != SECSuccess) { return rv; } --pad; } rv = sslBuffer_Append(buf, pubKey->u.dh.publicValue.data, pubKey->u.dh.publicValue.len); if (rv != SECSuccess) { return rv; } return SECSuccess; } /* Called from ssl3_SendClientKeyExchange(). */ static SECStatus ssl3_SendDHClientKeyExchange(sslSocket *ss, SECKEYPublicKey *svrPubKey) { PK11SymKey *pms = NULL; SECStatus rv; PRBool isTLS; CK_MECHANISM_TYPE target; const ssl3DHParams *params; ssl3DHParams customParams; const sslNamedGroupDef *groupDef; static const sslNamedGroupDef customGroupDef = { ssl_grp_ffdhe_custom, 0, ssl_kea_dh, SEC_OID_TLS_DHE_CUSTOM, PR_FALSE }; sslEphemeralKeyPair *keyPair = NULL; SECKEYPublicKey *pubKey; PRUint8 dhData[SSL_MAX_DH_KEY_BITS / 8 + 2]; sslBuffer dhBuf = SSL_BUFFER(dhData); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); isTLS = (PRBool)(ss->version > SSL_LIBRARY_VERSION_3_0); /* Copy DH parameters from server key */ if (SECKEY_GetPublicKeyType(svrPubKey) != dhKey) { PORT_SetError(SEC_ERROR_BAD_KEY); return SECFailure; } /* Work out the parameters. */ rv = ssl_ValidateDHENamedGroup(ss, &svrPubKey->u.dh.prime, &svrPubKey->u.dh.base, &groupDef, ¶ms); if (rv != SECSuccess) { /* If we require named groups, we will have already validated the group * in ssl_HandleDHServerKeyExchange() */ PORT_Assert(!ss->opt.requireDHENamedGroups && !ss->xtnData.peerSupportsFfdheGroups); customParams.name = ssl_grp_ffdhe_custom; customParams.prime.data = svrPubKey->u.dh.prime.data; customParams.prime.len = svrPubKey->u.dh.prime.len; customParams.base.data = svrPubKey->u.dh.base.data; customParams.base.len = svrPubKey->u.dh.base.len; params = &customParams; groupDef = &customGroupDef; } ss->sec.keaGroup = groupDef; rv = ssl_CreateDHEKeyPair(groupDef, params, &keyPair); if (rv != SECSuccess) { ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL); goto loser; } pubKey = keyPair->keys->pubKey; PRINT_BUF(50, (ss, "DH public value:", pubKey->u.dh.publicValue.data, pubKey->u.dh.publicValue.len)); if (isTLS) target = CKM_TLS_MASTER_KEY_DERIVE_DH; else target = CKM_SSL3_MASTER_KEY_DERIVE_DH; /* Determine the PMS */ pms = PK11_PubDerive(keyPair->keys->privKey, svrPubKey, PR_FALSE, NULL, NULL, CKM_DH_PKCS_DERIVE, target, CKA_DERIVE, 0, NULL); if (pms == NULL) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); goto loser; } /* Note: send the DH share padded to avoid triggering bugs. */ rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_client_key_exchange, params->prime.len + 2); if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendHandshake* */ } rv = ssl_AppendPaddedDHKeyShare(&dhBuf, pubKey, PR_TRUE); if (rv != SECSuccess) { goto loser; /* err set by ssl_AppendPaddedDHKeyShare */ } rv = ssl3_AppendBufferToHandshake(ss, &dhBuf); if (rv != SECSuccess) { goto loser; /* err set by ssl3_AppendBufferToHandshake */ } rv = ssl3_InitPendingCipherSpecs(ss, pms, PR_TRUE); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); goto loser; } sslBuffer_Clear(&dhBuf); PK11_FreeSymKey(pms); ssl_FreeEphemeralKeyPair(keyPair); return SECSuccess; loser: if (pms) PK11_FreeSymKey(pms); if (keyPair) ssl_FreeEphemeralKeyPair(keyPair); sslBuffer_Clear(&dhBuf); return SECFailure; } /* Called from ssl3_HandleServerHelloDone(). */ static SECStatus ssl3_SendClientKeyExchange(sslSocket *ss) { SECKEYPublicKey *serverKey = NULL; SECStatus rv = SECFailure; SSL_TRC(3, ("%d: SSL3[%d]: send client_key_exchange handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (ss->sec.peerKey == NULL) { serverKey = CERT_ExtractPublicKey(ss->sec.peerCert); if (serverKey == NULL) { ssl_MapLowLevelError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE); return SECFailure; } } else { serverKey = ss->sec.peerKey; ss->sec.peerKey = NULL; /* we're done with it now */ } ss->sec.keaType = ss->ssl3.hs.kea_def->exchKeyType; ss->sec.keaKeyBits = SECKEY_PublicKeyStrengthInBits(serverKey); switch (ss->ssl3.hs.kea_def->exchKeyType) { case ssl_kea_rsa: rv = ssl3_SendRSAClientKeyExchange(ss, serverKey); break; case ssl_kea_dh: rv = ssl3_SendDHClientKeyExchange(ss, serverKey); break; case ssl_kea_ecdh: rv = ssl3_SendECDHClientKeyExchange(ss, serverKey); break; default: PORT_Assert(0); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); break; } SSL_TRC(3, ("%d: SSL3[%d]: DONE sending client_key_exchange", SSL_GETPID(), ss->fd)); SECKEY_DestroyPublicKey(serverKey); return rv; /* err code already set. */ } /* Used by ssl_PickSignatureScheme(). */ PRBool ssl_CanUseSignatureScheme(SSLSignatureScheme scheme, const SSLSignatureScheme *peerSchemes, unsigned int peerSchemeCount, PRBool requireSha1, PRBool slotDoesPss) { SSLHashType hashType; SECOidTag hashOID; PRUint32 policy; unsigned int i; /* Skip RSA-PSS schemes when the certificate's private key slot does * not support this signature mechanism. */ if (ssl_IsRsaPssSignatureScheme(scheme) && !slotDoesPss) { return PR_FALSE; } if (ssl_IsDsaSignatureScheme(scheme) && (NSS_GetAlgorithmPolicy(SEC_OID_ANSIX9_DSA_SIGNATURE, &policy) == SECSuccess) && !(policy & NSS_USE_ALG_IN_SSL_KX)) { return PR_FALSE; } hashType = ssl_SignatureSchemeToHashType(scheme); if (requireSha1 && (hashType != ssl_hash_sha1)) { return PR_FALSE; } hashOID = ssl3_HashTypeToOID(hashType); if ((NSS_GetAlgorithmPolicy(hashOID, &policy) == SECSuccess) && !(policy & NSS_USE_ALG_IN_SSL_KX)) { return PR_FALSE; } for (i = 0; i < peerSchemeCount; i++) { if (peerSchemes[i] == scheme) { return PR_TRUE; } } return PR_FALSE; } SECStatus ssl_PrivateKeySupportsRsaPss(SECKEYPrivateKey *privKey, PRBool *supportsRsaPss) { PK11SlotInfo *slot; slot = PK11_GetSlotFromPrivateKey(privKey); if (!slot) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } *supportsRsaPss = PK11_DoesMechanism(slot, auth_alg_defs[ssl_auth_rsa_pss]); PK11_FreeSlot(slot); return SECSuccess; } SECStatus ssl_PickSignatureScheme(sslSocket *ss, CERTCertificate *cert, SECKEYPublicKey *pubKey, SECKEYPrivateKey *privKey, const SSLSignatureScheme *peerSchemes, unsigned int peerSchemeCount, PRBool requireSha1) { unsigned int i; PRBool doesRsaPss; PRBool isTLS13 = ss->version >= SSL_LIBRARY_VERSION_TLS_1_3; SECStatus rv; SSLSignatureScheme scheme; SECOidTag spkiOid; /* We can't require SHA-1 in TLS 1.3. */ PORT_Assert(!(requireSha1 && isTLS13)); if (!pubKey || !privKey) { PORT_Assert(0); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } rv = ssl_PrivateKeySupportsRsaPss(privKey, &doesRsaPss); if (rv != SECSuccess) { return SECFailure; } /* If the certificate SPKI indicates a single scheme, don't search. */ rv = ssl_SignatureSchemeFromSpki(&cert->subjectPublicKeyInfo, isTLS13, &scheme); if (rv != SECSuccess) { return SECFailure; } if (scheme != ssl_sig_none) { if (!ssl_SignatureSchemeEnabled(ss, scheme) || !ssl_CanUseSignatureScheme(scheme, peerSchemes, peerSchemeCount, requireSha1, doesRsaPss)) { PORT_SetError(SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM); return SECFailure; } ss->ssl3.hs.signatureScheme = scheme; return SECSuccess; } spkiOid = SECOID_GetAlgorithmTag(&cert->subjectPublicKeyInfo.algorithm); /* Now we have to search based on the key type. Go through our preferred * schemes in order and find the first that can be used. */ for (i = 0; i < ss->ssl3.signatureSchemeCount; ++i) { scheme = ss->ssl3.signatureSchemes[i]; if (ssl_SignatureSchemeValid(scheme, spkiOid, isTLS13) && ssl_CanUseSignatureScheme(scheme, peerSchemes, peerSchemeCount, requireSha1, doesRsaPss)) { ss->ssl3.hs.signatureScheme = scheme; return SECSuccess; } } PORT_SetError(SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM); return SECFailure; } static SECStatus ssl_PickFallbackSignatureScheme(sslSocket *ss, SECKEYPublicKey *pubKey) { PRBool isTLS12 = ss->version >= SSL_LIBRARY_VERSION_TLS_1_2; switch (SECKEY_GetPublicKeyType(pubKey)) { case rsaKey: if (isTLS12) { ss->ssl3.hs.signatureScheme = ssl_sig_rsa_pkcs1_sha1; } else { ss->ssl3.hs.signatureScheme = ssl_sig_rsa_pkcs1_sha1md5; } break; case ecKey: ss->ssl3.hs.signatureScheme = ssl_sig_ecdsa_sha1; break; case dsaKey: ss->ssl3.hs.signatureScheme = ssl_sig_dsa_sha1; break; default: PORT_Assert(0); PORT_SetError(SEC_ERROR_INVALID_KEY); return SECFailure; } return SECSuccess; } /* ssl3_PickServerSignatureScheme selects a signature scheme for signing the * handshake. Most of this is determined by the key pair we are using. * Prior to TLS 1.2, the MD5/SHA1 combination is always used. With TLS 1.2, a * client may advertise its support for signature and hash combinations. */ static SECStatus ssl3_PickServerSignatureScheme(sslSocket *ss) { const sslServerCert *cert = ss->sec.serverCert; PRBool isTLS12 = ss->version >= SSL_LIBRARY_VERSION_TLS_1_2; if (!isTLS12 || !ssl3_ExtensionNegotiated(ss, ssl_signature_algorithms_xtn)) { /* If the client didn't provide any signature_algorithms extension then * we can assume that they support SHA-1: RFC5246, Section 7.4.1.4.1. */ return ssl_PickFallbackSignatureScheme(ss, cert->serverKeyPair->pubKey); } /* Sets error code, if needed. */ return ssl_PickSignatureScheme(ss, cert->serverCert, cert->serverKeyPair->pubKey, cert->serverKeyPair->privKey, ss->xtnData.sigSchemes, ss->xtnData.numSigSchemes, PR_FALSE /* requireSha1 */); } static SECStatus ssl_PickClientSignatureScheme(sslSocket *ss, const SSLSignatureScheme *schemes, unsigned int numSchemes) { SECKEYPrivateKey *privKey = ss->ssl3.clientPrivateKey; SECStatus rv; PRBool isTLS13 = (PRBool)ss->version >= SSL_LIBRARY_VERSION_TLS_1_3; SECKEYPublicKey *pubKey = CERT_ExtractPublicKey(ss->ssl3.clientCertificate); PORT_Assert(pubKey); if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_2) { /* We should have already checked that a signature scheme was * listed in the request. */ PORT_Assert(schemes && numSchemes > 0); } if (!isTLS13 && (SECKEY_GetPublicKeyType(pubKey) == rsaKey || SECKEY_GetPublicKeyType(pubKey) == dsaKey) && SECKEY_PublicKeyStrengthInBits(pubKey) <= 1024) { /* If the key is a 1024-bit RSA or DSA key, assume conservatively that * it may be unable to sign SHA-256 hashes. This is the case for older * Estonian ID cards that have 1024-bit RSA keys. In FIPS 186-2 and * older, DSA key size is at most 1024 bits and the hash function must * be SHA-1. */ rv = ssl_PickSignatureScheme(ss, ss->ssl3.clientCertificate, pubKey, privKey, schemes, numSchemes, PR_TRUE /* requireSha1 */); if (rv == SECSuccess) { SECKEY_DestroyPublicKey(pubKey); return SECSuccess; } /* If this fails, that's because the peer doesn't advertise SHA-1, * so fall back to the full negotiation. */ } rv = ssl_PickSignatureScheme(ss, ss->ssl3.clientCertificate, pubKey, privKey, schemes, numSchemes, PR_FALSE /* requireSha1 */); SECKEY_DestroyPublicKey(pubKey); return rv; } /* Called from ssl3_HandleServerHelloDone(). */ static SECStatus ssl3_SendCertificateVerify(sslSocket *ss, SECKEYPrivateKey *privKey) { SECStatus rv = SECFailure; PRBool isTLS12; SECItem buf = { siBuffer, NULL, 0 }; SSL3Hashes hashes; unsigned int len; SSLHashType hashAlg; PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); SSL_TRC(3, ("%d: SSL3[%d]: send certificate_verify handshake", SSL_GETPID(), ss->fd)); ssl_GetSpecReadLock(ss); if (ss->ssl3.hs.hashType == handshake_hash_record) { hashAlg = ssl_SignatureSchemeToHashType(ss->ssl3.hs.signatureScheme); } else { /* Use ssl_hash_none to represent the MD5+SHA1 combo. */ hashAlg = ssl_hash_none; } if (ss->ssl3.hs.hashType == handshake_hash_record && hashAlg != ssl3_GetSuitePrfHash(ss)) { rv = ssl3_ComputeHandshakeHash(ss->ssl3.hs.messages.buf, ss->ssl3.hs.messages.len, hashAlg, &hashes); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); } } else { rv = ssl3_ComputeHandshakeHashes(ss, ss->ssl3.pwSpec, &hashes, 0); } ssl_ReleaseSpecReadLock(ss); if (rv != SECSuccess) { goto done; /* err code was set by ssl3_ComputeHandshakeHash(es) */ } isTLS12 = (PRBool)(ss->version == SSL_LIBRARY_VERSION_TLS_1_2); PORT_Assert(ss->version <= SSL_LIBRARY_VERSION_TLS_1_2); rv = ssl3_SignHashes(ss, &hashes, privKey, &buf); if (rv == SECSuccess && !ss->sec.isServer) { /* Remember the info about the slot that did the signing. ** Later, when doing an SSL restart handshake, verify this. ** These calls are mere accessors, and can't fail. */ PK11SlotInfo *slot; sslSessionID *sid = ss->sec.ci.sid; slot = PK11_GetSlotFromPrivateKey(privKey); sid->u.ssl3.clAuthSeries = PK11_GetSlotSeries(slot); sid->u.ssl3.clAuthSlotID = PK11_GetSlotID(slot); sid->u.ssl3.clAuthModuleID = PK11_GetModuleID(slot); sid->u.ssl3.clAuthValid = PR_TRUE; PK11_FreeSlot(slot); } if (rv != SECSuccess) { goto done; /* err code was set by ssl3_SignHashes */ } len = buf.len + 2 + (isTLS12 ? 2 : 0); rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_certificate_verify, len); if (rv != SECSuccess) { goto done; /* error code set by AppendHandshake */ } if (isTLS12) { rv = ssl3_AppendHandshakeNumber(ss, ss->ssl3.hs.signatureScheme, 2); if (rv != SECSuccess) { goto done; /* err set by AppendHandshake. */ } } rv = ssl3_AppendHandshakeVariable(ss, buf.data, buf.len, 2); if (rv != SECSuccess) { goto done; /* error code set by AppendHandshake */ } done: if (buf.data) PORT_Free(buf.data); return rv; } /* Once a cipher suite has been selected, make sure that the necessary secondary * information is properly set. */ SECStatus ssl3_SetupCipherSuite(sslSocket *ss, PRBool initHashes) { ss->ssl3.hs.suite_def = ssl_LookupCipherSuiteDef(ss->ssl3.hs.cipher_suite); if (!ss->ssl3.hs.suite_def) { PORT_Assert(0); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } ss->ssl3.hs.kea_def = &kea_defs[ss->ssl3.hs.suite_def->key_exchange_alg]; ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_cipher_suite; if (!initHashes) { return SECSuccess; } /* Now we have a cipher suite, initialize the handshake hashes. */ return ssl3_InitHandshakeHashes(ss); } SECStatus ssl_ClientSetCipherSuite(sslSocket *ss, SSL3ProtocolVersion version, ssl3CipherSuite suite, PRBool initHashes) { unsigned int i; if (ssl3_config_match_init(ss) == 0) { PORT_Assert(PR_FALSE); return SECFailure; } for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) { ssl3CipherSuiteCfg *suiteCfg = &ss->cipherSuites[i]; if (suite == suiteCfg->cipher_suite) { SSLVersionRange vrange = { version, version }; if (!ssl3_config_match(suiteCfg, ss->ssl3.policy, &vrange, ss)) { /* config_match already checks whether the cipher suite is * acceptable for the version, but the check is repeated here * in order to give a more precise error code. */ if (!ssl3_CipherSuiteAllowedForVersionRange(suite, &vrange)) { PORT_SetError(SSL_ERROR_CIPHER_DISALLOWED_FOR_VERSION); } else { PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP); } return SECFailure; } break; } } if (i >= ssl_V3_SUITES_IMPLEMENTED) { PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP); return SECFailure; } /* Don't let the server change its mind. */ if (ss->ssl3.hs.helloRetry && suite != ss->ssl3.hs.cipher_suite) { (void)SSL3_SendAlert(ss, alert_fatal, illegal_parameter); PORT_SetError(SSL_ERROR_RX_MALFORMED_SERVER_HELLO); return SECFailure; } ss->ssl3.hs.cipher_suite = (ssl3CipherSuite)suite; return ssl3_SetupCipherSuite(ss, initHashes); } /* Check that session ID we received from the server, if any, matches our * expectations, depending on whether we're in compat mode and whether we * negotiated TLS 1.3+ or TLS 1.2-. */ static PRBool ssl_CheckServerSessionIdCorrectness(sslSocket *ss, SECItem *sidBytes) { sslSessionID *sid = ss->sec.ci.sid; PRBool sidMatch = PR_FALSE; PRBool sentFakeSid = PR_FALSE; PRBool sentRealSid = sid && sid->version < SSL_LIBRARY_VERSION_TLS_1_3; /* If attempting to resume a TLS 1.2 connection, the session ID won't be a * fake. Check for the real value. */ if (sentRealSid) { sidMatch = (sidBytes->len == sid->u.ssl3.sessionIDLength) && PORT_Memcmp(sid->u.ssl3.sessionID, sidBytes->data, sidBytes->len) == 0; } else { /* Otherwise, the session ID was a fake if TLS 1.3 compat mode is * enabled. If so, check for the fake value. */ sentFakeSid = ss->opt.enableTls13CompatMode && !IS_DTLS(ss); if (sentFakeSid && sidBytes->len == SSL3_SESSIONID_BYTES) { PRUint8 buf[SSL3_SESSIONID_BYTES]; ssl_MakeFakeSid(ss, buf); sidMatch = PORT_Memcmp(buf, sidBytes->data, sidBytes->len) == 0; } } /* TLS 1.2: Session ID shouldn't match if we sent a fake. */ if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) { if (sentFakeSid) { return !sidMatch; } return PR_TRUE; } /* TLS 1.3: We sent a session ID. The server's should match. */ if (!IS_DTLS(ss) && (sentRealSid || sentFakeSid)) { return sidMatch; } /* TLS 1.3 (no SID)/DTLS 1.3: The server shouldn't send a session ID. */ return sidBytes->len == 0; } static SECStatus ssl_CheckServerRandom(sslSocket *ss) { /* Check the ServerHello.random per [RFC 8446 Section 4.1.3]. * * TLS 1.3 clients receiving a ServerHello indicating TLS 1.2 or below * MUST check that the last 8 bytes are not equal to either of these * values. TLS 1.2 clients SHOULD also check that the last 8 bytes are * not equal to the second value if the ServerHello indicates TLS 1.1 or * below. If a match is found, the client MUST abort the handshake with * an "illegal_parameter" alert. */ SSL3ProtocolVersion checkVersion = ss->ssl3.downgradeCheckVersion ? ss->ssl3.downgradeCheckVersion : ss->vrange.max; if (checkVersion >= SSL_LIBRARY_VERSION_TLS_1_2 && checkVersion > ss->version) { /* Both sections use the same sentinel region. */ PRUint8 *downgrade_sentinel = ss->ssl3.hs.server_random + SSL3_RANDOM_LENGTH - sizeof(tls13_downgrade_random); if (!PORT_Memcmp(downgrade_sentinel, tls13_downgrade_random, sizeof(tls13_downgrade_random)) || !PORT_Memcmp(downgrade_sentinel, tls12_downgrade_random, sizeof(tls12_downgrade_random))) { return SECFailure; } } return SECSuccess; } /* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete * ssl3 ServerHello message. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleServerHello(sslSocket *ss, PRUint8 *b, PRUint32 length) { PRUint32 cipher; int errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO; PRUint32 compression; SECStatus rv; SECItem sidBytes = { siBuffer, NULL, 0 }; PRBool isHelloRetry; SSL3AlertDescription desc = illegal_parameter; const PRUint8 *savedMsg = b; const PRUint32 savedLength = length; SSL_TRC(3, ("%d: SSL3[%d]: handle server_hello handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (ss->ssl3.hs.ws != wait_server_hello) { errCode = SSL_ERROR_RX_UNEXPECTED_SERVER_HELLO; desc = unexpected_message; goto alert_loser; } /* clean up anything left from previous handshake. */ if (ss->ssl3.clientCertChain != NULL) { CERT_DestroyCertificateList(ss->ssl3.clientCertChain); ss->ssl3.clientCertChain = NULL; } if (ss->ssl3.clientCertificate != NULL) { CERT_DestroyCertificate(ss->ssl3.clientCertificate); ss->ssl3.clientCertificate = NULL; } if (ss->ssl3.clientPrivateKey != NULL) { SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey); ss->ssl3.clientPrivateKey = NULL; } /* Note that if the server selects TLS 1.3, this will set the version to TLS * 1.2. We will amend that once all other fields have been read. */ rv = ssl_ClientReadVersion(ss, &b, &length, &ss->version); if (rv != SECSuccess) { goto loser; /* alert has been sent */ } rv = ssl3_ConsumeHandshake( ss, ss->ssl3.hs.server_random, SSL3_RANDOM_LENGTH, &b, &length); if (rv != SECSuccess) { goto loser; /* alert has been sent */ } isHelloRetry = !PORT_Memcmp(ss->ssl3.hs.server_random, ssl_hello_retry_random, SSL3_RANDOM_LENGTH); rv = ssl3_ConsumeHandshakeVariable(ss, &sidBytes, 1, &b, &length); if (rv != SECSuccess) { goto loser; /* alert has been sent */ } if (sidBytes.len > SSL3_SESSIONID_BYTES) { if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_0) desc = decode_error; goto alert_loser; /* malformed. */ } /* Read the cipher suite. */ rv = ssl3_ConsumeHandshakeNumber(ss, &cipher, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* alert has been sent */ } /* Compression method. */ rv = ssl3_ConsumeHandshakeNumber(ss, &compression, 1, &b, &length); if (rv != SECSuccess) { goto loser; /* alert has been sent */ } if (compression != ssl_compression_null) { desc = illegal_parameter; errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO; goto alert_loser; } /* Parse extensions. */ if (length != 0) { PRUint32 extensionLength; rv = ssl3_ConsumeHandshakeNumber(ss, &extensionLength, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* alert already sent */ } if (extensionLength != length) { desc = decode_error; goto alert_loser; } rv = ssl3_ParseExtensions(ss, &b, &length); if (rv != SECSuccess) { goto alert_loser; /* malformed */ } } /* Read supported_versions if present. */ rv = tls13_ClientReadSupportedVersion(ss); if (rv != SECSuccess) { goto loser; } PORT_Assert(!SSL_ALL_VERSIONS_DISABLED(&ss->vrange)); /* Check that the version is within the configured range. */ if (ss->vrange.min > ss->version || ss->vrange.max < ss->version) { desc = (ss->version > SSL_LIBRARY_VERSION_3_0) ? protocol_version : handshake_failure; errCode = SSL_ERROR_UNSUPPORTED_VERSION; goto alert_loser; } if (isHelloRetry && ss->ssl3.hs.helloRetry) { SSL_TRC(3, ("%d: SSL3[%d]: received a second hello_retry_request", SSL_GETPID(), ss->fd)); desc = unexpected_message; errCode = SSL_ERROR_RX_UNEXPECTED_HELLO_RETRY_REQUEST; goto alert_loser; } /* There are three situations in which the server must pick * TLS 1.3. * * 1. We offered ESNI. * 2. We received HRR * 3. We sent early app data. * */ if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) { if (ss->xtnData.esniPrivateKey) { desc = protocol_version; errCode = SSL_ERROR_UNSUPPORTED_VERSION; goto alert_loser; } if (isHelloRetry || ss->ssl3.hs.helloRetry) { /* SSL3_SendAlert() will uncache the SID. */ desc = illegal_parameter; errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO; goto alert_loser; } if (ss->ssl3.hs.zeroRttState == ssl_0rtt_sent) { /* SSL3_SendAlert() will uncache the SID. */ desc = illegal_parameter; errCode = SSL_ERROR_DOWNGRADE_WITH_EARLY_DATA; goto alert_loser; } } /* Check that the server negotiated the same version as it did * in the first handshake. This isn't really the best place for * us to be getting this version number, but it's what we have. * (1294697). */ if (ss->firstHsDone && (ss->version != ss->ssl3.crSpec->version)) { desc = protocol_version; errCode = SSL_ERROR_UNSUPPORTED_VERSION; goto alert_loser; } if (ss->opt.enableHelloDowngradeCheck #ifdef DTLS_1_3_DRAFT_VERSION /* Disable this check while we are on draft DTLS 1.3 versions. */ && !IS_DTLS(ss) #endif ) { rv = ssl_CheckServerRandom(ss); if (rv != SECSuccess) { desc = illegal_parameter; errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO; goto alert_loser; } } /* Finally, now all the version-related checks have passed. */ ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_version; /* Update the write cipher spec to match the version. But not after * HelloRetryRequest, because cwSpec might be a 0-RTT cipher spec, * in which case this is a no-op. */ if (!ss->firstHsDone && !isHelloRetry) { ssl_GetSpecWriteLock(ss); ssl_SetSpecVersions(ss, ss->ssl3.cwSpec); ssl_ReleaseSpecWriteLock(ss); } /* Check that the session ID is as expected. */ if (!ssl_CheckServerSessionIdCorrectness(ss, &sidBytes)) { desc = illegal_parameter; errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO; goto alert_loser; } /* Only initialize hashes if this isn't a Hello Retry. */ rv = ssl_ClientSetCipherSuite(ss, ss->version, cipher, !isHelloRetry); if (rv != SECSuccess) { desc = illegal_parameter; errCode = PORT_GetError(); goto alert_loser; } dtls_ReceivedFirstMessageInFlight(ss); if (isHelloRetry) { rv = tls13_HandleHelloRetryRequest(ss, savedMsg, savedLength); if (rv != SECSuccess) { goto loser; } return SECSuccess; } rv = ssl3_HandleParsedExtensions(ss, ssl_hs_server_hello); ssl3_DestroyRemoteExtensions(&ss->ssl3.hs.remoteExtensions); if (rv != SECSuccess) { goto alert_loser; } rv = ssl_HashHandshakeMessage(ss, ssl_hs_server_hello, savedMsg, savedLength); if (rv != SECSuccess) { goto loser; } if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) { rv = tls13_HandleServerHelloPart2(ss); if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } } else { rv = ssl3_HandleServerHelloPart2(ss, &sidBytes, &errCode); if (rv != SECSuccess) goto loser; } return SECSuccess; alert_loser: (void)SSL3_SendAlert(ss, alert_fatal, desc); loser: /* Clean up the temporary pointer to the handshake buffer. */ ss->xtnData.signedCertTimestamps.len = 0; ssl_MapLowLevelError(errCode); return SECFailure; } static SECStatus ssl3_UnwrapMasterSecretClient(sslSocket *ss, sslSessionID *sid, PK11SymKey **ms) { PK11SlotInfo *slot; PK11SymKey *wrapKey; CK_FLAGS keyFlags = 0; SECItem wrappedMS = { siBuffer, sid->u.ssl3.keys.wrapped_master_secret, sid->u.ssl3.keys.wrapped_master_secret_len }; /* unwrap master secret */ slot = SECMOD_LookupSlot(sid->u.ssl3.masterModuleID, sid->u.ssl3.masterSlotID); if (slot == NULL) { return SECFailure; } if (!PK11_IsPresent(slot)) { PK11_FreeSlot(slot); return SECFailure; } wrapKey = PK11_GetWrapKey(slot, sid->u.ssl3.masterWrapIndex, sid->u.ssl3.masterWrapMech, sid->u.ssl3.masterWrapSeries, ss->pkcs11PinArg); PK11_FreeSlot(slot); if (wrapKey == NULL) { return SECFailure; } if (ss->version > SSL_LIBRARY_VERSION_3_0) { /* isTLS */ keyFlags = CKF_SIGN | CKF_VERIFY; } *ms = PK11_UnwrapSymKeyWithFlags(wrapKey, sid->u.ssl3.masterWrapMech, NULL, &wrappedMS, CKM_SSL3_MASTER_KEY_DERIVE, CKA_DERIVE, SSL3_MASTER_SECRET_LENGTH, keyFlags); PK11_FreeSymKey(wrapKey); if (!*ms) { return SECFailure; } return SECSuccess; } static SECStatus ssl3_HandleServerHelloPart2(sslSocket *ss, const SECItem *sidBytes, int *retErrCode) { SSL3AlertDescription desc = handshake_failure; int errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO; SECStatus rv; PRBool sid_match; sslSessionID *sid = ss->sec.ci.sid; if ((ss->opt.requireSafeNegotiation || (ss->firstHsDone && (ss->peerRequestedProtection || ss->opt.enableRenegotiation == SSL_RENEGOTIATE_REQUIRES_XTN))) && !ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) { desc = handshake_failure; errCode = ss->firstHsDone ? SSL_ERROR_RENEGOTIATION_NOT_ALLOWED : SSL_ERROR_UNSAFE_NEGOTIATION; goto alert_loser; } /* Any errors after this point are not "malformed" errors. */ desc = handshake_failure; /* we need to call ssl3_SetupPendingCipherSpec here so we can check the * key exchange algorithm. */ rv = ssl3_SetupBothPendingCipherSpecs(ss); if (rv != SECSuccess) { goto alert_loser; /* error code is set. */ } /* We may or may not have sent a session id, we may get one back or * not and if so it may match the one we sent. * Attempt to restore the master secret to see if this is so... * Don't consider failure to find a matching SID an error. */ sid_match = (PRBool)(sidBytes->len > 0 && sidBytes->len == sid->u.ssl3.sessionIDLength && !PORT_Memcmp(sid->u.ssl3.sessionID, sidBytes->data, sidBytes->len)); if (sid_match) { if (sid->version != ss->version || sid->u.ssl3.cipherSuite != ss->ssl3.hs.cipher_suite) { errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO; goto alert_loser; } do { PK11SymKey *masterSecret; /* [draft-ietf-tls-session-hash-06; Section 5.3] * * o If the original session did not use the "extended_master_secret" * extension but the new ServerHello contains the extension, the * client MUST abort the handshake. */ if (!sid->u.ssl3.keys.extendedMasterSecretUsed && ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn)) { errCode = SSL_ERROR_UNEXPECTED_EXTENDED_MASTER_SECRET; goto alert_loser; } /* * o If the original session used an extended master secret but the new * ServerHello does not contain the "extended_master_secret" * extension, the client SHOULD abort the handshake. * * TODO(ekr@rtfm.com): Add option to refuse to resume when EMS is not * used at all (bug 1176526). */ if (sid->u.ssl3.keys.extendedMasterSecretUsed && !ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn)) { errCode = SSL_ERROR_MISSING_EXTENDED_MASTER_SECRET; goto alert_loser; } ss->sec.authType = sid->authType; ss->sec.authKeyBits = sid->authKeyBits; ss->sec.keaType = sid->keaType; ss->sec.keaKeyBits = sid->keaKeyBits; ss->sec.originalKeaGroup = ssl_LookupNamedGroup(sid->keaGroup); ss->sec.signatureScheme = sid->sigScheme; rv = ssl3_UnwrapMasterSecretClient(ss, sid, &masterSecret); if (rv != SECSuccess) { break; /* not considered an error */ } /* Got a Match */ SSL_AtomicIncrementLong(&ssl3stats.hsh_sid_cache_hits); /* If we sent a session ticket, then this is a stateless resume. */ if (ss->xtnData.sentSessionTicketInClientHello) SSL_AtomicIncrementLong(&ssl3stats.hsh_sid_stateless_resumes); if (ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn)) ss->ssl3.hs.ws = wait_new_session_ticket; else ss->ssl3.hs.ws = wait_change_cipher; ss->ssl3.hs.isResuming = PR_TRUE; /* copy the peer cert from the SID */ if (sid->peerCert != NULL) { ss->sec.peerCert = CERT_DupCertificate(sid->peerCert); } /* We are re-using the old MS, so no need to derive again. */ rv = ssl3_InitPendingCipherSpecs(ss, masterSecret, PR_FALSE); if (rv != SECSuccess) { goto alert_loser; /* err code was set */ } return SECSuccess; } while (0); } if (sid_match) SSL_AtomicIncrementLong(&ssl3stats.hsh_sid_cache_not_ok); else SSL_AtomicIncrementLong(&ssl3stats.hsh_sid_cache_misses); /* We tried to resume a 1.3 session but the server negotiated 1.2. */ if (ss->statelessResume) { PORT_Assert(sid->version == SSL_LIBRARY_VERSION_TLS_1_3); PORT_Assert(ss->ssl3.hs.currentSecret); /* Reset resumption state, only used by 1.3 code. */ ss->statelessResume = PR_FALSE; /* Clear TLS 1.3 early data traffic key. */ PK11_FreeSymKey(ss->ssl3.hs.currentSecret); ss->ssl3.hs.currentSecret = NULL; } /* throw the old one away */ sid->u.ssl3.keys.resumable = PR_FALSE; ssl_UncacheSessionID(ss); ssl_FreeSID(sid); /* get a new sid */ ss->sec.ci.sid = sid = ssl3_NewSessionID(ss, PR_FALSE); if (sid == NULL) { goto alert_loser; /* memory error is set. */ } sid->version = ss->version; sid->u.ssl3.sessionIDLength = sidBytes->len; if (sidBytes->len > 0) { PORT_Memcpy(sid->u.ssl3.sessionID, sidBytes->data, sidBytes->len); } sid->u.ssl3.keys.extendedMasterSecretUsed = ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn); /* Copy Signed Certificate Timestamps, if any. */ if (ss->xtnData.signedCertTimestamps.len) { rv = SECITEM_CopyItem(NULL, &sid->u.ssl3.signedCertTimestamps, &ss->xtnData.signedCertTimestamps); ss->xtnData.signedCertTimestamps.len = 0; if (rv != SECSuccess) goto loser; } ss->ssl3.hs.isResuming = PR_FALSE; if (ss->ssl3.hs.kea_def->authKeyType != ssl_auth_null) { /* All current cipher suites other than those with ssl_auth_null (i.e., * (EC)DH_anon_* suites) require a certificate, so use that signal. */ ss->ssl3.hs.ws = wait_server_cert; } else { /* All the remaining cipher suites must be (EC)DH_anon_* and so * must be ephemeral. Note, if we ever add PSK this might * change. */ PORT_Assert(ss->ssl3.hs.kea_def->ephemeral); ss->ssl3.hs.ws = wait_server_key; } return SECSuccess; alert_loser: (void)SSL3_SendAlert(ss, alert_fatal, desc); loser: *retErrCode = errCode; return SECFailure; } static SECStatus ssl_HandleDHServerKeyExchange(sslSocket *ss, PRUint8 *b, PRUint32 length) { SECStatus rv; int errCode = SSL_ERROR_RX_MALFORMED_SERVER_KEY_EXCH; SSL3AlertDescription desc = illegal_parameter; SSLHashType hashAlg; PRBool isTLS = ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0; SSLSignatureScheme sigScheme; SECItem dh_p = { siBuffer, NULL, 0 }; SECItem dh_g = { siBuffer, NULL, 0 }; SECItem dh_Ys = { siBuffer, NULL, 0 }; unsigned dh_p_bits; unsigned dh_g_bits; PRInt32 minDH; SSL3Hashes hashes; SECItem signature = { siBuffer, NULL, 0 }; PLArenaPool *arena = NULL; SECKEYPublicKey *peerKey = NULL; rv = ssl3_ConsumeHandshakeVariable(ss, &dh_p, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed. */ } rv = NSS_OptionGet(NSS_DH_MIN_KEY_SIZE, &minDH); if (rv != SECSuccess || minDH <= 0) { minDH = SSL_DH_MIN_P_BITS; } dh_p_bits = SECKEY_BigIntegerBitLength(&dh_p); if (dh_p_bits < (unsigned)minDH) { errCode = SSL_ERROR_WEAK_SERVER_EPHEMERAL_DH_KEY; goto alert_loser; } if (dh_p_bits > SSL_MAX_DH_KEY_BITS) { errCode = SSL_ERROR_DH_KEY_TOO_LONG; goto alert_loser; } rv = ssl3_ConsumeHandshakeVariable(ss, &dh_g, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed. */ } /* Abort if dh_g is 0, 1, or obviously too big. */ dh_g_bits = SECKEY_BigIntegerBitLength(&dh_g); if (dh_g_bits > dh_p_bits || dh_g_bits <= 1) { goto alert_loser; } if (ss->opt.requireDHENamedGroups) { /* If we're doing named groups, make sure it's good. */ rv = ssl_ValidateDHENamedGroup(ss, &dh_p, &dh_g, NULL, NULL); if (rv != SECSuccess) { errCode = SSL_ERROR_WEAK_SERVER_EPHEMERAL_DH_KEY; goto alert_loser; } } rv = ssl3_ConsumeHandshakeVariable(ss, &dh_Ys, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed. */ } if (!ssl_IsValidDHEShare(&dh_p, &dh_Ys)) { errCode = SSL_ERROR_RX_MALFORMED_DHE_KEY_SHARE; goto alert_loser; } if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_2) { rv = ssl_ConsumeSignatureScheme(ss, &b, &length, &sigScheme); if (rv != SECSuccess) { goto alert_loser; /* malformed or unsupported. */ } rv = ssl_CheckSignatureSchemeConsistency( ss, sigScheme, &ss->sec.peerCert->subjectPublicKeyInfo); if (rv != SECSuccess) { goto alert_loser; } hashAlg = ssl_SignatureSchemeToHashType(sigScheme); } else { /* Use ssl_hash_none to represent the MD5+SHA1 combo. */ hashAlg = ssl_hash_none; sigScheme = ssl_sig_none; } rv = ssl3_ConsumeHandshakeVariable(ss, &signature, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed. */ } if (length != 0) { if (isTLS) { desc = decode_error; } goto alert_loser; /* malformed. */ } PRINT_BUF(60, (NULL, "Server DH p", dh_p.data, dh_p.len)); PRINT_BUF(60, (NULL, "Server DH g", dh_g.data, dh_g.len)); PRINT_BUF(60, (NULL, "Server DH Ys", dh_Ys.data, dh_Ys.len)); /* failures after this point are not malformed handshakes. */ /* TLS: send decrypt_error if signature failed. */ desc = isTLS ? decrypt_error : handshake_failure; /* * Check to make sure the hash is signed by right guy. */ rv = ssl3_ComputeDHKeyHash(ss, hashAlg, &hashes, dh_p, dh_g, dh_Ys, PR_FALSE /* padY */); if (rv != SECSuccess) { errCode = ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); goto alert_loser; } rv = ssl3_VerifySignedHashes(ss, sigScheme, &hashes, &signature); if (rv != SECSuccess) { errCode = ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); goto alert_loser; } /* * we really need to build a new key here because we can no longer * ignore calling SECKEY_DestroyPublicKey. Using the key may allocate * pkcs11 slots and ID's. */ arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE); if (arena == NULL) { errCode = SEC_ERROR_NO_MEMORY; goto loser; } peerKey = PORT_ArenaZNew(arena, SECKEYPublicKey); if (peerKey == NULL) { errCode = SEC_ERROR_NO_MEMORY; goto loser; } peerKey->arena = arena; peerKey->keyType = dhKey; peerKey->pkcs11Slot = NULL; peerKey->pkcs11ID = CK_INVALID_HANDLE; if (SECITEM_CopyItem(arena, &peerKey->u.dh.prime, &dh_p) || SECITEM_CopyItem(arena, &peerKey->u.dh.base, &dh_g) || SECITEM_CopyItem(arena, &peerKey->u.dh.publicValue, &dh_Ys)) { errCode = SEC_ERROR_NO_MEMORY; goto loser; } ss->sec.peerKey = peerKey; return SECSuccess; alert_loser: (void)SSL3_SendAlert(ss, alert_fatal, desc); loser: if (arena) { PORT_FreeArena(arena, PR_FALSE); } PORT_SetError(ssl_MapLowLevelError(errCode)); return SECFailure; } /* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered a * complete ssl3 ServerKeyExchange message. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleServerKeyExchange(sslSocket *ss, PRUint8 *b, PRUint32 length) { SECStatus rv; SSL_TRC(3, ("%d: SSL3[%d]: handle server_key_exchange handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (ss->ssl3.hs.ws != wait_server_key) { SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_SERVER_KEY_EXCH); return SECFailure; } switch (ss->ssl3.hs.kea_def->exchKeyType) { case ssl_kea_dh: rv = ssl_HandleDHServerKeyExchange(ss, b, length); break; case ssl_kea_ecdh: rv = ssl3_HandleECDHServerKeyExchange(ss, b, length); break; default: SSL3_SendAlert(ss, alert_fatal, handshake_failure); PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); rv = SECFailure; break; } if (rv == SECSuccess) { ss->ssl3.hs.ws = wait_cert_request; } /* All Handle*ServerKeyExchange functions set the error code. */ return rv; } typedef struct dnameNode { struct dnameNode *next; SECItem name; } dnameNode; /* * Parse the ca_list structure in a CertificateRequest. * * Called from: * ssl3_HandleCertificateRequest * tls13_HandleCertificateRequest */ SECStatus ssl3_ParseCertificateRequestCAs(sslSocket *ss, PRUint8 **b, PRUint32 *length, CERTDistNames *ca_list) { PRUint32 remaining; int nnames = 0; dnameNode *node; SECStatus rv; int i; rv = ssl3_ConsumeHandshakeNumber(ss, &remaining, 2, b, length); if (rv != SECSuccess) return SECFailure; /* malformed, alert has been sent */ if (remaining > *length) goto alert_loser; ca_list->head = node = PORT_ArenaZNew(ca_list->arena, dnameNode); if (node == NULL) goto no_mem; while (remaining > 0) { PRUint32 len; if (remaining < 2) goto alert_loser; /* malformed */ rv = ssl3_ConsumeHandshakeNumber(ss, &len, 2, b, length); if (rv != SECSuccess) return SECFailure; /* malformed, alert has been sent */ if (len == 0 || remaining < len + 2) goto alert_loser; /* malformed */ remaining -= 2; if (SECITEM_MakeItem(ca_list->arena, &node->name, *b, len) != SECSuccess) { goto no_mem; } node->name.len = len; *b += len; *length -= len; remaining -= len; nnames++; if (remaining <= 0) break; /* success */ node->next = PORT_ArenaZNew(ca_list->arena, dnameNode); node = node->next; if (node == NULL) goto no_mem; } ca_list->nnames = nnames; ca_list->names = PORT_ArenaNewArray(ca_list->arena, SECItem, nnames); if (nnames > 0 && ca_list->names == NULL) goto no_mem; for (i = 0, node = (dnameNode *)ca_list->head; i < nnames; i++, node = node->next) { ca_list->names[i] = node->name; } return SECSuccess; no_mem: return SECFailure; alert_loser: (void)SSL3_SendAlert(ss, alert_fatal, ss->version < SSL_LIBRARY_VERSION_TLS_1_0 ? illegal_parameter : decode_error); PORT_SetError(SSL_ERROR_RX_MALFORMED_CERT_REQUEST); return SECFailure; } SECStatus ssl_ParseSignatureSchemes(const sslSocket *ss, PLArenaPool *arena, SSLSignatureScheme **schemesOut, unsigned int *numSchemesOut, unsigned char **b, unsigned int *len) { SECStatus rv; SECItem buf; SSLSignatureScheme *schemes = NULL; unsigned int numSupported = 0; unsigned int numRemaining = 0; unsigned int max; rv = ssl3_ExtConsumeHandshakeVariable(ss, &buf, 2, b, len); if (rv != SECSuccess) { return SECFailure; } /* An odd-length value is invalid. */ if ((buf.len & 1) != 0) { ssl3_ExtSendAlert(ss, alert_fatal, decode_error); return SECFailure; } /* Let the caller decide whether to alert here. */ if (buf.len == 0) { goto done; } /* Limit the number of schemes we read. */ numRemaining = buf.len / 2; max = PR_MIN(numRemaining, MAX_SIGNATURE_SCHEMES); if (arena) { schemes = PORT_ArenaZNewArray(arena, SSLSignatureScheme, max); } else { schemes = PORT_ZNewArray(SSLSignatureScheme, max); } if (!schemes) { ssl3_ExtSendAlert(ss, alert_fatal, internal_error); return SECFailure; } for (; numRemaining && numSupported < MAX_SIGNATURE_SCHEMES; --numRemaining) { PRUint32 tmp; rv = ssl3_ExtConsumeHandshakeNumber(ss, &tmp, 2, &buf.data, &buf.len); if (rv != SECSuccess) { PORT_Assert(0); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } if (ssl_IsSupportedSignatureScheme((SSLSignatureScheme)tmp)) { schemes[numSupported++] = (SSLSignatureScheme)tmp; } } if (!numSupported) { if (!arena) { PORT_Free(schemes); } schemes = NULL; } done: *schemesOut = schemes; *numSchemesOut = numSupported; return SECSuccess; } /* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered * a complete ssl3 Certificate Request message. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleCertificateRequest(sslSocket *ss, PRUint8 *b, PRUint32 length) { PLArenaPool *arena = NULL; PRBool isTLS = PR_FALSE; PRBool isTLS12 = PR_FALSE; int errCode = SSL_ERROR_RX_MALFORMED_CERT_REQUEST; SECStatus rv; SSL3AlertDescription desc = illegal_parameter; SECItem cert_types = { siBuffer, NULL, 0 }; SSLSignatureScheme *signatureSchemes = NULL; unsigned int signatureSchemeCount = 0; CERTDistNames ca_list; SSL_TRC(3, ("%d: SSL3[%d]: handle certificate_request handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (ss->ssl3.hs.ws != wait_cert_request) { desc = unexpected_message; errCode = SSL_ERROR_RX_UNEXPECTED_CERT_REQUEST; goto alert_loser; } PORT_Assert(ss->ssl3.clientCertChain == NULL); PORT_Assert(ss->ssl3.clientCertificate == NULL); PORT_Assert(ss->ssl3.clientPrivateKey == NULL); isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0); isTLS12 = (PRBool)(ss->ssl3.prSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2); rv = ssl3_ConsumeHandshakeVariable(ss, &cert_types, 1, &b, &length); if (rv != SECSuccess) goto loser; /* malformed, alert has been sent */ arena = ca_list.arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE); if (arena == NULL) goto no_mem; if (isTLS12) { rv = ssl_ParseSignatureSchemes(ss, arena, &signatureSchemes, &signatureSchemeCount, &b, &length); if (rv != SECSuccess) { PORT_SetError(SSL_ERROR_RX_MALFORMED_CERT_REQUEST); goto loser; /* malformed, alert has been sent */ } if (signatureSchemeCount == 0) { errCode = SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM; desc = handshake_failure; goto alert_loser; } } rv = ssl3_ParseCertificateRequestCAs(ss, &b, &length, &ca_list); if (rv != SECSuccess) goto done; /* alert sent in ssl3_ParseCertificateRequestCAs */ if (length != 0) goto alert_loser; /* malformed */ ss->ssl3.hs.ws = wait_hello_done; rv = ssl3_CompleteHandleCertificateRequest(ss, signatureSchemes, signatureSchemeCount, &ca_list); if (rv == SECFailure) { PORT_Assert(0); errCode = SEC_ERROR_LIBRARY_FAILURE; desc = internal_error; goto alert_loser; } goto done; no_mem: rv = SECFailure; PORT_SetError(SEC_ERROR_NO_MEMORY); goto done; alert_loser: if (isTLS && desc == illegal_parameter) desc = decode_error; (void)SSL3_SendAlert(ss, alert_fatal, desc); loser: PORT_SetError(errCode); rv = SECFailure; done: if (arena != NULL) PORT_FreeArena(arena, PR_FALSE); return rv; } SECStatus ssl3_CompleteHandleCertificateRequest(sslSocket *ss, const SSLSignatureScheme *signatureSchemes, unsigned int signatureSchemeCount, CERTDistNames *ca_list) { SECStatus rv; if (ss->getClientAuthData != NULL) { PORT_Assert((ss->ssl3.hs.preliminaryInfo & ssl_preinfo_all) == ssl_preinfo_all); PORT_Assert(ss->ssl3.clientPrivateKey == NULL); PORT_Assert(ss->ssl3.clientCertificate == NULL); PORT_Assert(ss->ssl3.clientCertChain == NULL); /* XXX Should pass cert_types and algorithms in this call!! */ rv = (SECStatus)(*ss->getClientAuthData)(ss->getClientAuthDataArg, ss->fd, ca_list, &ss->ssl3.clientCertificate, &ss->ssl3.clientPrivateKey); } else { rv = SECFailure; /* force it to send a no_certificate alert */ } switch (rv) { case SECWouldBlock: /* getClientAuthData has put up a dialog box. */ ssl3_SetAlwaysBlock(ss); break; /* not an error */ case SECSuccess: /* check what the callback function returned */ if ((!ss->ssl3.clientCertificate) || (!ss->ssl3.clientPrivateKey)) { /* we are missing either the key or cert */ if (ss->ssl3.clientCertificate) { /* got a cert, but no key - free it */ CERT_DestroyCertificate(ss->ssl3.clientCertificate); ss->ssl3.clientCertificate = NULL; } if (ss->ssl3.clientPrivateKey) { /* got a key, but no cert - free it */ SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey); ss->ssl3.clientPrivateKey = NULL; } goto send_no_certificate; } /* Setting ssl3.clientCertChain non-NULL will cause * ssl3_HandleServerHelloDone to call SendCertificate. */ ss->ssl3.clientCertChain = CERT_CertChainFromCert( ss->ssl3.clientCertificate, certUsageSSLClient, PR_FALSE); if (ss->ssl3.clientCertChain == NULL) { CERT_DestroyCertificate(ss->ssl3.clientCertificate); ss->ssl3.clientCertificate = NULL; SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey); ss->ssl3.clientPrivateKey = NULL; goto send_no_certificate; } if (ss->ssl3.hs.hashType == handshake_hash_record || ss->ssl3.hs.hashType == handshake_hash_single) { rv = ssl_PickClientSignatureScheme(ss, signatureSchemes, signatureSchemeCount); } break; /* not an error */ case SECFailure: default: send_no_certificate: if (ss->version > SSL_LIBRARY_VERSION_3_0) { ss->ssl3.sendEmptyCert = PR_TRUE; } else { (void)SSL3_SendAlert(ss, alert_warning, no_certificate); } rv = SECSuccess; break; } return rv; } static SECStatus ssl3_CheckFalseStart(sslSocket *ss) { PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(!ss->ssl3.hs.authCertificatePending); PORT_Assert(!ss->ssl3.hs.canFalseStart); if (!ss->canFalseStartCallback) { SSL_TRC(3, ("%d: SSL[%d]: no false start callback so no false start", SSL_GETPID(), ss->fd)); } else { PRBool maybeFalseStart = PR_TRUE; SECStatus rv; rv = ssl_CheckServerRandom(ss); if (rv != SECSuccess) { SSL_TRC(3, ("%d: SSL[%d]: no false start due to possible downgrade", SSL_GETPID(), ss->fd)); maybeFalseStart = PR_FALSE; } /* An attacker can control the selected ciphersuite so we only wish to * do False Start in the case that the selected ciphersuite is * sufficiently strong that the attack can gain no advantage. * Therefore we always require an 80-bit cipher. */ if (maybeFalseStart) { ssl_GetSpecReadLock(ss); maybeFalseStart = ss->ssl3.cwSpec->cipherDef->secret_key_size >= 10; ssl_ReleaseSpecReadLock(ss); } if (!maybeFalseStart) { SSL_TRC(3, ("%d: SSL[%d]: no false start due to weak cipher", SSL_GETPID(), ss->fd)); } else { PORT_Assert((ss->ssl3.hs.preliminaryInfo & ssl_preinfo_all) == ssl_preinfo_all); rv = (ss->canFalseStartCallback)(ss->fd, ss->canFalseStartCallbackData, &ss->ssl3.hs.canFalseStart); if (rv == SECSuccess) { SSL_TRC(3, ("%d: SSL[%d]: false start callback returned %s", SSL_GETPID(), ss->fd, ss->ssl3.hs.canFalseStart ? "TRUE" : "FALSE")); } else { SSL_TRC(3, ("%d: SSL[%d]: false start callback failed (%s)", SSL_GETPID(), ss->fd, PR_ErrorToName(PR_GetError()))); } return rv; } } ss->ssl3.hs.canFalseStart = PR_FALSE; return SECSuccess; } PRBool ssl3_WaitingForServerSecondRound(sslSocket *ss) { PRBool result; PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); switch (ss->ssl3.hs.ws) { case wait_new_session_ticket: case wait_change_cipher: case wait_finished: result = PR_TRUE; break; default: result = PR_FALSE; break; } return result; } static SECStatus ssl3_SendClientSecondRound(sslSocket *ss); /* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered * a complete ssl3 Server Hello Done message. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleServerHelloDone(sslSocket *ss) { SECStatus rv; SSL3WaitState ws = ss->ssl3.hs.ws; SSL_TRC(3, ("%d: SSL3[%d]: handle server_hello_done handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); /* Skipping CertificateRequest is always permitted. */ if (ws != wait_hello_done && ws != wait_cert_request) { SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_DONE); return SECFailure; } rv = ssl3_SendClientSecondRound(ss); return rv; } /* Called from ssl3_HandleServerHelloDone and ssl3_AuthCertificateComplete. * * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_SendClientSecondRound(sslSocket *ss) { SECStatus rv; PRBool sendClientCert; PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); sendClientCert = !ss->ssl3.sendEmptyCert && ss->ssl3.clientCertChain != NULL && ss->ssl3.clientPrivateKey != NULL; /* We must wait for the server's certificate to be authenticated before * sending the client certificate in order to disclosing the client * certificate to an attacker that does not have a valid cert for the * domain we are connecting to. * * During the initial handshake on a connection, we never send/receive * application data until we have authenticated the server's certificate; * i.e. we have fully authenticated the handshake before using the cipher * specs agreed upon for that handshake. During a renegotiation, we may * continue sending and receiving application data during the handshake * interleaved with the handshake records. If we were to send the client's * second round for a renegotiation before the server's certificate was * authenticated, then the application data sent/received after this point * would be using cipher spec that hadn't been authenticated. By waiting * until the server's certificate has been authenticated during * renegotiations, we ensure that renegotiations have the same property * as initial handshakes; i.e. we have fully authenticated the handshake * before using the cipher specs agreed upon for that handshake for * application data. */ if (ss->ssl3.hs.restartTarget) { PR_NOT_REACHED("unexpected ss->ssl3.hs.restartTarget"); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } if (ss->ssl3.hs.authCertificatePending && (sendClientCert || ss->ssl3.sendEmptyCert || ss->firstHsDone)) { SSL_TRC(3, ("%d: SSL3[%p]: deferring ssl3_SendClientSecondRound because" " certificate authentication is still pending.", SSL_GETPID(), ss->fd)); ss->ssl3.hs.restartTarget = ssl3_SendClientSecondRound; PORT_SetError(PR_WOULD_BLOCK_ERROR); return SECFailure; } ssl_GetXmitBufLock(ss); /*******************************/ if (ss->ssl3.sendEmptyCert) { ss->ssl3.sendEmptyCert = PR_FALSE; rv = ssl3_SendEmptyCertificate(ss); /* Don't send verify */ if (rv != SECSuccess) { goto loser; /* error code is set. */ } } else if (sendClientCert) { rv = ssl3_SendCertificate(ss); if (rv != SECSuccess) { goto loser; /* error code is set. */ } } rv = ssl3_SendClientKeyExchange(ss); if (rv != SECSuccess) { goto loser; /* err is set. */ } if (sendClientCert) { rv = ssl3_SendCertificateVerify(ss, ss->ssl3.clientPrivateKey); SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey); ss->ssl3.clientPrivateKey = NULL; if (rv != SECSuccess) { goto loser; /* err is set. */ } } rv = ssl3_SendChangeCipherSpecs(ss); if (rv != SECSuccess) { goto loser; /* err code was set. */ } /* This must be done after we've set ss->ssl3.cwSpec in * ssl3_SendChangeCipherSpecs because SSL_GetChannelInfo uses information * from cwSpec. This must be done before we call ssl3_CheckFalseStart * because the false start callback (if any) may need the information from * the functions that depend on this being set. */ ss->enoughFirstHsDone = PR_TRUE; if (!ss->firstHsDone) { if (ss->opt.enableFalseStart) { if (!ss->ssl3.hs.authCertificatePending) { /* When we fix bug 589047, we will need to know whether we are * false starting before we try to flush the client second * round to the network. With that in mind, we purposefully * call ssl3_CheckFalseStart before calling ssl3_SendFinished, * which includes a call to ssl3_FlushHandshake, so that * no application develops a reliance on such flushing being * done before its false start callback is called. */ ssl_ReleaseXmitBufLock(ss); rv = ssl3_CheckFalseStart(ss); ssl_GetXmitBufLock(ss); if (rv != SECSuccess) { goto loser; } } else { /* The certificate authentication and the server's Finished * message are racing each other. If the certificate * authentication wins, then we will try to false start in * ssl3_AuthCertificateComplete. */ SSL_TRC(3, ("%d: SSL3[%p]: deferring false start check because" " certificate authentication is still pending.", SSL_GETPID(), ss->fd)); } } } rv = ssl3_SendFinished(ss, 0); if (rv != SECSuccess) { goto loser; /* err code was set. */ } ssl_ReleaseXmitBufLock(ss); /*******************************/ if (ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn)) ss->ssl3.hs.ws = wait_new_session_ticket; else ss->ssl3.hs.ws = wait_change_cipher; PORT_Assert(ssl3_WaitingForServerSecondRound(ss)); return SECSuccess; loser: ssl_ReleaseXmitBufLock(ss); return rv; } /* * Routines used by servers */ static SECStatus ssl3_SendHelloRequest(sslSocket *ss) { SECStatus rv; SSL_TRC(3, ("%d: SSL3[%d]: send hello_request handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_hello_request, 0); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake */ } rv = ssl3_FlushHandshake(ss, 0); if (rv != SECSuccess) { return rv; /* error code set by ssl3_FlushHandshake */ } ss->ssl3.hs.ws = wait_client_hello; return SECSuccess; } /* * Called from: * ssl3_HandleClientHello() */ static SECComparison ssl3_ServerNameCompare(const SECItem *name1, const SECItem *name2) { if (!name1 != !name2) { return SECLessThan; } if (!name1) { return SECEqual; } if (name1->type != name2->type) { return SECLessThan; } return SECITEM_CompareItem(name1, name2); } /* Sets memory error when returning NULL. * Called from: * ssl3_SendClientHello() * ssl3_HandleServerHello() * ssl3_HandleClientHello() * ssl3_HandleV2ClientHello() */ sslSessionID * ssl3_NewSessionID(sslSocket *ss, PRBool is_server) { sslSessionID *sid; sid = PORT_ZNew(sslSessionID); if (sid == NULL) return sid; if (is_server) { const SECItem *srvName; SECStatus rv = SECSuccess; ssl_GetSpecReadLock(ss); /********************************/ srvName = &ss->ssl3.hs.srvVirtName; if (srvName->len && srvName->data) { rv = SECITEM_CopyItem(NULL, &sid->u.ssl3.srvName, srvName); } ssl_ReleaseSpecReadLock(ss); /************************************/ if (rv != SECSuccess) { PORT_Free(sid); return NULL; } } sid->peerID = (ss->peerID == NULL) ? NULL : PORT_Strdup(ss->peerID); sid->urlSvrName = (ss->url == NULL) ? NULL : PORT_Strdup(ss->url); sid->addr = ss->sec.ci.peer; sid->port = ss->sec.ci.port; sid->references = 1; sid->cached = never_cached; sid->version = ss->version; sid->sigScheme = ssl_sig_none; sid->u.ssl3.keys.resumable = PR_TRUE; sid->u.ssl3.policy = SSL_ALLOWED; sid->u.ssl3.keys.extendedMasterSecretUsed = PR_FALSE; if (is_server) { SECStatus rv; int pid = SSL_GETPID(); sid->u.ssl3.sessionIDLength = SSL3_SESSIONID_BYTES; sid->u.ssl3.sessionID[0] = (pid >> 8) & 0xff; sid->u.ssl3.sessionID[1] = pid & 0xff; rv = PK11_GenerateRandom(sid->u.ssl3.sessionID + 2, SSL3_SESSIONID_BYTES - 2); if (rv != SECSuccess) { ssl_FreeSID(sid); ssl_MapLowLevelError(SSL_ERROR_GENERATE_RANDOM_FAILURE); return NULL; } } return sid; } /* Called from: ssl3_HandleClientHello, ssl3_HandleV2ClientHello */ static SECStatus ssl3_SendServerHelloSequence(sslSocket *ss) { const ssl3KEADef *kea_def; SECStatus rv; SSL_TRC(3, ("%d: SSL3[%d]: begin send server_hello sequence", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); rv = ssl3_SendServerHello(ss); if (rv != SECSuccess) { return rv; /* err code is set. */ } rv = ssl3_SendCertificate(ss); if (rv != SECSuccess) { return rv; /* error code is set. */ } rv = ssl3_SendCertificateStatus(ss); if (rv != SECSuccess) { return rv; /* error code is set. */ } /* We have to do this after the call to ssl3_SendServerHello, * because kea_def is set up by ssl3_SendServerHello(). */ kea_def = ss->ssl3.hs.kea_def; if (kea_def->ephemeral) { rv = ssl3_SendServerKeyExchange(ss); if (rv != SECSuccess) { return rv; /* err code was set. */ } } if (ss->opt.requestCertificate) { rv = ssl3_SendCertificateRequest(ss); if (rv != SECSuccess) { return rv; /* err code is set. */ } } rv = ssl3_SendServerHelloDone(ss); if (rv != SECSuccess) { return rv; /* err code is set. */ } ss->ssl3.hs.ws = (ss->opt.requestCertificate) ? wait_client_cert : wait_client_key; return SECSuccess; } /* An empty TLS Renegotiation Info (RI) extension */ static const PRUint8 emptyRIext[5] = { 0xff, 0x01, 0x00, 0x01, 0x00 }; static PRBool ssl3_KEASupportsTickets(const ssl3KEADef *kea_def) { if (kea_def->signKeyType == dsaKey) { /* TODO: Fix session tickets for DSS. The server code rejects the * session ticket received from the client. Bug 1174677 */ return PR_FALSE; } return PR_TRUE; } SECStatus ssl3_NegotiateCipherSuiteInner(sslSocket *ss, const SECItem *suites, PRUint16 version, PRUint16 *suitep) { unsigned int j; unsigned int i; for (j = 0; j < ssl_V3_SUITES_IMPLEMENTED; j++) { ssl3CipherSuiteCfg *suite = &ss->cipherSuites[j]; SSLVersionRange vrange = { version, version }; if (!ssl3_config_match(suite, ss->ssl3.policy, &vrange, ss)) { continue; } for (i = 0; i + 1 < suites->len; i += 2) { PRUint16 suite_i = (suites->data[i] << 8) | suites->data[i + 1]; if (suite_i == suite->cipher_suite) { *suitep = suite_i; return SECSuccess; } } } PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP); return SECFailure; } /* Select a cipher suite. ** ** NOTE: This suite selection algorithm should be the same as the one in ** ssl3_HandleV2ClientHello(). ** ** If TLS 1.0 is enabled, we could handle the case where the client ** offered TLS 1.1 but offered only export cipher suites by choosing TLS ** 1.0 and selecting one of those export cipher suites. However, a secure ** TLS 1.1 client should not have export cipher suites enabled at all, ** and a TLS 1.1 client should definitely not be offering *only* export ** cipher suites. Therefore, we refuse to negotiate export cipher suites ** with any client that indicates support for TLS 1.1 or higher when we ** (the server) have TLS 1.1 support enabled. */ SECStatus ssl3_NegotiateCipherSuite(sslSocket *ss, const SECItem *suites, PRBool initHashes) { PRUint16 selected; SECStatus rv; /* Ensure that only valid cipher suites are enabled. */ if (ssl3_config_match_init(ss) == 0) { /* No configured cipher is both supported by PK11 and allowed. * This is a configuration error, so report handshake failure.*/ FATAL_ERROR(ss, PORT_GetError(), handshake_failure); return SECFailure; } rv = ssl3_NegotiateCipherSuiteInner(ss, suites, ss->version, &selected); if (rv != SECSuccess) { return SECFailure; } ss->ssl3.hs.cipher_suite = selected; return ssl3_SetupCipherSuite(ss, initHashes); } /* * Call the SNI config hook. * * Called from: * ssl3_HandleClientHello * tls13_HandleClientHelloPart2 */ SECStatus ssl3_ServerCallSNICallback(sslSocket *ss) { int errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO; SSL3AlertDescription desc = illegal_parameter; int ret = 0; #ifdef SSL_SNI_ALLOW_NAME_CHANGE_2HS #error("No longer allowed to set SSL_SNI_ALLOW_NAME_CHANGE_2HS") #endif if (!ssl3_ExtensionNegotiated(ss, ssl_server_name_xtn)) { if (ss->firstHsDone) { /* Check that we don't have the name is current spec * if this extension was not negotiated on the 2d hs. */ PRBool passed = PR_TRUE; ssl_GetSpecReadLock(ss); /*******************************/ if (ss->ssl3.hs.srvVirtName.data) { passed = PR_FALSE; } ssl_ReleaseSpecReadLock(ss); /***************************/ if (!passed) { errCode = SSL_ERROR_UNRECOGNIZED_NAME_ALERT; desc = handshake_failure; goto alert_loser; } } return SECSuccess; } if (ss->sniSocketConfig) do { /* not a loop */ PORT_Assert((ss->ssl3.hs.preliminaryInfo & ssl_preinfo_all) == ssl_preinfo_all); ret = SSL_SNI_SEND_ALERT; /* If extension is negotiated, the len of names should > 0. */ if (ss->xtnData.sniNameArrSize) { /* Calling client callback to reconfigure the socket. */ ret = (SECStatus)(*ss->sniSocketConfig)(ss->fd, ss->xtnData.sniNameArr, ss->xtnData.sniNameArrSize, ss->sniSocketConfigArg); } if (ret <= SSL_SNI_SEND_ALERT) { /* Application does not know the name or was not able to * properly reconfigure the socket. */ errCode = SSL_ERROR_UNRECOGNIZED_NAME_ALERT; desc = unrecognized_name; break; } else if (ret == SSL_SNI_CURRENT_CONFIG_IS_USED) { SECStatus rv = SECSuccess; SECItem pwsNameBuf = { 0, NULL, 0 }; SECItem *pwsName = &pwsNameBuf; SECItem *cwsName; ssl_GetSpecWriteLock(ss); /*******************************/ cwsName = &ss->ssl3.hs.srvVirtName; /* not allow name change on the 2d HS */ if (ss->firstHsDone) { if (ssl3_ServerNameCompare(pwsName, cwsName)) { ssl_ReleaseSpecWriteLock(ss); /******************/ errCode = SSL_ERROR_UNRECOGNIZED_NAME_ALERT; desc = handshake_failure; ret = SSL_SNI_SEND_ALERT; break; } } if (pwsName->data) { SECITEM_FreeItem(pwsName, PR_FALSE); } if (cwsName->data) { rv = SECITEM_CopyItem(NULL, pwsName, cwsName); } ssl_ReleaseSpecWriteLock(ss); /**************************/ if (rv != SECSuccess) { errCode = SSL_ERROR_INTERNAL_ERROR_ALERT; desc = internal_error; ret = SSL_SNI_SEND_ALERT; break; } } else if ((unsigned int)ret < ss->xtnData.sniNameArrSize) { /* Application has configured new socket info. Lets check it * and save the name. */ SECStatus rv; SECItem *name = &ss->xtnData.sniNameArr[ret]; SECItem *pwsName; /* get rid of the old name and save the newly picked. */ /* This code is protected by ssl3HandshakeLock. */ ssl_GetSpecWriteLock(ss); /*******************************/ /* not allow name change on the 2d HS */ if (ss->firstHsDone) { SECItem *cwsName = &ss->ssl3.hs.srvVirtName; if (ssl3_ServerNameCompare(name, cwsName)) { ssl_ReleaseSpecWriteLock(ss); /******************/ errCode = SSL_ERROR_UNRECOGNIZED_NAME_ALERT; desc = handshake_failure; ret = SSL_SNI_SEND_ALERT; break; } } pwsName = &ss->ssl3.hs.srvVirtName; if (pwsName->data) { SECITEM_FreeItem(pwsName, PR_FALSE); } rv = SECITEM_CopyItem(NULL, pwsName, name); ssl_ReleaseSpecWriteLock(ss); /***************************/ if (rv != SECSuccess) { errCode = SSL_ERROR_INTERNAL_ERROR_ALERT; desc = internal_error; ret = SSL_SNI_SEND_ALERT; break; } /* Need to tell the client that application has picked * the name from the offered list and reconfigured the socket. * Don't do this if we negotiated ESNI. */ if (!ssl3_ExtensionNegotiated(ss, ssl_tls13_encrypted_sni_xtn)) { ssl3_RegisterExtensionSender(ss, &ss->xtnData, ssl_server_name_xtn, ssl_SendEmptyExtension); } } else { /* Callback returned index outside of the boundary. */ PORT_Assert((unsigned int)ret < ss->xtnData.sniNameArrSize); errCode = SSL_ERROR_INTERNAL_ERROR_ALERT; desc = internal_error; ret = SSL_SNI_SEND_ALERT; break; } } while (0); ssl3_FreeSniNameArray(&ss->xtnData); if (ret <= SSL_SNI_SEND_ALERT) { /* desc and errCode should be set. */ goto alert_loser; } return SECSuccess; alert_loser: (void)SSL3_SendAlert(ss, alert_fatal, desc); PORT_SetError(errCode); return SECFailure; } SECStatus ssl3_SelectServerCert(sslSocket *ss) { const ssl3KEADef *kea_def = ss->ssl3.hs.kea_def; PRCList *cursor; SECStatus rv; /* If the client didn't include the supported groups extension, assume just * P-256 support and disable all the other ECDHE groups. This also affects * ECDHE group selection, but this function is called first. */ if (!ssl3_ExtensionNegotiated(ss, ssl_supported_groups_xtn)) { unsigned int i; for (i = 0; i < SSL_NAMED_GROUP_COUNT; ++i) { if (ss->namedGroupPreferences[i] && ss->namedGroupPreferences[i]->keaType == ssl_kea_ecdh && ss->namedGroupPreferences[i]->name != ssl_grp_ec_secp256r1) { ss->namedGroupPreferences[i] = NULL; } } } /* This picks the first certificate that has: * a) the right authentication method, and * b) the right named curve (EC only) * * We might want to do some sort of ranking here later. For now, it's all * based on what order they are configured in. */ for (cursor = PR_NEXT_LINK(&ss->serverCerts); cursor != &ss->serverCerts; cursor = PR_NEXT_LINK(cursor)) { sslServerCert *cert = (sslServerCert *)cursor; if (kea_def->authKeyType == ssl_auth_rsa_sign) { /* We consider PSS certificates here as well for TLS 1.2. */ if (!SSL_CERT_IS(cert, ssl_auth_rsa_sign) && (!SSL_CERT_IS(cert, ssl_auth_rsa_pss) || ss->version < SSL_LIBRARY_VERSION_TLS_1_2)) { continue; } } else { if (!SSL_CERT_IS(cert, kea_def->authKeyType)) { continue; } if (SSL_CERT_IS_EC(cert) && !ssl_NamedGroupEnabled(ss, cert->namedCurve)) { continue; } } /* Found one. */ ss->sec.serverCert = cert; ss->sec.authKeyBits = cert->serverKeyBits; /* Don't pick a signature scheme if we aren't going to use it. */ if (kea_def->signKeyType == nullKey) { ss->sec.authType = kea_def->authKeyType; return SECSuccess; } rv = ssl3_PickServerSignatureScheme(ss); if (rv != SECSuccess) { return SECFailure; } ss->sec.authType = ssl_SignatureSchemeToAuthType(ss->ssl3.hs.signatureScheme); return SECSuccess; } PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP); return SECFailure; } static SECStatus ssl_GenerateServerRandom(sslSocket *ss) { SECStatus rv = ssl3_GetNewRandom(ss->ssl3.hs.server_random); if (rv != SECSuccess) { return SECFailure; } if (ss->version == ss->vrange.max) { return SECSuccess; } #ifdef DTLS_1_3_DRAFT_VERSION if (IS_DTLS(ss)) { return SECSuccess; } #endif /* * [RFC 8446 Section 4.1.3]. * * TLS 1.3 servers which negotiate TLS 1.2 or below in response to a * ClientHello MUST set the last 8 bytes of their Random value specially in * their ServerHello. * * If negotiating TLS 1.2, TLS 1.3 servers MUST set the last 8 bytes of * their Random value to the bytes: * * 44 4F 57 4E 47 52 44 01 * * If negotiating TLS 1.1 or below, TLS 1.3 servers MUST, and TLS 1.2 * servers SHOULD, set the last 8 bytes of their ServerHello.Random value to * the bytes: * * 44 4F 57 4E 47 52 44 00 */ PRUint8 *downgradeSentinel = ss->ssl3.hs.server_random + SSL3_RANDOM_LENGTH - sizeof(tls13_downgrade_random); switch (ss->vrange.max) { case SSL_LIBRARY_VERSION_TLS_1_3: PORT_Memcpy(downgradeSentinel, tls13_downgrade_random, sizeof(tls13_downgrade_random)); break; case SSL_LIBRARY_VERSION_TLS_1_2: PORT_Memcpy(downgradeSentinel, tls12_downgrade_random, sizeof(tls12_downgrade_random)); break; default: /* Do not change random. */ break; } return SECSuccess; } /* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete * ssl3 Client Hello message. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleClientHello(sslSocket *ss, PRUint8 *b, PRUint32 length) { sslSessionID *sid = NULL; PRUint32 tmp; unsigned int i; SECStatus rv; int errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO; SSL3AlertDescription desc = illegal_parameter; SSL3AlertLevel level = alert_fatal; SSL3ProtocolVersion version; TLSExtension *versionExtension; SECItem sidBytes = { siBuffer, NULL, 0 }; SECItem cookieBytes = { siBuffer, NULL, 0 }; SECItem suites = { siBuffer, NULL, 0 }; SECItem comps = { siBuffer, NULL, 0 }; PRBool isTLS13; const PRUint8 *savedMsg = b; const PRUint32 savedLen = length; SSL_TRC(3, ("%d: SSL3[%d]: handle client_hello handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); ss->ssl3.hs.preliminaryInfo = 0; if (!ss->sec.isServer || (ss->ssl3.hs.ws != wait_client_hello && ss->ssl3.hs.ws != idle_handshake)) { desc = unexpected_message; errCode = SSL_ERROR_RX_UNEXPECTED_CLIENT_HELLO; goto alert_loser; } if (ss->ssl3.hs.ws == idle_handshake) { /* Refuse re-handshake when we have already negotiated TLS 1.3. */ if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) { desc = unexpected_message; errCode = SSL_ERROR_RENEGOTIATION_NOT_ALLOWED; goto alert_loser; } if (ss->opt.enableRenegotiation == SSL_RENEGOTIATE_NEVER) { desc = no_renegotiation; level = alert_warning; errCode = SSL_ERROR_RENEGOTIATION_NOT_ALLOWED; goto alert_loser; } } /* We should always be in a fresh state. */ SSL_ASSERT_HASHES_EMPTY(ss); /* Get peer name of client */ rv = ssl_GetPeerInfo(ss); if (rv != SECSuccess) { return rv; /* error code is set. */ } /* We might be starting session renegotiation in which case we should * clear previous state. */ ssl3_ResetExtensionData(&ss->xtnData, ss); ss->statelessResume = PR_FALSE; if (IS_DTLS(ss)) { dtls_RehandshakeCleanup(ss); } rv = ssl3_ConsumeHandshakeNumber(ss, &tmp, 2, &b, &length); if (rv != SECSuccess) goto loser; /* malformed, alert already sent */ /* Translate the version. */ if (IS_DTLS(ss)) { ss->clientHelloVersion = version = dtls_DTLSVersionToTLSVersion((SSL3ProtocolVersion)tmp); } else { ss->clientHelloVersion = version = (SSL3ProtocolVersion)tmp; } /* Grab the client random data. */ rv = ssl3_ConsumeHandshake( ss, ss->ssl3.hs.client_random, SSL3_RANDOM_LENGTH, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed */ } /* Grab the client's SID, if present. */ rv = ssl3_ConsumeHandshakeVariable(ss, &sidBytes, 1, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed */ } /* Grab the client's cookie, if present. */ if (IS_DTLS(ss)) { rv = ssl3_ConsumeHandshakeVariable(ss, &cookieBytes, 1, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed */ } if (cookieBytes.len != 0) { goto loser; /* We never send cookies in DTLS 1.2. */ } } /* Grab the list of cipher suites. */ rv = ssl3_ConsumeHandshakeVariable(ss, &suites, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed */ } /* Grab the list of compression methods. */ rv = ssl3_ConsumeHandshakeVariable(ss, &comps, 1, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed */ } /* Handle TLS hello extensions for SSL3 & TLS. We do not know if * we are restarting a previous session until extensions have been * parsed, since we might have received a SessionTicket extension. * Note: we allow extensions even when negotiating SSL3 for the sake * of interoperability (and backwards compatibility). */ if (length) { /* Get length of hello extensions */ PRUint32 extensionLength; rv = ssl3_ConsumeHandshakeNumber(ss, &extensionLength, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* alert already sent */ } if (extensionLength != length) { errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO; desc = decode_error; goto alert_loser; } rv = ssl3_ParseExtensions(ss, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed */ } } versionExtension = ssl3_FindExtension(ss, ssl_tls13_supported_versions_xtn); if (versionExtension) { rv = tls13_NegotiateVersion(ss, versionExtension); if (rv != SECSuccess) { errCode = PORT_GetError(); desc = (errCode == SSL_ERROR_UNSUPPORTED_VERSION) ? protocol_version : illegal_parameter; goto alert_loser; } } else { /* The PR_MIN here ensures that we never negotiate 1.3 if the * peer didn't offer "supported_versions". */ rv = ssl3_NegotiateVersion(ss, PR_MIN(version, SSL_LIBRARY_VERSION_TLS_1_2), PR_TRUE); if (rv != SECSuccess) { desc = (version > SSL_LIBRARY_VERSION_3_0) ? protocol_version : handshake_failure; errCode = SSL_ERROR_UNSUPPORTED_VERSION; goto alert_loser; } } ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_version; /* Update the write spec to match the selected version. */ if (!ss->firstHsDone) { ssl_GetSpecWriteLock(ss); ssl_SetSpecVersions(ss, ss->ssl3.cwSpec); ssl_ReleaseSpecWriteLock(ss); } isTLS13 = ss->version >= SSL_LIBRARY_VERSION_TLS_1_3; if (isTLS13) { if (ss->firstHsDone) { desc = unexpected_message; errCode = SSL_ERROR_RENEGOTIATION_NOT_ALLOWED; goto alert_loser; } if (sidBytes.len > 0 && !IS_DTLS(ss)) { SECITEM_FreeItem(&ss->ssl3.hs.fakeSid, PR_FALSE); rv = SECITEM_CopyItem(NULL, &ss->ssl3.hs.fakeSid, &sidBytes); if (rv != SECSuccess) { desc = internal_error; errCode = PORT_GetError(); goto alert_loser; } } /* TLS 1.3 requires that compression include only null. */ if (comps.len != 1 || comps.data[0] != ssl_compression_null) { goto alert_loser; } /* If there is a cookie, then this is a second ClientHello (TLS 1.3). */ if (ssl3_FindExtension(ss, ssl_tls13_cookie_xtn)) { ss->ssl3.hs.helloRetry = PR_TRUE; } /* receivedCcs is only valid if we sent an HRR. */ if (ss->ssl3.hs.receivedCcs && !ss->ssl3.hs.helloRetry) { desc = unexpected_message; errCode = SSL_ERROR_RX_UNEXPECTED_CHANGE_CIPHER; goto alert_loser; } } else { /* HRR is TLS1.3-only. We ignore the Cookie extension here. */ if (ss->ssl3.hs.helloRetry) { desc = protocol_version; errCode = SSL_ERROR_UNSUPPORTED_VERSION; goto alert_loser; } /* receivedCcs is only valid if we sent an HRR. */ if (ss->ssl3.hs.receivedCcs) { desc = unexpected_message; errCode = SSL_ERROR_RX_UNEXPECTED_CHANGE_CIPHER; goto alert_loser; } /* TLS versions prior to 1.3 must include null somewhere. */ if (comps.len < 1 || !memchr(comps.data, ssl_compression_null, comps.len)) { goto alert_loser; } } /* Now parse the rest of the extensions. */ rv = ssl3_HandleParsedExtensions(ss, ssl_hs_client_hello); ssl3_DestroyRemoteExtensions(&ss->ssl3.hs.remoteExtensions); if (rv != SECSuccess) { if (PORT_GetError() == SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM) { errCode = SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM; } goto loser; /* malformed */ } /* If the ClientHello version is less than our maximum version, check for a * TLS_FALLBACK_SCSV and reject the connection if found. */ if (ss->vrange.max > ss->version) { for (i = 0; i + 1 < suites.len; i += 2) { PRUint16 suite_i = (suites.data[i] << 8) | suites.data[i + 1]; if (suite_i != TLS_FALLBACK_SCSV) continue; desc = inappropriate_fallback; errCode = SSL_ERROR_INAPPROPRIATE_FALLBACK_ALERT; goto alert_loser; } } if (!ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) { /* If we didn't receive an RI extension, look for the SCSV, * and if found, treat it just like an empty RI extension * by processing a local copy of an empty RI extension. */ for (i = 0; i + 1 < suites.len; i += 2) { PRUint16 suite_i = (suites.data[i] << 8) | suites.data[i + 1]; if (suite_i == TLS_EMPTY_RENEGOTIATION_INFO_SCSV) { PRUint8 *b2 = (PRUint8 *)emptyRIext; PRUint32 L2 = sizeof emptyRIext; (void)ssl3_HandleExtensions(ss, &b2, &L2, ssl_hs_client_hello); break; } } } /* The check for renegotiation in TLS 1.3 is earlier. */ if (!isTLS13) { if (ss->firstHsDone && (ss->opt.enableRenegotiation == SSL_RENEGOTIATE_REQUIRES_XTN || ss->opt.enableRenegotiation == SSL_RENEGOTIATE_TRANSITIONAL) && !ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) { desc = no_renegotiation; level = alert_warning; errCode = SSL_ERROR_RENEGOTIATION_NOT_ALLOWED; goto alert_loser; } if ((ss->opt.requireSafeNegotiation || (ss->firstHsDone && ss->peerRequestedProtection)) && !ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) { desc = handshake_failure; errCode = SSL_ERROR_UNSAFE_NEGOTIATION; goto alert_loser; } } /* We do stateful resumes only if we are in TLS < 1.3 and * either of the following conditions are satisfied: * (1) the client does not support the session ticket extension, or * (2) the client support the session ticket extension, but sent an * empty ticket. */ if (!isTLS13 && (!ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn) || ss->xtnData.emptySessionTicket)) { if (sidBytes.len > 0 && !ss->opt.noCache) { SSL_TRC(7, ("%d: SSL3[%d]: server, lookup client session-id for 0x%08x%08x%08x%08x", SSL_GETPID(), ss->fd, ss->sec.ci.peer.pr_s6_addr32[0], ss->sec.ci.peer.pr_s6_addr32[1], ss->sec.ci.peer.pr_s6_addr32[2], ss->sec.ci.peer.pr_s6_addr32[3])); if (ssl_sid_lookup) { sid = (*ssl_sid_lookup)(ssl_Time(ss), &ss->sec.ci.peer, sidBytes.data, sidBytes.len, ss->dbHandle); } else { errCode = SSL_ERROR_SERVER_CACHE_NOT_CONFIGURED; goto loser; } } } else if (ss->statelessResume) { /* Fill in the client's session ID if doing a stateless resume. * (When doing stateless resumes, server echos client's SessionID.) * This branch also handles TLS 1.3 resumption-PSK. */ sid = ss->sec.ci.sid; PORT_Assert(sid != NULL); /* Should have already been filled in.*/ if (sidBytes.len > 0 && sidBytes.len <= SSL3_SESSIONID_BYTES) { sid->u.ssl3.sessionIDLength = sidBytes.len; PORT_Memcpy(sid->u.ssl3.sessionID, sidBytes.data, sidBytes.len); sid->u.ssl3.sessionIDLength = sidBytes.len; } else { sid->u.ssl3.sessionIDLength = 0; } ss->sec.ci.sid = NULL; } /* Free a potentially leftover session ID from a previous handshake. */ if (ss->sec.ci.sid) { ssl_FreeSID(ss->sec.ci.sid); ss->sec.ci.sid = NULL; } if (sid != NULL) { /* We've found a session cache entry for this client. * Now, if we're going to require a client-auth cert, * and we don't already have this client's cert in the session cache, * and this is the first handshake on this connection (not a redo), * then drop this old cache entry and start a new session. */ if ((sid->peerCert == NULL) && ss->opt.requestCertificate && ((ss->opt.requireCertificate == SSL_REQUIRE_ALWAYS) || (ss->opt.requireCertificate == SSL_REQUIRE_NO_ERROR) || ((ss->opt.requireCertificate == SSL_REQUIRE_FIRST_HANDSHAKE) && !ss->firstHsDone))) { SSL_AtomicIncrementLong(&ssl3stats.hch_sid_cache_not_ok); ssl_FreeSID(sid); sid = NULL; ss->statelessResume = PR_FALSE; } } if (IS_DTLS(ss)) { ssl3_DisableNonDTLSSuites(ss); dtls_ReceivedFirstMessageInFlight(ss); } if (isTLS13) { rv = tls13_HandleClientHelloPart2(ss, &suites, sid, savedMsg, savedLen); } else { rv = ssl3_HandleClientHelloPart2(ss, &suites, sid, savedMsg, savedLen); } if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } return SECSuccess; alert_loser: (void)SSL3_SendAlert(ss, level, desc); /* FALLTHRU */ loser: PORT_SetError(errCode); return SECFailure; } /* unwrap helper function to handle the case where the wrapKey doesn't wind * up in the correct token for the master secret */ PK11SymKey * ssl_unwrapSymKey(PK11SymKey *wrapKey, CK_MECHANISM_TYPE wrapType, SECItem *param, SECItem *wrappedKey, CK_MECHANISM_TYPE target, CK_ATTRIBUTE_TYPE operation, int keySize, CK_FLAGS keyFlags, void *pinArg) { PK11SymKey *unwrappedKey; /* unwrap the master secret. */ unwrappedKey = PK11_UnwrapSymKeyWithFlags(wrapKey, wrapType, param, wrappedKey, target, operation, keySize, keyFlags); if (!unwrappedKey) { PK11SlotInfo *targetSlot = PK11_GetBestSlot(target, pinArg); PK11SymKey *newWrapKey; /* it's possible that we failed to unwrap because the wrapKey is in * a slot that can't handle target. Move the wrapKey to a slot that * can handle this mechanism and retry the operation */ if (targetSlot == NULL) { return NULL; } newWrapKey = PK11_MoveSymKey(targetSlot, CKA_UNWRAP, 0, PR_FALSE, wrapKey); PK11_FreeSlot(targetSlot); if (newWrapKey == NULL) { return NULL; } unwrappedKey = PK11_UnwrapSymKeyWithFlags(newWrapKey, wrapType, param, wrappedKey, target, operation, keySize, keyFlags); PK11_FreeSymKey(newWrapKey); } return unwrappedKey; } static SECStatus ssl3_UnwrapMasterSecretServer(sslSocket *ss, sslSessionID *sid, PK11SymKey **ms) { PK11SymKey *wrapKey; CK_FLAGS keyFlags = 0; SECItem wrappedMS = { siBuffer, sid->u.ssl3.keys.wrapped_master_secret, sid->u.ssl3.keys.wrapped_master_secret_len }; wrapKey = ssl3_GetWrappingKey(ss, NULL, sid->u.ssl3.masterWrapMech, ss->pkcs11PinArg); if (!wrapKey) { return SECFailure; } if (ss->version > SSL_LIBRARY_VERSION_3_0) { /* isTLS */ keyFlags = CKF_SIGN | CKF_VERIFY; } *ms = ssl_unwrapSymKey(wrapKey, sid->u.ssl3.masterWrapMech, NULL, &wrappedMS, CKM_SSL3_MASTER_KEY_DERIVE, CKA_DERIVE, SSL3_MASTER_SECRET_LENGTH, keyFlags, ss->pkcs11PinArg); PK11_FreeSymKey(wrapKey); if (!*ms) { SSL_TRC(10, ("%d: SSL3[%d]: server wrapping key found, but couldn't unwrap MasterSecret. wrapMech=0x%0lx", SSL_GETPID(), ss->fd, sid->u.ssl3.masterWrapMech)); return SECFailure; } return SECSuccess; } static SECStatus ssl3_HandleClientHelloPart2(sslSocket *ss, SECItem *suites, sslSessionID *sid, const PRUint8 *msg, unsigned int len) { PRBool haveXmitBufLock = PR_FALSE; int errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO; SSL3AlertDescription desc = illegal_parameter; SECStatus rv; unsigned int i; unsigned int j; rv = ssl_HashHandshakeMessage(ss, ssl_hs_client_hello, msg, len); if (rv != SECSuccess) { errCode = SEC_ERROR_LIBRARY_FAILURE; desc = internal_error; goto alert_loser; } /* If we already have a session for this client, be sure to pick the same ** cipher suite we picked before. This is not a loop, despite appearances. */ if (sid) do { ssl3CipherSuiteCfg *suite; SSLVersionRange vrange = { ss->version, ss->version }; suite = ss->cipherSuites; /* Find the entry for the cipher suite used in the cached session. */ for (j = ssl_V3_SUITES_IMPLEMENTED; j > 0; --j, ++suite) { if (suite->cipher_suite == sid->u.ssl3.cipherSuite) break; } PORT_Assert(j > 0); if (j == 0) break; /* Double check that the cached cipher suite is still enabled, * implemented, and allowed by policy. Might have been disabled. */ if (ssl3_config_match_init(ss) == 0) { desc = handshake_failure; errCode = PORT_GetError(); goto alert_loser; } if (!ssl3_config_match(suite, ss->ssl3.policy, &vrange, ss)) break; /* Double check that the cached cipher suite is in the client's * list. If it isn't, fall through and start a new session. */ for (i = 0; i + 1 < suites->len; i += 2) { PRUint16 suite_i = (suites->data[i] << 8) | suites->data[i + 1]; if (suite_i == suite->cipher_suite) { ss->ssl3.hs.cipher_suite = suite_i; rv = ssl3_SetupCipherSuite(ss, PR_TRUE); if (rv != SECSuccess) { desc = internal_error; errCode = PORT_GetError(); goto alert_loser; } goto cipher_found; } } } while (0); /* START A NEW SESSION */ rv = ssl3_NegotiateCipherSuite(ss, suites, PR_TRUE); if (rv != SECSuccess) { desc = handshake_failure; errCode = PORT_GetError(); goto alert_loser; } cipher_found: suites->data = NULL; /* If there are any failures while processing the old sid, * we don't consider them to be errors. Instead, We just behave * as if the client had sent us no sid to begin with, and make a new one. * The exception here is attempts to resume extended_master_secret * sessions without the extension, which causes an alert. */ if (sid != NULL) do { PK11SymKey *masterSecret; if (sid->version != ss->version || sid->u.ssl3.cipherSuite != ss->ssl3.hs.cipher_suite) { break; /* not an error */ } /* server sids don't remember the server cert we previously sent, ** but they do remember the slot we originally used, so we ** can locate it again, provided that the current ssl socket ** has had its server certs configured the same as the previous one. */ ss->sec.serverCert = ssl_FindServerCert(ss, sid->authType, sid->namedCurve); if (!ss->sec.serverCert || !ss->sec.serverCert->serverCert) { /* A compatible certificate must not have been configured. It * might not be the same certificate, but we only find that out * when the ticket fails to decrypt. */ break; } /* [draft-ietf-tls-session-hash-06; Section 5.3] * o If the original session did not use the "extended_master_secret" * extension but the new ClientHello contains the extension, then the * server MUST NOT perform the abbreviated handshake. Instead, it * SHOULD continue with a full handshake (as described in * Section 5.2) to negotiate a new session. * * o If the original session used the "extended_master_secret" * extension but the new ClientHello does not contain the extension, * the server MUST abort the abbreviated handshake. */ if (ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn)) { if (!sid->u.ssl3.keys.extendedMasterSecretUsed) { break; /* not an error */ } } else { if (sid->u.ssl3.keys.extendedMasterSecretUsed) { /* Note: we do not destroy the session */ desc = handshake_failure; errCode = SSL_ERROR_MISSING_EXTENDED_MASTER_SECRET; goto alert_loser; } } if (ss->sec.ci.sid) { ssl_UncacheSessionID(ss); PORT_Assert(ss->sec.ci.sid != sid); /* should be impossible, but ... */ if (ss->sec.ci.sid != sid) { ssl_FreeSID(ss->sec.ci.sid); } ss->sec.ci.sid = NULL; } /* we need to resurrect the master secret.... */ rv = ssl3_UnwrapMasterSecretServer(ss, sid, &masterSecret); if (rv != SECSuccess) { break; /* not an error */ } ss->sec.ci.sid = sid; if (sid->peerCert != NULL) { ss->sec.peerCert = CERT_DupCertificate(sid->peerCert); } /* * Old SID passed all tests, so resume this old session. */ SSL_AtomicIncrementLong(&ssl3stats.hch_sid_cache_hits); if (ss->statelessResume) SSL_AtomicIncrementLong(&ssl3stats.hch_sid_stateless_resumes); ss->ssl3.hs.isResuming = PR_TRUE; ss->sec.authType = sid->authType; ss->sec.authKeyBits = sid->authKeyBits; ss->sec.keaType = sid->keaType; ss->sec.keaKeyBits = sid->keaKeyBits; ss->sec.originalKeaGroup = ssl_LookupNamedGroup(sid->keaGroup); ss->sec.signatureScheme = sid->sigScheme; ss->sec.localCert = CERT_DupCertificate(ss->sec.serverCert->serverCert); /* Copy cached name in to pending spec */ if (sid != NULL && sid->version > SSL_LIBRARY_VERSION_3_0 && sid->u.ssl3.srvName.len && sid->u.ssl3.srvName.data) { /* Set server name from sid */ SECItem *sidName = &sid->u.ssl3.srvName; SECItem *pwsName = &ss->ssl3.hs.srvVirtName; if (pwsName->data) { SECITEM_FreeItem(pwsName, PR_FALSE); } rv = SECITEM_CopyItem(NULL, pwsName, sidName); if (rv != SECSuccess) { errCode = PORT_GetError(); desc = internal_error; goto alert_loser; } } /* Clean up sni name array */ ssl3_FreeSniNameArray(&ss->xtnData); ssl_GetXmitBufLock(ss); haveXmitBufLock = PR_TRUE; rv = ssl3_SendServerHello(ss); if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } /* We are re-using the old MS, so no need to derive again. */ rv = ssl3_InitPendingCipherSpecs(ss, masterSecret, PR_FALSE); if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } rv = ssl3_SendChangeCipherSpecs(ss); if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } rv = ssl3_SendFinished(ss, 0); ss->ssl3.hs.ws = wait_change_cipher; if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } if (haveXmitBufLock) { ssl_ReleaseXmitBufLock(ss); } return SECSuccess; } while (0); if (sid) { /* we had a sid, but it's no longer valid, free it */ ss->statelessResume = PR_FALSE; SSL_AtomicIncrementLong(&ssl3stats.hch_sid_cache_not_ok); ssl_UncacheSessionID(ss); ssl_FreeSID(sid); sid = NULL; } SSL_AtomicIncrementLong(&ssl3stats.hch_sid_cache_misses); /* We only send a session ticket extension if the client supports * the extension and we are unable to resume. * * TODO: send a session ticket if performing a stateful * resumption. (As per RFC4507, a server may issue a session * ticket while doing a (stateless or stateful) session resume, * but OpenSSL-0.9.8g does not accept session tickets while * resuming.) */ if (ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn) && ssl3_KEASupportsTickets(ss->ssl3.hs.kea_def)) { ssl3_RegisterExtensionSender(ss, &ss->xtnData, ssl_session_ticket_xtn, ssl_SendEmptyExtension); } rv = ssl3_ServerCallSNICallback(ss); if (rv != SECSuccess) { /* The alert has already been sent. */ errCode = PORT_GetError(); goto loser; } rv = ssl3_SelectServerCert(ss); if (rv != SECSuccess) { errCode = PORT_GetError(); desc = handshake_failure; goto alert_loser; } sid = ssl3_NewSessionID(ss, PR_TRUE); if (sid == NULL) { errCode = PORT_GetError(); goto loser; /* memory error is set. */ } ss->sec.ci.sid = sid; sid->u.ssl3.keys.extendedMasterSecretUsed = ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn); ss->ssl3.hs.isResuming = PR_FALSE; ssl_GetXmitBufLock(ss); rv = ssl3_SendServerHelloSequence(ss); ssl_ReleaseXmitBufLock(ss); if (rv != SECSuccess) { errCode = PORT_GetError(); desc = handshake_failure; goto alert_loser; } if (haveXmitBufLock) { ssl_ReleaseXmitBufLock(ss); } return SECSuccess; alert_loser: (void)SSL3_SendAlert(ss, alert_fatal, desc); /* FALLTHRU */ loser: if (sid && sid != ss->sec.ci.sid) { ssl_UncacheSessionID(ss); ssl_FreeSID(sid); } if (haveXmitBufLock) { ssl_ReleaseXmitBufLock(ss); } PORT_SetError(errCode); return SECFailure; } /* * ssl3_HandleV2ClientHello is used when a V2 formatted hello comes * in asking to use the V3 handshake. */ SECStatus ssl3_HandleV2ClientHello(sslSocket *ss, unsigned char *buffer, unsigned int length, PRUint8 padding) { sslSessionID *sid = NULL; unsigned char *suites; unsigned char *random; SSL3ProtocolVersion version; SECStatus rv; unsigned int i; unsigned int j; unsigned int sid_length; unsigned int suite_length; unsigned int rand_length; int errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO; SSL3AlertDescription desc = handshake_failure; unsigned int total = SSL_HL_CLIENT_HELLO_HBYTES; SSL_TRC(3, ("%d: SSL3[%d]: handle v2 client_hello", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); ssl_GetSSL3HandshakeLock(ss); version = (buffer[1] << 8) | buffer[2]; if (version < SSL_LIBRARY_VERSION_3_0) { goto loser; } ssl3_RestartHandshakeHashes(ss); if (ss->ssl3.hs.ws != wait_client_hello) { desc = unexpected_message; errCode = SSL_ERROR_RX_UNEXPECTED_CLIENT_HELLO; goto alert_loser; } total += suite_length = (buffer[3] << 8) | buffer[4]; total += sid_length = (buffer[5] << 8) | buffer[6]; total += rand_length = (buffer[7] << 8) | buffer[8]; total += padding; ss->clientHelloVersion = version; if (version >= SSL_LIBRARY_VERSION_TLS_1_3) { /* [draft-ietf-tls-tls-11; C.3] forbids sending a TLS 1.3 * ClientHello using the backwards-compatible format. */ desc = illegal_parameter; errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO; goto alert_loser; } rv = ssl3_NegotiateVersion(ss, version, PR_TRUE); if (rv != SECSuccess) { /* send back which ever alert client will understand. */ desc = (version > SSL_LIBRARY_VERSION_3_0) ? protocol_version : handshake_failure; errCode = SSL_ERROR_UNSUPPORTED_VERSION; goto alert_loser; } ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_version; if (!ss->firstHsDone) { ssl_GetSpecWriteLock(ss); ssl_SetSpecVersions(ss, ss->ssl3.cwSpec); ssl_ReleaseSpecWriteLock(ss); } /* if we get a non-zero SID, just ignore it. */ if (length != total) { SSL_DBG(("%d: SSL3[%d]: bad v2 client hello message, len=%d should=%d", SSL_GETPID(), ss->fd, length, total)); desc = illegal_parameter; errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO; goto alert_loser; } suites = buffer + SSL_HL_CLIENT_HELLO_HBYTES; random = suites + suite_length + sid_length; if (rand_length < SSL_MIN_CHALLENGE_BYTES || rand_length > SSL_MAX_CHALLENGE_BYTES) { desc = illegal_parameter; errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO; goto alert_loser; } PORT_Assert(SSL_MAX_CHALLENGE_BYTES == SSL3_RANDOM_LENGTH); PORT_Memset(ss->ssl3.hs.client_random, 0, SSL3_RANDOM_LENGTH); PORT_Memcpy(&ss->ssl3.hs.client_random[SSL3_RANDOM_LENGTH - rand_length], random, rand_length); PRINT_BUF(60, (ss, "client random:", ss->ssl3.hs.client_random, SSL3_RANDOM_LENGTH)); if (ssl3_config_match_init(ss) == 0) { errCode = PORT_GetError(); /* error code is already set. */ goto alert_loser; } /* Select a cipher suite. ** ** NOTE: This suite selection algorithm should be the same as the one in ** ssl3_HandleClientHello(). */ for (j = 0; j < ssl_V3_SUITES_IMPLEMENTED; j++) { ssl3CipherSuiteCfg *suite = &ss->cipherSuites[j]; SSLVersionRange vrange = { ss->version, ss->version }; if (!ssl3_config_match(suite, ss->ssl3.policy, &vrange, ss)) { continue; } for (i = 0; i + 2 < suite_length; i += 3) { PRUint32 suite_i = (suites[i] << 16) | (suites[i + 1] << 8) | suites[i + 2]; if (suite_i == suite->cipher_suite) { ss->ssl3.hs.cipher_suite = suite_i; rv = ssl3_SetupCipherSuite(ss, PR_TRUE); if (rv != SECSuccess) { desc = internal_error; errCode = PORT_GetError(); goto alert_loser; } goto suite_found; } } } errCode = SSL_ERROR_NO_CYPHER_OVERLAP; goto alert_loser; suite_found: /* If the ClientHello version is less than our maximum version, check for a * TLS_FALLBACK_SCSV and reject the connection if found. */ if (ss->vrange.max > ss->clientHelloVersion) { for (i = 0; i + 2 < suite_length; i += 3) { PRUint16 suite_i = (suites[i] << 16) | (suites[i + 1] << 8) | suites[i + 2]; if (suite_i == TLS_FALLBACK_SCSV) { desc = inappropriate_fallback; errCode = SSL_ERROR_INAPPROPRIATE_FALLBACK_ALERT; goto alert_loser; } } } /* Look for the SCSV, and if found, treat it just like an empty RI * extension by processing a local copy of an empty RI extension. */ for (i = 0; i + 2 < suite_length; i += 3) { PRUint32 suite_i = (suites[i] << 16) | (suites[i + 1] << 8) | suites[i + 2]; if (suite_i == TLS_EMPTY_RENEGOTIATION_INFO_SCSV) { PRUint8 *b2 = (PRUint8 *)emptyRIext; PRUint32 L2 = sizeof emptyRIext; (void)ssl3_HandleExtensions(ss, &b2, &L2, ssl_hs_client_hello); break; } } if (ss->opt.requireSafeNegotiation && !ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) { desc = handshake_failure; errCode = SSL_ERROR_UNSAFE_NEGOTIATION; goto alert_loser; } rv = ssl3_SelectServerCert(ss); if (rv != SECSuccess) { errCode = PORT_GetError(); desc = handshake_failure; goto alert_loser; } /* we don't even search for a cache hit here. It's just a miss. */ SSL_AtomicIncrementLong(&ssl3stats.hch_sid_cache_misses); sid = ssl3_NewSessionID(ss, PR_TRUE); if (sid == NULL) { errCode = PORT_GetError(); goto loser; /* memory error is set. */ } ss->sec.ci.sid = sid; /* do not worry about memory leak of sid since it now belongs to ci */ /* We have to update the handshake hashes before we can send stuff */ rv = ssl3_UpdateHandshakeHashes(ss, buffer, length); if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } ssl_GetXmitBufLock(ss); rv = ssl3_SendServerHelloSequence(ss); ssl_ReleaseXmitBufLock(ss); if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } ssl_ReleaseSSL3HandshakeLock(ss); return SECSuccess; alert_loser: SSL3_SendAlert(ss, alert_fatal, desc); loser: ssl_ReleaseSSL3HandshakeLock(ss); PORT_SetError(errCode); return SECFailure; } SECStatus ssl_ConstructServerHello(sslSocket *ss, PRBool helloRetry, const sslBuffer *extensionBuf, sslBuffer *messageBuf) { SECStatus rv; SSL3ProtocolVersion version; sslSessionID *sid = ss->sec.ci.sid; const PRUint8 *random; version = PR_MIN(ss->version, SSL_LIBRARY_VERSION_TLS_1_2); if (IS_DTLS(ss)) { version = dtls_TLSVersionToDTLSVersion(version); } rv = sslBuffer_AppendNumber(messageBuf, version, 2); if (rv != SECSuccess) { return SECFailure; } if (helloRetry) { random = ssl_hello_retry_random; } else { rv = ssl_GenerateServerRandom(ss); if (rv != SECSuccess) { return SECFailure; } random = ss->ssl3.hs.server_random; } rv = sslBuffer_Append(messageBuf, random, SSL3_RANDOM_LENGTH); if (rv != SECSuccess) { return SECFailure; } if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) { if (sid) { rv = sslBuffer_AppendVariable(messageBuf, sid->u.ssl3.sessionID, sid->u.ssl3.sessionIDLength, 1); } else { rv = sslBuffer_AppendNumber(messageBuf, 0, 1); } } else { rv = sslBuffer_AppendVariable(messageBuf, ss->ssl3.hs.fakeSid.data, ss->ssl3.hs.fakeSid.len, 1); } if (rv != SECSuccess) { return SECFailure; } rv = sslBuffer_AppendNumber(messageBuf, ss->ssl3.hs.cipher_suite, 2); if (rv != SECSuccess) { return SECFailure; } rv = sslBuffer_AppendNumber(messageBuf, ssl_compression_null, 1); if (rv != SECSuccess) { return SECFailure; } if (SSL_BUFFER_LEN(extensionBuf)) { rv = sslBuffer_AppendBufferVariable(messageBuf, extensionBuf, 2); if (rv != SECSuccess) { return SECFailure; } } return SECSuccess; } /* The negotiated version number has been already placed in ss->version. ** ** Called from: ssl3_HandleClientHello (resuming session), ** ssl3_SendServerHelloSequence <- ssl3_HandleClientHello (new session), ** ssl3_SendServerHelloSequence <- ssl3_HandleV2ClientHello (new session) */ SECStatus ssl3_SendServerHello(sslSocket *ss) { SECStatus rv; sslBuffer extensionBuf = SSL_BUFFER_EMPTY; sslBuffer messageBuf = SSL_BUFFER_EMPTY; SSL_TRC(3, ("%d: SSL3[%d]: send server_hello handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(MSB(ss->version) == MSB(SSL_LIBRARY_VERSION_3_0)); if (MSB(ss->version) != MSB(SSL_LIBRARY_VERSION_3_0)) { PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP); return SECFailure; } rv = ssl_ConstructExtensions(ss, &extensionBuf, ssl_hs_server_hello); if (rv != SECSuccess) { goto loser; } rv = ssl_ConstructServerHello(ss, PR_FALSE, &extensionBuf, &messageBuf); if (rv != SECSuccess) { goto loser; } rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_server_hello, SSL_BUFFER_LEN(&messageBuf)); if (rv != SECSuccess) { goto loser; /* err set by AppendHandshake. */ } rv = ssl3_AppendHandshake(ss, SSL_BUFFER_BASE(&messageBuf), SSL_BUFFER_LEN(&messageBuf)); if (rv != SECSuccess) { goto loser; /* err set by AppendHandshake. */ } if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) { rv = ssl3_SetupBothPendingCipherSpecs(ss); if (rv != SECSuccess) { goto loser; /* err set */ } } sslBuffer_Clear(&extensionBuf); sslBuffer_Clear(&messageBuf); return SECSuccess; loser: sslBuffer_Clear(&extensionBuf); sslBuffer_Clear(&messageBuf); return SECFailure; } SECStatus ssl_CreateDHEKeyPair(const sslNamedGroupDef *groupDef, const ssl3DHParams *params, sslEphemeralKeyPair **keyPair) { SECKEYDHParams dhParam; SECKEYPublicKey *pubKey = NULL; /* Ephemeral DH key */ SECKEYPrivateKey *privKey = NULL; /* Ephemeral DH key */ sslEphemeralKeyPair *pair; dhParam.prime.data = params->prime.data; dhParam.prime.len = params->prime.len; dhParam.base.data = params->base.data; dhParam.base.len = params->base.len; PRINT_BUF(60, (NULL, "Server DH p", dhParam.prime.data, dhParam.prime.len)); PRINT_BUF(60, (NULL, "Server DH g", dhParam.base.data, dhParam.base.len)); /* Generate ephemeral DH keypair */ privKey = SECKEY_CreateDHPrivateKey(&dhParam, &pubKey, NULL); if (!privKey || !pubKey) { ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL); return SECFailure; } pair = ssl_NewEphemeralKeyPair(groupDef, privKey, pubKey); if (!pair) { SECKEY_DestroyPrivateKey(privKey); SECKEY_DestroyPublicKey(pubKey); return SECFailure; } *keyPair = pair; return SECSuccess; } static SECStatus ssl3_SendDHServerKeyExchange(sslSocket *ss) { const ssl3KEADef *kea_def = ss->ssl3.hs.kea_def; SECStatus rv = SECFailure; int length; SECItem signed_hash = { siBuffer, NULL, 0 }; SSL3Hashes hashes; SSLHashType hashAlg; const ssl3DHParams *params; sslEphemeralKeyPair *keyPair; SECKEYPublicKey *pubKey; SECKEYPrivateKey *certPrivateKey; const sslNamedGroupDef *groupDef; /* Do this on the heap, this could be over 2k long. */ sslBuffer dhBuf = SSL_BUFFER_EMPTY; if (kea_def->kea != kea_dhe_dss && kea_def->kea != kea_dhe_rsa) { /* TODO: Support DH_anon. It might be sufficient to drop the signature. See bug 1170510. */ PORT_SetError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); return SECFailure; } rv = ssl_SelectDHEGroup(ss, &groupDef); if (rv == SECFailure) { PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP); return SECFailure; } ss->sec.keaGroup = groupDef; params = ssl_GetDHEParams(groupDef); rv = ssl_CreateDHEKeyPair(groupDef, params, &keyPair); if (rv == SECFailure) { ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL); return SECFailure; } PR_APPEND_LINK(&keyPair->link, &ss->ephemeralKeyPairs); if (ss->version == SSL_LIBRARY_VERSION_TLS_1_2) { hashAlg = ssl_SignatureSchemeToHashType(ss->ssl3.hs.signatureScheme); } else { /* Use ssl_hash_none to represent the MD5+SHA1 combo. */ hashAlg = ssl_hash_none; } pubKey = keyPair->keys->pubKey; PRINT_BUF(50, (ss, "DH public value:", pubKey->u.dh.publicValue.data, pubKey->u.dh.publicValue.len)); rv = ssl3_ComputeDHKeyHash(ss, hashAlg, &hashes, pubKey->u.dh.prime, pubKey->u.dh.base, pubKey->u.dh.publicValue, PR_TRUE /* padY */); if (rv != SECSuccess) { ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); goto loser; } certPrivateKey = ss->sec.serverCert->serverKeyPair->privKey; rv = ssl3_SignHashes(ss, &hashes, certPrivateKey, &signed_hash); if (rv != SECSuccess) { goto loser; /* ssl3_SignHashes has set err. */ } length = 2 + pubKey->u.dh.prime.len + 2 + pubKey->u.dh.base.len + 2 + pubKey->u.dh.prime.len + 2 + signed_hash.len; if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_2) { length += 2; } rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_server_key_exchange, length); if (rv != SECSuccess) { goto loser; /* err set by AppendHandshake. */ } rv = ssl3_AppendHandshakeVariable(ss, pubKey->u.dh.prime.data, pubKey->u.dh.prime.len, 2); if (rv != SECSuccess) { goto loser; /* err set by AppendHandshake. */ } rv = ssl3_AppendHandshakeVariable(ss, pubKey->u.dh.base.data, pubKey->u.dh.base.len, 2); if (rv != SECSuccess) { goto loser; /* err set by AppendHandshake. */ } rv = ssl_AppendPaddedDHKeyShare(&dhBuf, pubKey, PR_TRUE); if (rv != SECSuccess) { goto loser; /* err set by AppendPaddedDHKeyShare. */ } rv = ssl3_AppendBufferToHandshake(ss, &dhBuf); if (rv != SECSuccess) { goto loser; /* err set by AppendHandshake. */ } if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_2) { rv = ssl3_AppendHandshakeNumber(ss, ss->ssl3.hs.signatureScheme, 2); if (rv != SECSuccess) { goto loser; /* err set by AppendHandshake. */ } } rv = ssl3_AppendHandshakeVariable(ss, signed_hash.data, signed_hash.len, 2); if (rv != SECSuccess) { goto loser; /* err set by AppendHandshake. */ } sslBuffer_Clear(&dhBuf); PORT_Free(signed_hash.data); return SECSuccess; loser: if (signed_hash.data) PORT_Free(signed_hash.data); sslBuffer_Clear(&dhBuf); return SECFailure; } static SECStatus ssl3_SendServerKeyExchange(sslSocket *ss) { const ssl3KEADef *kea_def = ss->ssl3.hs.kea_def; SSL_TRC(3, ("%d: SSL3[%d]: send server_key_exchange handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); switch (kea_def->exchKeyType) { case ssl_kea_dh: { return ssl3_SendDHServerKeyExchange(ss); } case ssl_kea_ecdh: { return ssl3_SendECDHServerKeyExchange(ss); } case ssl_kea_rsa: case ssl_kea_null: default: PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); break; } return SECFailure; } SECStatus ssl3_EncodeSigAlgs(const sslSocket *ss, PRUint16 minVersion, sslBuffer *buf) { unsigned int lengthOffset; PRBool found = PR_FALSE; SECStatus rv; rv = sslBuffer_Skip(buf, 2, &lengthOffset); if (rv != SECSuccess) { return SECFailure; } for (unsigned int i = 0; i < ss->ssl3.signatureSchemeCount; ++i) { if (ssl_SignatureSchemeAccepted(minVersion, ss->ssl3.signatureSchemes[i])) { rv = sslBuffer_AppendNumber(buf, ss->ssl3.signatureSchemes[i], 2); if (rv != SECSuccess) { return SECFailure; } found = PR_TRUE; } } if (!found) { PORT_SetError(SSL_ERROR_NO_SUPPORTED_SIGNATURE_ALGORITHM); return SECFailure; } return sslBuffer_InsertLength(buf, lengthOffset, 2); } static SECStatus ssl3_SendCertificateRequest(sslSocket *ss) { PRBool isTLS12; const PRUint8 *certTypes; SECStatus rv; PRUint32 length; const SECItem *names; unsigned int calen; unsigned int nnames; const SECItem *name; unsigned int i; int certTypesLength; PRUint8 sigAlgs[2 + MAX_SIGNATURE_SCHEMES * 2]; sslBuffer sigAlgsBuf = SSL_BUFFER(sigAlgs); SSL_TRC(3, ("%d: SSL3[%d]: send certificate_request handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); isTLS12 = (PRBool)(ss->version >= SSL_LIBRARY_VERSION_TLS_1_2); rv = ssl_GetCertificateRequestCAs(ss, &calen, &names, &nnames); if (rv != SECSuccess) { return rv; } certTypes = certificate_types; certTypesLength = sizeof certificate_types; length = 1 + certTypesLength + 2 + calen; if (isTLS12) { rv = ssl3_EncodeSigAlgs(ss, ss->version, &sigAlgsBuf); if (rv != SECSuccess) { return rv; } length += SSL_BUFFER_LEN(&sigAlgsBuf); } rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_certificate_request, length); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } rv = ssl3_AppendHandshakeVariable(ss, certTypes, certTypesLength, 1); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } if (isTLS12) { rv = ssl3_AppendHandshake(ss, SSL_BUFFER_BASE(&sigAlgsBuf), SSL_BUFFER_LEN(&sigAlgsBuf)); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } } rv = ssl3_AppendHandshakeNumber(ss, calen, 2); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } for (i = 0, name = names; i < nnames; i++, name++) { rv = ssl3_AppendHandshakeVariable(ss, name->data, name->len, 2); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } } return SECSuccess; } static SECStatus ssl3_SendServerHelloDone(sslSocket *ss) { SECStatus rv; SSL_TRC(3, ("%d: SSL3[%d]: send server_hello_done handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_server_hello_done, 0); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } rv = ssl3_FlushHandshake(ss, 0); if (rv != SECSuccess) { return rv; /* error code set by ssl3_FlushHandshake */ } return SECSuccess; } /* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered * a complete ssl3 Certificate Verify message * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleCertificateVerify(sslSocket *ss, PRUint8 *b, PRUint32 length) { SECItem signed_hash = { siBuffer, NULL, 0 }; SECStatus rv; int errCode = SSL_ERROR_RX_MALFORMED_CERT_VERIFY; SSL3AlertDescription desc = handshake_failure; PRBool isTLS; SSLSignatureScheme sigScheme; SSL3Hashes hashes; const PRUint8 *savedMsg = b; const PRUint32 savedLen = length; SSL_TRC(3, ("%d: SSL3[%d]: handle certificate_verify handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (ss->ssl3.hs.ws != wait_cert_verify) { desc = unexpected_message; errCode = SSL_ERROR_RX_UNEXPECTED_CERT_VERIFY; goto alert_loser; } /* TLS 1.3 is handled by tls13_HandleCertificateVerify */ PORT_Assert(ss->ssl3.prSpec->version <= SSL_LIBRARY_VERSION_TLS_1_2); if (ss->ssl3.prSpec->version == SSL_LIBRARY_VERSION_TLS_1_2) { PORT_Assert(ss->ssl3.hs.hashType == handshake_hash_record); rv = ssl_ConsumeSignatureScheme(ss, &b, &length, &sigScheme); if (rv != SECSuccess) { goto loser; /* malformed or unsupported. */ } rv = ssl_CheckSignatureSchemeConsistency( ss, sigScheme, &ss->sec.peerCert->subjectPublicKeyInfo); if (rv != SECSuccess) { errCode = PORT_GetError(); desc = illegal_parameter; goto alert_loser; } rv = ssl3_ComputeHandshakeHash(ss->ssl3.hs.messages.buf, ss->ssl3.hs.messages.len, ssl_SignatureSchemeToHashType(sigScheme), &hashes); } else { PORT_Assert(ss->ssl3.hs.hashType != handshake_hash_record); sigScheme = ssl_sig_none; rv = ssl3_ComputeHandshakeHashes(ss, ss->ssl3.prSpec, &hashes, 0); } if (rv != SECSuccess) { errCode = SSL_ERROR_DIGEST_FAILURE; desc = decrypt_error; goto alert_loser; } rv = ssl3_ConsumeHandshakeVariable(ss, &signed_hash, 2, &b, &length); if (rv != SECSuccess) { goto loser; /* malformed. */ } isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0); /* XXX verify that the key & kea match */ rv = ssl3_VerifySignedHashes(ss, sigScheme, &hashes, &signed_hash); if (rv != SECSuccess) { errCode = PORT_GetError(); desc = isTLS ? decrypt_error : handshake_failure; goto alert_loser; } signed_hash.data = NULL; if (length != 0) { desc = isTLS ? decode_error : illegal_parameter; goto alert_loser; /* malformed */ } rv = ssl_HashHandshakeMessage(ss, ssl_hs_certificate_verify, savedMsg, savedLen); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return rv; } ss->ssl3.hs.ws = wait_change_cipher; return SECSuccess; alert_loser: SSL3_SendAlert(ss, alert_fatal, desc); loser: PORT_SetError(errCode); return SECFailure; } /* find a slot that is able to generate a PMS and wrap it with RSA. * Then generate and return the PMS. * If the serverKeySlot parameter is non-null, this function will use * that slot to do the job, otherwise it will find a slot. * * Called from ssl3_DeriveConnectionKeys() (above) * ssl3_SendRSAClientKeyExchange() (above) * ssl3_HandleRSAClientKeyExchange() (below) * Caller must hold the SpecWriteLock, the SSL3HandshakeLock */ static PK11SymKey * ssl3_GenerateRSAPMS(sslSocket *ss, ssl3CipherSpec *spec, PK11SlotInfo *serverKeySlot) { PK11SymKey *pms = NULL; PK11SlotInfo *slot = serverKeySlot; void *pwArg = ss->pkcs11PinArg; SECItem param; CK_VERSION version; CK_MECHANISM_TYPE mechanism_array[3]; PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (slot == NULL) { SSLCipherAlgorithm calg; /* The specReadLock would suffice here, but we cannot assert on ** read locks. Also, all the callers who call with a non-null ** slot already hold the SpecWriteLock. */ PORT_Assert(ss->opt.noLocks || ssl_HaveSpecWriteLock(ss)); PORT_Assert(ss->ssl3.prSpec->epoch == ss->ssl3.pwSpec->epoch); calg = spec->cipherDef->calg; /* First get an appropriate slot. */ mechanism_array[0] = CKM_SSL3_PRE_MASTER_KEY_GEN; mechanism_array[1] = CKM_RSA_PKCS; mechanism_array[2] = ssl3_Alg2Mech(calg); slot = PK11_GetBestSlotMultiple(mechanism_array, 3, pwArg); if (slot == NULL) { /* can't find a slot with all three, find a slot with the minimum */ slot = PK11_GetBestSlotMultiple(mechanism_array, 2, pwArg); if (slot == NULL) { PORT_SetError(SSL_ERROR_TOKEN_SLOT_NOT_FOUND); return pms; /* which is NULL */ } } } /* Generate the pre-master secret ... */ if (IS_DTLS(ss)) { SSL3ProtocolVersion temp; temp = dtls_TLSVersionToDTLSVersion(ss->clientHelloVersion); version.major = MSB(temp); version.minor = LSB(temp); } else { version.major = MSB(ss->clientHelloVersion); version.minor = LSB(ss->clientHelloVersion); } param.data = (unsigned char *)&version; param.len = sizeof version; pms = PK11_KeyGen(slot, CKM_SSL3_PRE_MASTER_KEY_GEN, ¶m, 0, pwArg); if (!serverKeySlot) PK11_FreeSlot(slot); if (pms == NULL) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); } return pms; } static void ssl3_CSwapPK11SymKey(PK11SymKey **x, PK11SymKey **y, PRBool c) { uintptr_t mask = (uintptr_t)c; unsigned int i; for (i = 1; i < sizeof(uintptr_t) * 8; i <<= 1) { mask |= mask << i; } uintptr_t x_ptr = (uintptr_t)*x; uintptr_t y_ptr = (uintptr_t)*y; uintptr_t tmp = (x_ptr ^ y_ptr) & mask; x_ptr = x_ptr ^ tmp; y_ptr = y_ptr ^ tmp; *x = (PK11SymKey *)x_ptr; *y = (PK11SymKey *)y_ptr; } /* Note: The Bleichenbacher attack on PKCS#1 necessitates that we NEVER * return any indication of failure of the Client Key Exchange message, * where that failure is caused by the content of the client's message. * This function must not return SECFailure for any reason that is directly * or indirectly caused by the content of the client's encrypted PMS. * We must not send an alert and also not drop the connection. * Instead, we generate a random PMS. This will cause a failure * in the processing the finished message, which is exactly where * the failure must occur. * * Called from ssl3_HandleClientKeyExchange */ static SECStatus ssl3_HandleRSAClientKeyExchange(sslSocket *ss, PRUint8 *b, PRUint32 length, sslKeyPair *serverKeyPair) { SECStatus rv; SECItem enc_pms; PK11SymKey *pms = NULL; PK11SymKey *fauxPms = NULL; PK11SlotInfo *slot = NULL; PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->ssl3.prSpec->epoch == ss->ssl3.pwSpec->epoch); enc_pms.data = b; enc_pms.len = length; if (ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0) { /* isTLS */ PRUint32 kLen; rv = ssl3_ConsumeHandshakeNumber(ss, &kLen, 2, &enc_pms.data, &enc_pms.len); if (rv != SECSuccess) { PORT_SetError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); return SECFailure; } if ((unsigned)kLen < enc_pms.len) { enc_pms.len = kLen; } } /* * Get as close to algorithm 2 from RFC 5246; Section 7.4.7.1 * as we can within the constraints of the PKCS#11 interface. * * 1. Unconditionally generate a bogus PMS (what RFC 5246 * calls R). * 2. Attempt the RSA decryption to recover the PMS (what * RFC 5246 calls M). * 3. Set PMS = (M == NULL) ? R : M * 4. Use ssl3_ComputeMasterSecret(PMS) to attempt to derive * the MS from PMS. This includes performing the version * check and length check. * 5. If either the initial RSA decryption failed or * ssl3_ComputeMasterSecret(PMS) failed, then discard * M and set PMS = R. Else, discard R and set PMS = M. * * We do two derivations here because we can't rely on having * a function that only performs the PMS version and length * check. The only redundant cost is that this runs the PRF, * which isn't necessary here. */ /* Generate the bogus PMS (R) */ slot = PK11_GetSlotFromPrivateKey(serverKeyPair->privKey); if (!slot) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } if (!PK11_DoesMechanism(slot, CKM_SSL3_MASTER_KEY_DERIVE)) { PK11_FreeSlot(slot); slot = PK11_GetBestSlot(CKM_SSL3_MASTER_KEY_DERIVE, NULL); if (!slot) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } } ssl_GetSpecWriteLock(ss); fauxPms = ssl3_GenerateRSAPMS(ss, ss->ssl3.prSpec, slot); ssl_ReleaseSpecWriteLock(ss); PK11_FreeSlot(slot); if (fauxPms == NULL) { ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); return SECFailure; } /* * unwrap pms out of the incoming buffer * Note: CKM_SSL3_MASTER_KEY_DERIVE is NOT the mechanism used to do * the unwrap. Rather, it is the mechanism with which the * unwrapped pms will be used. */ pms = PK11_PubUnwrapSymKey(serverKeyPair->privKey, &enc_pms, CKM_SSL3_MASTER_KEY_DERIVE, CKA_DERIVE, 0); /* Temporarily use the PMS if unwrapping the real PMS fails. */ ssl3_CSwapPK11SymKey(&pms, &fauxPms, pms == NULL); /* Attempt to derive the MS from the PMS. This is the only way to * check the version field in the RSA PMS. If this fails, we * then use the faux PMS in place of the PMS. Note that this * operation should never fail if we are using the faux PMS * since it is correctly formatted. */ rv = ssl3_ComputeMasterSecret(ss, pms, NULL); /* If we succeeded, then select the true PMS, else select the FPMS. */ ssl3_CSwapPK11SymKey(&pms, &fauxPms, (rv != SECSuccess) & (fauxPms != NULL)); /* This step will derive the MS from the PMS, among other things. */ rv = ssl3_InitPendingCipherSpecs(ss, pms, PR_TRUE); /* Clear both PMS. */ PK11_FreeSymKey(pms); PK11_FreeSymKey(fauxPms); if (rv != SECSuccess) { (void)SSL3_SendAlert(ss, alert_fatal, handshake_failure); return SECFailure; /* error code set by ssl3_InitPendingCipherSpec */ } return SECSuccess; } static SECStatus ssl3_HandleDHClientKeyExchange(sslSocket *ss, PRUint8 *b, PRUint32 length, sslKeyPair *serverKeyPair) { PK11SymKey *pms; SECStatus rv; SECKEYPublicKey clntPubKey; CK_MECHANISM_TYPE target; PRBool isTLS; PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); clntPubKey.keyType = dhKey; clntPubKey.u.dh.prime.len = serverKeyPair->pubKey->u.dh.prime.len; clntPubKey.u.dh.prime.data = serverKeyPair->pubKey->u.dh.prime.data; clntPubKey.u.dh.base.len = serverKeyPair->pubKey->u.dh.base.len; clntPubKey.u.dh.base.data = serverKeyPair->pubKey->u.dh.base.data; rv = ssl3_ConsumeHandshakeVariable(ss, &clntPubKey.u.dh.publicValue, 2, &b, &length); if (rv != SECSuccess) { return SECFailure; } if (!ssl_IsValidDHEShare(&serverKeyPair->pubKey->u.dh.prime, &clntPubKey.u.dh.publicValue)) { PORT_SetError(SSL_ERROR_RX_MALFORMED_DHE_KEY_SHARE); return SECFailure; } isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0); if (isTLS) target = CKM_TLS_MASTER_KEY_DERIVE_DH; else target = CKM_SSL3_MASTER_KEY_DERIVE_DH; /* Determine the PMS */ pms = PK11_PubDerive(serverKeyPair->privKey, &clntPubKey, PR_FALSE, NULL, NULL, CKM_DH_PKCS_DERIVE, target, CKA_DERIVE, 0, NULL); if (pms == NULL) { ssl_FreeEphemeralKeyPairs(ss); ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); return SECFailure; } rv = ssl3_InitPendingCipherSpecs(ss, pms, PR_TRUE); PK11_FreeSymKey(pms); ssl_FreeEphemeralKeyPairs(ss); return rv; } /* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered * a complete ssl3 ClientKeyExchange message from the remote client * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleClientKeyExchange(sslSocket *ss, PRUint8 *b, PRUint32 length) { sslKeyPair *serverKeyPair = NULL; SECStatus rv; const ssl3KEADef *kea_def; SSL_TRC(3, ("%d: SSL3[%d]: handle client_key_exchange handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (ss->ssl3.hs.ws != wait_client_key) { SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CLIENT_KEY_EXCH); return SECFailure; } kea_def = ss->ssl3.hs.kea_def; if (kea_def->ephemeral) { sslEphemeralKeyPair *keyPair; /* There should be exactly one pair. */ PORT_Assert(!PR_CLIST_IS_EMPTY(&ss->ephemeralKeyPairs)); PORT_Assert(PR_PREV_LINK(&ss->ephemeralKeyPairs) == PR_NEXT_LINK(&ss->ephemeralKeyPairs)); keyPair = (sslEphemeralKeyPair *)PR_NEXT_LINK(&ss->ephemeralKeyPairs); serverKeyPair = keyPair->keys; ss->sec.keaKeyBits = SECKEY_PublicKeyStrengthInBits(serverKeyPair->pubKey); } else { serverKeyPair = ss->sec.serverCert->serverKeyPair; ss->sec.keaKeyBits = ss->sec.serverCert->serverKeyBits; } if (!serverKeyPair) { SSL3_SendAlert(ss, alert_fatal, handshake_failure); PORT_SetError(SSL_ERROR_NO_SERVER_KEY_FOR_ALG); return SECFailure; } PORT_Assert(serverKeyPair->pubKey); PORT_Assert(serverKeyPair->privKey); ss->sec.keaType = kea_def->exchKeyType; switch (kea_def->exchKeyType) { case ssl_kea_rsa: rv = ssl3_HandleRSAClientKeyExchange(ss, b, length, serverKeyPair); break; case ssl_kea_dh: rv = ssl3_HandleDHClientKeyExchange(ss, b, length, serverKeyPair); break; case ssl_kea_ecdh: rv = ssl3_HandleECDHClientKeyExchange(ss, b, length, serverKeyPair); break; default: (void)ssl3_HandshakeFailure(ss); PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); return SECFailure; } ssl_FreeEphemeralKeyPairs(ss); if (rv == SECSuccess) { ss->ssl3.hs.ws = ss->sec.peerCert ? wait_cert_verify : wait_change_cipher; } else { /* PORT_SetError has been called by all the Handle*ClientKeyExchange * functions above. However, not all error paths result in an alert, so * this ensures that the server knows about the error. Note that if an * alert was already sent, SSL3_SendAlert() is a noop. */ PRErrorCode errCode = PORT_GetError(); (void)SSL3_SendAlert(ss, alert_fatal, handshake_failure); PORT_SetError(errCode); } return rv; } /* This is TLS's equivalent of sending a no_certificate alert. */ SECStatus ssl3_SendEmptyCertificate(sslSocket *ss) { SECStatus rv; unsigned int len = 0; PRBool isTLS13 = PR_FALSE; const SECItem *context; if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) { PORT_Assert(ss->ssl3.hs.clientCertRequested); context = &ss->xtnData.certReqContext; len = context->len + 1; isTLS13 = PR_TRUE; } rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_certificate, len + 3); if (rv != SECSuccess) { return rv; } if (isTLS13) { rv = ssl3_AppendHandshakeVariable(ss, context->data, context->len, 1); if (rv != SECSuccess) { return rv; } } return ssl3_AppendHandshakeNumber(ss, 0, 3); } /* * NewSessionTicket * Called from ssl3_HandleFinished */ static SECStatus ssl3_SendNewSessionTicket(sslSocket *ss) { SECItem ticket = { 0, NULL, 0 }; SECStatus rv; NewSessionTicket nticket = { 0 }; rv = ssl3_EncodeSessionTicket(ss, &nticket, NULL, 0, ss->ssl3.pwSpec->masterSecret, &ticket); if (rv != SECSuccess) goto loser; /* Serialize the handshake message. Length = * lifetime (4) + ticket length (2) + ticket. */ rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_new_session_ticket, 4 + 2 + ticket.len); if (rv != SECSuccess) goto loser; /* This is a fixed value. */ rv = ssl3_AppendHandshakeNumber(ss, ssl_ticket_lifetime, 4); if (rv != SECSuccess) goto loser; /* Encode the ticket. */ rv = ssl3_AppendHandshakeVariable(ss, ticket.data, ticket.len, 2); if (rv != SECSuccess) goto loser; rv = SECSuccess; loser: if (ticket.data) { SECITEM_FreeItem(&ticket, PR_FALSE); } return rv; } static SECStatus ssl3_HandleNewSessionTicket(sslSocket *ss, PRUint8 *b, PRUint32 length) { SECStatus rv; SECItem ticketData; PRUint32 temp; SSL_TRC(3, ("%d: SSL3[%d]: handle session_ticket handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(!ss->ssl3.hs.newSessionTicket.ticket.data); PORT_Assert(!ss->ssl3.hs.receivedNewSessionTicket); if (ss->ssl3.hs.ws != wait_new_session_ticket) { SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_NEW_SESSION_TICKET); return SECFailure; } /* RFC5077 Section 3.3: "The client MUST NOT treat the ticket as valid * until it has verified the server's Finished message." See the comment in * ssl3_FinishHandshake for more details. */ ss->ssl3.hs.newSessionTicket.received_timestamp = ssl_Time(ss); if (length < 4) { (void)SSL3_SendAlert(ss, alert_fatal, decode_error); PORT_SetError(SSL_ERROR_RX_MALFORMED_NEW_SESSION_TICKET); return SECFailure; } rv = ssl3_ConsumeHandshakeNumber(ss, &temp, 4, &b, &length); if (rv != SECSuccess) { PORT_SetError(SSL_ERROR_RX_MALFORMED_NEW_SESSION_TICKET); return SECFailure; } ss->ssl3.hs.newSessionTicket.ticket_lifetime_hint = temp; rv = ssl3_ConsumeHandshakeVariable(ss, &ticketData, 2, &b, &length); if (rv != SECSuccess || length != 0) { (void)SSL3_SendAlert(ss, alert_fatal, decode_error); PORT_SetError(SSL_ERROR_RX_MALFORMED_NEW_SESSION_TICKET); return SECFailure; /* malformed */ } /* If the server sent a zero-length ticket, ignore it and keep the * existing ticket. */ if (ticketData.len != 0) { rv = SECITEM_CopyItem(NULL, &ss->ssl3.hs.newSessionTicket.ticket, &ticketData); if (rv != SECSuccess) { return rv; } ss->ssl3.hs.receivedNewSessionTicket = PR_TRUE; } ss->ssl3.hs.ws = wait_change_cipher; return SECSuccess; } #ifdef NISCC_TEST static PRInt32 connNum = 0; static SECStatus get_fake_cert(SECItem *pCertItem, int *pIndex) { PRFileDesc *cf; char *testdir; char *startat; char *stopat; const char *extension; int fileNum; PRInt32 numBytes = 0; PRStatus prStatus; PRFileInfo info; char cfn[100]; pCertItem->data = 0; if ((testdir = PR_GetEnvSecure("NISCC_TEST")) == NULL) { return SECSuccess; } *pIndex = (NULL != strstr(testdir, "root")); extension = (strstr(testdir, "simple") ? "" : ".der"); fileNum = PR_ATOMIC_INCREMENT(&connNum) - 1; if ((startat = PR_GetEnvSecure("START_AT")) != NULL) { fileNum += atoi(startat); } if ((stopat = PR_GetEnvSecure("STOP_AT")) != NULL && fileNum >= atoi(stopat)) { *pIndex = -1; return SECSuccess; } sprintf(cfn, "%s/%08d%s", testdir, fileNum, extension); cf = PR_Open(cfn, PR_RDONLY, 0); if (!cf) { goto loser; } prStatus = PR_GetOpenFileInfo(cf, &info); if (prStatus != PR_SUCCESS) { PR_Close(cf); goto loser; } pCertItem = SECITEM_AllocItem(NULL, pCertItem, info.size); if (pCertItem) { numBytes = PR_Read(cf, pCertItem->data, info.size); } PR_Close(cf); if (numBytes != info.size) { SECITEM_FreeItem(pCertItem, PR_FALSE); PORT_SetError(SEC_ERROR_IO); goto loser; } fprintf(stderr, "using %s\n", cfn); return SECSuccess; loser: fprintf(stderr, "failed to use %s\n", cfn); *pIndex = -1; return SECFailure; } #endif /* * Used by both client and server. * Called from HandleServerHelloDone and from SendServerHelloSequence. */ static SECStatus ssl3_SendCertificate(sslSocket *ss) { SECStatus rv; CERTCertificateList *certChain; int certChainLen = 0; int i; #ifdef NISCC_TEST SECItem fakeCert; int ndex = -1; #endif PRBool isTLS13 = ss->version >= SSL_LIBRARY_VERSION_TLS_1_3; SECItem context = { siBuffer, NULL, 0 }; unsigned int contextLen = 0; SSL_TRC(3, ("%d: SSL3[%d]: send certificate handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (ss->sec.localCert) CERT_DestroyCertificate(ss->sec.localCert); if (ss->sec.isServer) { /* A server certificate is selected in ssl3_HandleClientHello. */ PORT_Assert(ss->sec.serverCert); certChain = ss->sec.serverCert->serverCertChain; ss->sec.localCert = CERT_DupCertificate(ss->sec.serverCert->serverCert); } else { certChain = ss->ssl3.clientCertChain; ss->sec.localCert = CERT_DupCertificate(ss->ssl3.clientCertificate); } #ifdef NISCC_TEST rv = get_fake_cert(&fakeCert, &ndex); #endif if (isTLS13) { contextLen = 1; /* Size of the context length */ if (!ss->sec.isServer) { PORT_Assert(ss->ssl3.hs.clientCertRequested); context = ss->xtnData.certReqContext; contextLen += context.len; } } if (certChain) { for (i = 0; i < certChain->len; i++) { #ifdef NISCC_TEST if (fakeCert.len > 0 && i == ndex) { certChainLen += fakeCert.len + 3; } else { certChainLen += certChain->certs[i].len + 3; } #else certChainLen += certChain->certs[i].len + 3; #endif } } rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_certificate, contextLen + certChainLen + 3); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } if (isTLS13) { rv = ssl3_AppendHandshakeVariable(ss, context.data, context.len, 1); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } } rv = ssl3_AppendHandshakeNumber(ss, certChainLen, 3); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } if (certChain) { for (i = 0; i < certChain->len; i++) { #ifdef NISCC_TEST if (fakeCert.len > 0 && i == ndex) { rv = ssl3_AppendHandshakeVariable(ss, fakeCert.data, fakeCert.len, 3); SECITEM_FreeItem(&fakeCert, PR_FALSE); } else { rv = ssl3_AppendHandshakeVariable(ss, certChain->certs[i].data, certChain->certs[i].len, 3); } #else rv = ssl3_AppendHandshakeVariable(ss, certChain->certs[i].data, certChain->certs[i].len, 3); #endif if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } } } return SECSuccess; } /* * Used by server only. * single-stapling, send only a single cert status */ SECStatus ssl3_SendCertificateStatus(sslSocket *ss) { SECStatus rv; int len = 0; SECItemArray *statusToSend = NULL; const sslServerCert *serverCert; SSL_TRC(3, ("%d: SSL3[%d]: send certificate status handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->sec.isServer); if (!ssl3_ExtensionNegotiated(ss, ssl_cert_status_xtn)) return SECSuccess; /* Use certStatus based on the cert being used. */ serverCert = ss->sec.serverCert; if (serverCert->certStatusArray && serverCert->certStatusArray->len) { statusToSend = serverCert->certStatusArray; } if (!statusToSend) return SECSuccess; /* Use the array's first item only (single stapling) */ len = 1 + statusToSend->items[0].len + 3; rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_certificate_status, len); if (rv != SECSuccess) { return rv; /* err set by AppendHandshake. */ } rv = ssl3_AppendHandshakeNumber(ss, 1 /*ocsp*/, 1); if (rv != SECSuccess) return rv; /* err set by AppendHandshake. */ rv = ssl3_AppendHandshakeVariable(ss, statusToSend->items[0].data, statusToSend->items[0].len, 3); if (rv != SECSuccess) return rv; /* err set by AppendHandshake. */ return SECSuccess; } /* This is used to delete the CA certificates in the peer certificate chain * from the cert database after they've been validated. */ void ssl3_CleanupPeerCerts(sslSocket *ss) { PLArenaPool *arena = ss->ssl3.peerCertArena; ssl3CertNode *certs = (ssl3CertNode *)ss->ssl3.peerCertChain; for (; certs; certs = certs->next) { CERT_DestroyCertificate(certs->cert); } if (arena) PORT_FreeArena(arena, PR_FALSE); ss->ssl3.peerCertArena = NULL; ss->ssl3.peerCertChain = NULL; if (ss->sec.peerCert != NULL) { if (ss->sec.peerKey) { SECKEY_DestroyPublicKey(ss->sec.peerKey); ss->sec.peerKey = NULL; } CERT_DestroyCertificate(ss->sec.peerCert); ss->sec.peerCert = NULL; } } /* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered * a complete ssl3 CertificateStatus message. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleCertificateStatus(sslSocket *ss, PRUint8 *b, PRUint32 length) { SECStatus rv; if (ss->ssl3.hs.ws != wait_certificate_status) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CERT_STATUS); return SECFailure; } rv = ssl_ReadCertificateStatus(ss, b, length); if (rv != SECSuccess) { return SECFailure; /* code already set */ } return ssl3_AuthCertificate(ss); } SECStatus ssl_ReadCertificateStatus(sslSocket *ss, PRUint8 *b, PRUint32 length) { PRUint32 status, len; SECStatus rv; PORT_Assert(!ss->sec.isServer); /* Consume the CertificateStatusType enum */ rv = ssl3_ConsumeHandshakeNumber(ss, &status, 1, &b, &length); if (rv != SECSuccess || status != 1 /* ocsp */) { return ssl3_DecodeError(ss); } rv = ssl3_ConsumeHandshakeNumber(ss, &len, 3, &b, &length); if (rv != SECSuccess || len != length) { return ssl3_DecodeError(ss); } #define MAX_CERTSTATUS_LEN 0x1ffff /* 128k - 1 */ if (length > MAX_CERTSTATUS_LEN) { ssl3_DecodeError(ss); /* sets error code */ return SECFailure; } #undef MAX_CERTSTATUS_LEN /* Array size 1, because we currently implement single-stapling only */ SECITEM_AllocArray(NULL, &ss->sec.ci.sid->peerCertStatus, 1); if (!ss->sec.ci.sid->peerCertStatus.items) return SECFailure; /* code already set */ ss->sec.ci.sid->peerCertStatus.items[0].data = PORT_Alloc(length); if (!ss->sec.ci.sid->peerCertStatus.items[0].data) { SECITEM_FreeArray(&ss->sec.ci.sid->peerCertStatus, PR_FALSE); return SECFailure; /* code already set */ } PORT_Memcpy(ss->sec.ci.sid->peerCertStatus.items[0].data, b, length); ss->sec.ci.sid->peerCertStatus.items[0].len = length; ss->sec.ci.sid->peerCertStatus.items[0].type = siBuffer; return SECSuccess; } /* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered * a complete ssl3 Certificate message. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleCertificate(sslSocket *ss, PRUint8 *b, PRUint32 length) { SSL_TRC(3, ("%d: SSL3[%d]: handle certificate handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if ((ss->sec.isServer && ss->ssl3.hs.ws != wait_client_cert) || (!ss->sec.isServer && ss->ssl3.hs.ws != wait_server_cert)) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CERTIFICATE); return SECFailure; } if (ss->sec.isServer) { dtls_ReceivedFirstMessageInFlight(ss); } return ssl3_CompleteHandleCertificate(ss, b, length); } /* Called from ssl3_HandleCertificate */ SECStatus ssl3_CompleteHandleCertificate(sslSocket *ss, PRUint8 *b, PRUint32 length) { ssl3CertNode *c; ssl3CertNode *lastCert = NULL; PRUint32 remaining = 0; PRUint32 size; SECStatus rv; PRBool isServer = ss->sec.isServer; PRBool isTLS; SSL3AlertDescription desc; int errCode = SSL_ERROR_RX_MALFORMED_CERTIFICATE; SECItem certItem; ssl3_CleanupPeerCerts(ss); isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0); /* It is reported that some TLS client sends a Certificate message ** with a zero-length message body. We'll treat that case like a ** normal no_certificates message to maximize interoperability. */ if (length) { rv = ssl3_ConsumeHandshakeNumber(ss, &remaining, 3, &b, &length); if (rv != SECSuccess) goto loser; /* fatal alert already sent by ConsumeHandshake. */ if (remaining > length) goto decode_loser; } if (!remaining) { if (!(isTLS && isServer)) { desc = bad_certificate; goto alert_loser; } /* This is TLS's version of a no_certificate alert. */ /* I'm a server. I've requested a client cert. He hasn't got one. */ rv = ssl3_HandleNoCertificate(ss); if (rv != SECSuccess) { errCode = PORT_GetError(); goto loser; } if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) { ss->ssl3.hs.ws = wait_client_key; } else { TLS13_SET_HS_STATE(ss, wait_finished); } return SECSuccess; } ss->ssl3.peerCertArena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE); if (ss->ssl3.peerCertArena == NULL) { goto loser; /* don't send alerts on memory errors */ } /* First get the peer cert. */ if (remaining < 3) goto decode_loser; remaining -= 3; rv = ssl3_ConsumeHandshakeNumber(ss, &size, 3, &b, &length); if (rv != SECSuccess) goto loser; /* fatal alert already sent by ConsumeHandshake. */ if (size == 0 || remaining < size) goto decode_loser; certItem.data = b; certItem.len = size; b += size; length -= size; remaining -= size; ss->sec.peerCert = CERT_NewTempCertificate(ss->dbHandle, &certItem, NULL, PR_FALSE, PR_TRUE); if (ss->sec.peerCert == NULL) { /* We should report an alert if the cert was bad, but not if the * problem was just some local problem, like memory error. */ goto ambiguous_err; } /* Now get all of the CA certs. */ while (remaining > 0) { if (remaining < 3) goto decode_loser; remaining -= 3; rv = ssl3_ConsumeHandshakeNumber(ss, &size, 3, &b, &length); if (rv != SECSuccess) goto loser; /* fatal alert already sent by ConsumeHandshake. */ if (size == 0 || remaining < size) goto decode_loser; certItem.data = b; certItem.len = size; b += size; length -= size; remaining -= size; c = PORT_ArenaNew(ss->ssl3.peerCertArena, ssl3CertNode); if (c == NULL) { goto loser; /* don't send alerts on memory errors */ } c->cert = CERT_NewTempCertificate(ss->dbHandle, &certItem, NULL, PR_FALSE, PR_TRUE); if (c->cert == NULL) { goto ambiguous_err; } c->next = NULL; if (lastCert) { lastCert->next = c; } else { ss->ssl3.peerCertChain = c; } lastCert = c; } SECKEY_UpdateCertPQG(ss->sec.peerCert); if (!isServer && ss->version < SSL_LIBRARY_VERSION_TLS_1_3 && ssl3_ExtensionNegotiated(ss, ssl_cert_status_xtn)) { ss->ssl3.hs.ws = wait_certificate_status; rv = SECSuccess; } else { rv = ssl3_AuthCertificate(ss); /* sets ss->ssl3.hs.ws */ } return rv; ambiguous_err: errCode = PORT_GetError(); switch (errCode) { case PR_OUT_OF_MEMORY_ERROR: case SEC_ERROR_BAD_DATABASE: case SEC_ERROR_NO_MEMORY: if (isTLS) { desc = internal_error; goto alert_loser; } goto loser; } ssl3_SendAlertForCertError(ss, errCode); goto loser; decode_loser: desc = isTLS ? decode_error : bad_certificate; alert_loser: (void)SSL3_SendAlert(ss, alert_fatal, desc); loser: (void)ssl_MapLowLevelError(errCode); return SECFailure; } SECStatus ssl_SetAuthKeyBits(sslSocket *ss, const SECKEYPublicKey *pubKey) { SECStatus rv; PRUint32 minKey; PRInt32 optval; ss->sec.authKeyBits = SECKEY_PublicKeyStrengthInBits(pubKey); switch (SECKEY_GetPublicKeyType(pubKey)) { case rsaKey: case rsaPssKey: case rsaOaepKey: rv = NSS_OptionGet(NSS_RSA_MIN_KEY_SIZE, &optval); if (rv == SECSuccess && optval > 0) { minKey = (PRUint32)optval; } else { minKey = SSL_RSA_MIN_MODULUS_BITS; } break; case dsaKey: rv = NSS_OptionGet(NSS_DSA_MIN_KEY_SIZE, &optval); if (rv == SECSuccess && optval > 0) { minKey = (PRUint32)optval; } else { minKey = SSL_DSA_MIN_P_BITS; } break; case dhKey: rv = NSS_OptionGet(NSS_DH_MIN_KEY_SIZE, &optval); if (rv == SECSuccess && optval > 0) { minKey = (PRUint32)optval; } else { minKey = SSL_DH_MIN_P_BITS; } break; case ecKey: /* Don't check EC strength here on the understanding that we only * support curves we like. */ minKey = ss->sec.authKeyBits; break; default: FATAL_ERROR(ss, SEC_ERROR_LIBRARY_FAILURE, internal_error); return SECFailure; } /* Too small: not good enough. Send a fatal alert. */ if (ss->sec.authKeyBits < minKey) { FATAL_ERROR(ss, SSL_ERROR_WEAK_SERVER_CERT_KEY, ss->version >= SSL_LIBRARY_VERSION_TLS_1_0 ? insufficient_security : illegal_parameter); return SECFailure; } /* PreliminaryChannelInfo.authKeyBits, scheme, and peerDelegCred are now valid. */ ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_peer_auth; return SECSuccess; } SECStatus ssl3_HandleServerSpki(sslSocket *ss) { PORT_Assert(!ss->sec.isServer); SECKEYPublicKey *pubKey; if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3 && tls13_IsVerifyingWithDelegatedCredential(ss)) { sslDelegatedCredential *dc = ss->xtnData.peerDelegCred; pubKey = SECKEY_ExtractPublicKey(dc->spki); if (!pubKey) { PORT_SetError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE); return SECFailure; } /* Because we have only a single authType (ssl_auth_tls13_any) * for TLS 1.3 at this point, set the scheme so that the * callback can interpret |authKeyBits| correctly. */ ss->sec.signatureScheme = dc->expectedCertVerifyAlg; } else { pubKey = CERT_ExtractPublicKey(ss->sec.peerCert); if (!pubKey) { PORT_SetError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE); return SECFailure; } } SECStatus rv = ssl_SetAuthKeyBits(ss, pubKey); SECKEY_DestroyPublicKey(pubKey); if (rv != SECSuccess) { return rv; /* Alert sent and code set. */ } return SECSuccess; } SECStatus ssl3_AuthCertificate(sslSocket *ss) { SECStatus rv; PRBool isServer = ss->sec.isServer; int errCode; ss->ssl3.hs.authCertificatePending = PR_FALSE; PORT_Assert((ss->ssl3.hs.preliminaryInfo & ssl_preinfo_all) == ssl_preinfo_all); if (!ss->sec.isServer) { /* Set the |spki| used to verify the handshake. When verifying with a * delegated credential (DC), this corresponds to the DC public key; * otherwise it correspond to the public key of the peer's end-entity * certificate. */ rv = ssl3_HandleServerSpki(ss); if (rv != SECSuccess) { /* Alert sent and code set (if not SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE). * In either case, we're done here. */ errCode = PORT_GetError(); goto loser; } if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) { ss->sec.authType = ss->ssl3.hs.kea_def->authKeyType; ss->sec.keaType = ss->ssl3.hs.kea_def->exchKeyType; } } /* * Ask caller-supplied callback function to validate cert chain. */ rv = (SECStatus)(*ss->authCertificate)(ss->authCertificateArg, ss->fd, PR_TRUE, isServer); if (rv != SECSuccess) { errCode = PORT_GetError(); if (errCode == 0) { errCode = SSL_ERROR_BAD_CERTIFICATE; } if (rv != SECWouldBlock) { if (ss->handleBadCert) { rv = (*ss->handleBadCert)(ss->badCertArg, ss->fd); } } if (rv == SECWouldBlock) { if (ss->sec.isServer) { errCode = SSL_ERROR_FEATURE_NOT_SUPPORTED_FOR_SERVERS; goto loser; } ss->ssl3.hs.authCertificatePending = PR_TRUE; rv = SECSuccess; } if (rv != SECSuccess) { ssl3_SendAlertForCertError(ss, errCode); goto loser; } } if (ss->sec.ci.sid->peerCert) { CERT_DestroyCertificate(ss->sec.ci.sid->peerCert); } ss->sec.ci.sid->peerCert = CERT_DupCertificate(ss->sec.peerCert); if (!ss->sec.isServer) { if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) { TLS13_SET_HS_STATE(ss, wait_cert_verify); } else { /* Ephemeral suites require ServerKeyExchange. */ if (ss->ssl3.hs.kea_def->ephemeral) { /* require server_key_exchange */ ss->ssl3.hs.ws = wait_server_key; } else { /* disallow server_key_exchange */ ss->ssl3.hs.ws = wait_cert_request; /* This is static RSA key exchange so set the key exchange * details to compensate for that. */ ss->sec.keaKeyBits = ss->sec.authKeyBits; ss->sec.signatureScheme = ssl_sig_none; ss->sec.keaGroup = NULL; } } } else { /* Server */ if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) { ss->ssl3.hs.ws = wait_client_key; } else { TLS13_SET_HS_STATE(ss, wait_cert_verify); } } PORT_Assert(rv == SECSuccess); if (rv != SECSuccess) { errCode = SEC_ERROR_LIBRARY_FAILURE; goto loser; } return SECSuccess; loser: (void)ssl_MapLowLevelError(errCode); return SECFailure; } static SECStatus ssl3_FinishHandshake(sslSocket *ss); static SECStatus ssl3_AlwaysFail(sslSocket *ss) { PORT_SetError(PR_INVALID_STATE_ERROR); return SECFailure; } /* Caller must hold 1stHandshakeLock. */ SECStatus ssl3_AuthCertificateComplete(sslSocket *ss, PRErrorCode error) { SECStatus rv; PORT_Assert(ss->opt.noLocks || ssl_Have1stHandshakeLock(ss)); if (ss->sec.isServer) { PORT_SetError(SSL_ERROR_FEATURE_NOT_SUPPORTED_FOR_SERVERS); return SECFailure; } ssl_GetRecvBufLock(ss); ssl_GetSSL3HandshakeLock(ss); if (!ss->ssl3.hs.authCertificatePending) { PORT_SetError(PR_INVALID_STATE_ERROR); rv = SECFailure; goto done; } ss->ssl3.hs.authCertificatePending = PR_FALSE; if (error != 0) { ss->ssl3.hs.restartTarget = ssl3_AlwaysFail; ssl3_SendAlertForCertError(ss, error); rv = SECSuccess; } else if (ss->ssl3.hs.restartTarget != NULL) { sslRestartTarget target = ss->ssl3.hs.restartTarget; ss->ssl3.hs.restartTarget = NULL; if (target == ssl3_FinishHandshake) { SSL_TRC(3, ("%d: SSL3[%p]: certificate authentication lost the race" " with peer's finished message", SSL_GETPID(), ss->fd)); } rv = target(ss); } else { SSL_TRC(3, ("%d: SSL3[%p]: certificate authentication won the race with" " peer's finished message", SSL_GETPID(), ss->fd)); PORT_Assert(!ss->ssl3.hs.isResuming); PORT_Assert(ss->ssl3.hs.ws != idle_handshake); if (ss->opt.enableFalseStart && !ss->firstHsDone && !ss->ssl3.hs.isResuming && ssl3_WaitingForServerSecondRound(ss)) { /* ssl3_SendClientSecondRound deferred the false start check because * certificate authentication was pending, so we do it now if we still * haven't received all of the server's second round yet. */ rv = ssl3_CheckFalseStart(ss); } else { rv = SECSuccess; } } done: ssl_ReleaseSSL3HandshakeLock(ss); ssl_ReleaseRecvBufLock(ss); return rv; } static SECStatus ssl3_ComputeTLSFinished(sslSocket *ss, ssl3CipherSpec *spec, PRBool isServer, const SSL3Hashes *hashes, TLSFinished *tlsFinished) { SECStatus rv; CK_TLS_MAC_PARAMS tls_mac_params; SECItem param = { siBuffer, NULL, 0 }; PK11Context *prf_context; unsigned int retLen; PORT_Assert(spec->masterSecret); if (!spec->masterSecret) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } if (spec->version < SSL_LIBRARY_VERSION_TLS_1_2) { tls_mac_params.prfMechanism = CKM_TLS_PRF; } else { tls_mac_params.prfMechanism = ssl3_GetPrfHashMechanism(ss); } tls_mac_params.ulMacLength = 12; tls_mac_params.ulServerOrClient = isServer ? 1 : 2; param.data = (unsigned char *)&tls_mac_params; param.len = sizeof(tls_mac_params); prf_context = PK11_CreateContextBySymKey(CKM_TLS_MAC, CKA_SIGN, spec->masterSecret, ¶m); if (!prf_context) return SECFailure; rv = PK11_DigestBegin(prf_context); rv |= PK11_DigestOp(prf_context, hashes->u.raw, hashes->len); rv |= PK11_DigestFinal(prf_context, tlsFinished->verify_data, &retLen, sizeof tlsFinished->verify_data); PORT_Assert(rv != SECSuccess || retLen == sizeof tlsFinished->verify_data); PK11_DestroyContext(prf_context, PR_TRUE); return rv; } /* The calling function must acquire and release the appropriate * lock (e.g., ssl_GetSpecReadLock / ssl_ReleaseSpecReadLock for * ss->ssl3.crSpec). */ SECStatus ssl3_TLSPRFWithMasterSecret(sslSocket *ss, ssl3CipherSpec *spec, const char *label, unsigned int labelLen, const unsigned char *val, unsigned int valLen, unsigned char *out, unsigned int outLen) { SECItem param = { siBuffer, NULL, 0 }; CK_MECHANISM_TYPE mech = CKM_TLS_PRF_GENERAL; PK11Context *prf_context; unsigned int retLen; SECStatus rv; if (!spec->masterSecret) { PORT_Assert(spec->masterSecret); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } if (spec->version >= SSL_LIBRARY_VERSION_TLS_1_2) { /* Bug 1312976 non-SHA256 exporters are broken. */ if (ssl3_GetPrfHashMechanism(ss) != CKM_SHA256) { PORT_Assert(0); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } mech = CKM_NSS_TLS_PRF_GENERAL_SHA256; } prf_context = PK11_CreateContextBySymKey(mech, CKA_SIGN, spec->masterSecret, ¶m); if (!prf_context) return SECFailure; rv = PK11_DigestBegin(prf_context); rv |= PK11_DigestOp(prf_context, (unsigned char *)label, labelLen); rv |= PK11_DigestOp(prf_context, val, valLen); rv |= PK11_DigestFinal(prf_context, out, &retLen, outLen); PORT_Assert(rv != SECSuccess || retLen == outLen); PK11_DestroyContext(prf_context, PR_TRUE); return rv; } /* called from ssl3_SendClientSecondRound * ssl3_HandleFinished */ static SECStatus ssl3_SendNextProto(sslSocket *ss) { SECStatus rv; int padding_len; static const unsigned char padding[32] = { 0 }; if (ss->xtnData.nextProto.len == 0 || ss->xtnData.nextProtoState == SSL_NEXT_PROTO_SELECTED) { return SECSuccess; } PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); padding_len = 32 - ((ss->xtnData.nextProto.len + 2) % 32); rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_next_proto, ss->xtnData.nextProto.len + 2 + padding_len); if (rv != SECSuccess) { return rv; /* error code set by AppendHandshakeHeader */ } rv = ssl3_AppendHandshakeVariable(ss, ss->xtnData.nextProto.data, ss->xtnData.nextProto.len, 1); if (rv != SECSuccess) { return rv; /* error code set by AppendHandshake */ } rv = ssl3_AppendHandshakeVariable(ss, padding, padding_len, 1); if (rv != SECSuccess) { return rv; /* error code set by AppendHandshake */ } return rv; } /* called from ssl3_SendFinished and tls13_DeriveSecret. * * This function is simply a debugging aid and therefore does not return a * SECStatus. */ void ssl3_RecordKeyLog(sslSocket *ss, const char *label, PK11SymKey *secret) { #ifdef NSS_ALLOW_SSLKEYLOGFILE SECStatus rv; SECItem *keyData; /* Longest label is "CLIENT_HANDSHAKE_TRAFFIC_SECRET", master secret is 48 * bytes which happens to be the largest in TLS 1.3 as well (SHA384). * Maximum line length: "CLIENT_HANDSHAKE_TRAFFIC_SECRET" (31) + " " (1) + * client_random (32*2) + " " (1) + * traffic_secret (48*2) + "\n" (1) = 194. */ char buf[200]; unsigned int offset, len; PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (!ssl_keylog_iob) return; rv = PK11_ExtractKeyValue(secret); if (rv != SECSuccess) return; /* keyData does not need to be freed. */ keyData = PK11_GetKeyData(secret); if (!keyData || !keyData->data) return; len = strlen(label) + 1 + /* label + space */ SSL3_RANDOM_LENGTH * 2 + 1 + /* client random (hex) + space */ keyData->len * 2 + 1; /* secret (hex) + newline */ PORT_Assert(len <= sizeof(buf)); if (len > sizeof(buf)) return; /* https://developer.mozilla.org/en/NSS_Key_Log_Format */ /* There could be multiple, concurrent writers to the * keylog, so we have to do everything in a single call to * fwrite. */ strcpy(buf, label); offset = strlen(label); buf[offset++] += ' '; hexEncode(buf + offset, ss->ssl3.hs.client_random, SSL3_RANDOM_LENGTH); offset += SSL3_RANDOM_LENGTH * 2; buf[offset++] = ' '; hexEncode(buf + offset, keyData->data, keyData->len); offset += keyData->len * 2; buf[offset++] = '\n'; PORT_Assert(offset == len); PZ_Lock(ssl_keylog_lock); if (fwrite(buf, len, 1, ssl_keylog_iob) == 1) fflush(ssl_keylog_iob); PZ_Unlock(ssl_keylog_lock); #endif } /* called from ssl3_SendClientSecondRound * ssl3_HandleClientHello * ssl3_HandleFinished */ static SECStatus ssl3_SendFinished(sslSocket *ss, PRInt32 flags) { ssl3CipherSpec *cwSpec; PRBool isTLS; PRBool isServer = ss->sec.isServer; SECStatus rv; SSL3Sender sender = isServer ? sender_server : sender_client; SSL3Hashes hashes; TLSFinished tlsFinished; SSL_TRC(3, ("%d: SSL3[%d]: send finished handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); ssl_GetSpecReadLock(ss); cwSpec = ss->ssl3.cwSpec; isTLS = (PRBool)(cwSpec->version > SSL_LIBRARY_VERSION_3_0); rv = ssl3_ComputeHandshakeHashes(ss, cwSpec, &hashes, sender); if (isTLS && rv == SECSuccess) { rv = ssl3_ComputeTLSFinished(ss, cwSpec, isServer, &hashes, &tlsFinished); } ssl_ReleaseSpecReadLock(ss); if (rv != SECSuccess) { goto fail; /* err code was set by ssl3_ComputeHandshakeHashes */ } if (isTLS) { if (isServer) ss->ssl3.hs.finishedMsgs.tFinished[1] = tlsFinished; else ss->ssl3.hs.finishedMsgs.tFinished[0] = tlsFinished; ss->ssl3.hs.finishedBytes = sizeof tlsFinished; rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_finished, sizeof tlsFinished); if (rv != SECSuccess) goto fail; /* err set by AppendHandshake. */ rv = ssl3_AppendHandshake(ss, &tlsFinished, sizeof tlsFinished); if (rv != SECSuccess) goto fail; /* err set by AppendHandshake. */ } else { if (isServer) ss->ssl3.hs.finishedMsgs.sFinished[1] = hashes.u.s; else ss->ssl3.hs.finishedMsgs.sFinished[0] = hashes.u.s; PORT_Assert(hashes.len == sizeof hashes.u.s); ss->ssl3.hs.finishedBytes = sizeof hashes.u.s; rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_finished, sizeof hashes.u.s); if (rv != SECSuccess) goto fail; /* err set by AppendHandshake. */ rv = ssl3_AppendHandshake(ss, &hashes.u.s, sizeof hashes.u.s); if (rv != SECSuccess) goto fail; /* err set by AppendHandshake. */ } rv = ssl3_FlushHandshake(ss, flags); if (rv != SECSuccess) { goto fail; /* error code set by ssl3_FlushHandshake */ } ssl3_RecordKeyLog(ss, "CLIENT_RANDOM", ss->ssl3.cwSpec->masterSecret); return SECSuccess; fail: return rv; } /* wrap the master secret, and put it into the SID. * Caller holds the Spec read lock. */ SECStatus ssl3_CacheWrappedSecret(sslSocket *ss, sslSessionID *sid, PK11SymKey *secret) { PK11SymKey *wrappingKey = NULL; PK11SlotInfo *symKeySlot; void *pwArg = ss->pkcs11PinArg; SECStatus rv = SECFailure; PRBool isServer = ss->sec.isServer; CK_MECHANISM_TYPE mechanism = CKM_INVALID_MECHANISM; symKeySlot = PK11_GetSlotFromKey(secret); if (!isServer) { int wrapKeyIndex; int incarnation; /* these next few functions are mere accessors and don't fail. */ sid->u.ssl3.masterWrapIndex = wrapKeyIndex = PK11_GetCurrentWrapIndex(symKeySlot); PORT_Assert(wrapKeyIndex == 0); /* array has only one entry! */ sid->u.ssl3.masterWrapSeries = incarnation = PK11_GetSlotSeries(symKeySlot); sid->u.ssl3.masterSlotID = PK11_GetSlotID(symKeySlot); sid->u.ssl3.masterModuleID = PK11_GetModuleID(symKeySlot); sid->u.ssl3.masterValid = PR_TRUE; /* Get the default wrapping key, for wrapping the master secret before * placing it in the SID cache entry. */ wrappingKey = PK11_GetWrapKey(symKeySlot, wrapKeyIndex, CKM_INVALID_MECHANISM, incarnation, pwArg); if (wrappingKey) { mechanism = PK11_GetMechanism(wrappingKey); /* can't fail. */ } else { int keyLength; /* if the wrappingKey doesn't exist, attempt to create it. * Note: we intentionally ignore errors here. If we cannot * generate a wrapping key, it is not fatal to this SSL connection, * but we will not be able to restart this session. */ mechanism = PK11_GetBestWrapMechanism(symKeySlot); keyLength = PK11_GetBestKeyLength(symKeySlot, mechanism); /* Zero length means fixed key length algorithm, or error. * It's ambiguous. */ wrappingKey = PK11_KeyGen(symKeySlot, mechanism, NULL, keyLength, pwArg); if (wrappingKey) { /* The thread safety characteristics of PK11_[SG]etWrapKey is * abominable. This protects against races in calling * PK11_SetWrapKey by dropping and re-acquiring the canonical * value once it is set. The mutex in PK11_[SG]etWrapKey will * ensure that races produce the same value in the end. */ PK11_SetWrapKey(symKeySlot, wrapKeyIndex, wrappingKey); PK11_FreeSymKey(wrappingKey); wrappingKey = PK11_GetWrapKey(symKeySlot, wrapKeyIndex, CKM_INVALID_MECHANISM, incarnation, pwArg); if (!wrappingKey) { PK11_FreeSlot(symKeySlot); return SECFailure; } } } } else { /* server socket using session cache. */ mechanism = PK11_GetBestWrapMechanism(symKeySlot); if (mechanism != CKM_INVALID_MECHANISM) { wrappingKey = ssl3_GetWrappingKey(ss, symKeySlot, mechanism, pwArg); if (wrappingKey) { mechanism = PK11_GetMechanism(wrappingKey); /* can't fail. */ } } } sid->u.ssl3.masterWrapMech = mechanism; PK11_FreeSlot(symKeySlot); if (wrappingKey) { SECItem wmsItem; wmsItem.data = sid->u.ssl3.keys.wrapped_master_secret; wmsItem.len = sizeof sid->u.ssl3.keys.wrapped_master_secret; rv = PK11_WrapSymKey(mechanism, NULL, wrappingKey, secret, &wmsItem); /* rv is examined below. */ sid->u.ssl3.keys.wrapped_master_secret_len = wmsItem.len; PK11_FreeSymKey(wrappingKey); } return rv; } /* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered * a complete ssl3 Finished message from the peer. * Caller must hold Handshake and RecvBuf locks. */ static SECStatus ssl3_HandleFinished(sslSocket *ss, PRUint8 *b, PRUint32 length) { sslSessionID *sid = ss->sec.ci.sid; SECStatus rv = SECSuccess; PRBool isServer = ss->sec.isServer; PRBool isTLS; SSL3Hashes hashes; PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); SSL_TRC(3, ("%d: SSL3[%d]: handle finished handshake", SSL_GETPID(), ss->fd)); if (ss->ssl3.hs.ws != wait_finished) { SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_FINISHED); return SECFailure; } if (!ss->sec.isServer || !ss->opt.requestCertificate) { dtls_ReceivedFirstMessageInFlight(ss); } rv = ssl3_ComputeHandshakeHashes(ss, ss->ssl3.crSpec, &hashes, isServer ? sender_client : sender_server); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } rv = ssl_HashHandshakeMessage(ss, ssl_hs_finished, b, length); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return rv; } isTLS = (PRBool)(ss->ssl3.crSpec->version > SSL_LIBRARY_VERSION_3_0); if (isTLS) { TLSFinished tlsFinished; if (length != sizeof(tlsFinished)) { #ifndef UNSAFE_FUZZER_MODE (void)SSL3_SendAlert(ss, alert_fatal, decode_error); PORT_SetError(SSL_ERROR_RX_MALFORMED_FINISHED); return SECFailure; #endif } rv = ssl3_ComputeTLSFinished(ss, ss->ssl3.crSpec, !isServer, &hashes, &tlsFinished); if (!isServer) ss->ssl3.hs.finishedMsgs.tFinished[1] = tlsFinished; else ss->ssl3.hs.finishedMsgs.tFinished[0] = tlsFinished; ss->ssl3.hs.finishedBytes = sizeof(tlsFinished); if (rv != SECSuccess || 0 != NSS_SecureMemcmp(&tlsFinished, b, PR_MIN(length, ss->ssl3.hs.finishedBytes))) { #ifndef UNSAFE_FUZZER_MODE (void)SSL3_SendAlert(ss, alert_fatal, decrypt_error); PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE); return SECFailure; #endif } } else { if (length != sizeof(SSL3Finished)) { (void)ssl3_IllegalParameter(ss); PORT_SetError(SSL_ERROR_RX_MALFORMED_FINISHED); return SECFailure; } if (!isServer) ss->ssl3.hs.finishedMsgs.sFinished[1] = hashes.u.s; else ss->ssl3.hs.finishedMsgs.sFinished[0] = hashes.u.s; PORT_Assert(hashes.len == sizeof hashes.u.s); ss->ssl3.hs.finishedBytes = sizeof hashes.u.s; if (0 != NSS_SecureMemcmp(&hashes.u.s, b, length)) { (void)ssl3_HandshakeFailure(ss); PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE); return SECFailure; } } ssl_GetXmitBufLock(ss); /*************************************/ if ((isServer && !ss->ssl3.hs.isResuming) || (!isServer && ss->ssl3.hs.isResuming)) { PRInt32 flags = 0; /* Send a NewSessionTicket message if the client sent us * either an empty session ticket, or one that did not verify. * (Note that if either of these conditions was met, then the * server has sent a SessionTicket extension in the * ServerHello message.) */ if (isServer && !ss->ssl3.hs.isResuming && ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn) && ssl3_KEASupportsTickets(ss->ssl3.hs.kea_def)) { /* RFC 5077 Section 3.3: "In the case of a full handshake, the * server MUST verify the client's Finished message before sending * the ticket." Presumably, this also means that the client's * certificate, if any, must be verified beforehand too. */ rv = ssl3_SendNewSessionTicket(ss); if (rv != SECSuccess) { goto xmit_loser; } } rv = ssl3_SendChangeCipherSpecs(ss); if (rv != SECSuccess) { goto xmit_loser; /* err is set. */ } /* If this thread is in SSL_SecureSend (trying to write some data) ** then set the ssl_SEND_FLAG_FORCE_INTO_BUFFER flag, so that the ** last two handshake messages (change cipher spec and finished) ** will be sent in the same send/write call as the application data. */ if (ss->writerThread == PR_GetCurrentThread()) { flags = ssl_SEND_FLAG_FORCE_INTO_BUFFER; } if (!isServer && !ss->firstHsDone) { rv = ssl3_SendNextProto(ss); if (rv != SECSuccess) { goto xmit_loser; /* err code was set. */ } } if (IS_DTLS(ss)) { flags |= ssl_SEND_FLAG_NO_RETRANSMIT; } rv = ssl3_SendFinished(ss, flags); if (rv != SECSuccess) { goto xmit_loser; /* err is set. */ } } xmit_loser: ssl_ReleaseXmitBufLock(ss); /*************************************/ if (rv != SECSuccess) { return rv; } if (sid->cached == never_cached && !ss->opt.noCache) { rv = ssl3_FillInCachedSID(ss, sid, ss->ssl3.crSpec->masterSecret); /* If the wrap failed, we don't cache the sid. * The connection continues normally however. */ ss->ssl3.hs.cacheSID = rv == SECSuccess; } if (ss->ssl3.hs.authCertificatePending) { if (ss->ssl3.hs.restartTarget) { PR_NOT_REACHED("ssl3_HandleFinished: unexpected restartTarget"); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } ss->ssl3.hs.restartTarget = ssl3_FinishHandshake; PORT_SetError(PR_WOULD_BLOCK_ERROR); return SECFailure; } rv = ssl3_FinishHandshake(ss); return rv; } SECStatus ssl3_FillInCachedSID(sslSocket *ss, sslSessionID *sid, PK11SymKey *secret) { PORT_Assert(secret); /* fill in the sid */ sid->u.ssl3.cipherSuite = ss->ssl3.hs.cipher_suite; sid->u.ssl3.policy = ss->ssl3.policy; sid->version = ss->version; sid->authType = ss->sec.authType; sid->authKeyBits = ss->sec.authKeyBits; sid->keaType = ss->sec.keaType; sid->keaKeyBits = ss->sec.keaKeyBits; if (ss->sec.keaGroup) { sid->keaGroup = ss->sec.keaGroup->name; } else { sid->keaGroup = ssl_grp_none; } sid->sigScheme = ss->sec.signatureScheme; sid->lastAccessTime = sid->creationTime = ssl_Time(ss); sid->expirationTime = sid->creationTime + (ssl_ticket_lifetime * PR_USEC_PER_SEC); sid->localCert = CERT_DupCertificate(ss->sec.localCert); if (ss->sec.isServer) { sid->namedCurve = ss->sec.serverCert->namedCurve; } if (ss->xtnData.nextProtoState != SSL_NEXT_PROTO_NO_SUPPORT && ss->xtnData.nextProto.data) { SECITEM_FreeItem(&sid->u.ssl3.alpnSelection, PR_FALSE); if (SECITEM_CopyItem( NULL, &sid->u.ssl3.alpnSelection, &ss->xtnData.nextProto) != SECSuccess) { return SECFailure; /* error already set. */ } } /* Copy the master secret (wrapped or unwrapped) into the sid */ return ssl3_CacheWrappedSecret(ss, ss->sec.ci.sid, secret); } /* The return type is SECStatus instead of void because this function needs * to have type sslRestartTarget. */ SECStatus ssl3_FinishHandshake(sslSocket *ss) { PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); PORT_Assert(ss->ssl3.hs.restartTarget == NULL); /* The first handshake is now completed. */ ss->handshake = NULL; /* RFC 5077 Section 3.3: "The client MUST NOT treat the ticket as valid * until it has verified the server's Finished message." When the server * sends a NewSessionTicket in a resumption handshake, we must wait until * the handshake is finished (we have verified the server's Finished * AND the server's certificate) before we update the ticket in the sid. * * This must be done before we call ssl_CacheSessionID(ss) * because CacheSID requires the session ticket to already be set, and also * because of the lazy lock creation scheme used by CacheSID and * ssl3_SetSIDSessionTicket. */ if (ss->ssl3.hs.receivedNewSessionTicket) { PORT_Assert(!ss->sec.isServer); ssl3_SetSIDSessionTicket(ss->sec.ci.sid, &ss->ssl3.hs.newSessionTicket); /* The sid took over the ticket data */ PORT_Assert(!ss->ssl3.hs.newSessionTicket.ticket.data); ss->ssl3.hs.receivedNewSessionTicket = PR_FALSE; } if (ss->ssl3.hs.cacheSID) { PORT_Assert(ss->sec.ci.sid->cached == never_cached); ssl_CacheSessionID(ss); ss->ssl3.hs.cacheSID = PR_FALSE; } ss->ssl3.hs.canFalseStart = PR_FALSE; /* False Start phase is complete */ ss->ssl3.hs.ws = idle_handshake; ssl_FinishHandshake(ss); return SECSuccess; } SECStatus ssl_HashHandshakeMessageInt(sslSocket *ss, SSLHandshakeType ct, PRUint32 dtlsSeq, const PRUint8 *b, PRUint32 length, sslUpdateHandshakeHashes updateHashes) { PRUint8 hdr[4]; PRUint8 dtlsData[8]; SECStatus rv; PRINT_BUF(50, (ss, "Hash handshake message:", b, length)); hdr[0] = (PRUint8)ct; hdr[1] = (PRUint8)(length >> 16); hdr[2] = (PRUint8)(length >> 8); hdr[3] = (PRUint8)(length); rv = updateHashes(ss, (unsigned char *)hdr, 4); if (rv != SECSuccess) return rv; /* err code already set. */ /* Extra data to simulate a complete DTLS handshake fragment */ if (IS_DTLS(ss)) { /* Sequence number */ dtlsData[0] = MSB(dtlsSeq); dtlsData[1] = LSB(dtlsSeq); /* Fragment offset */ dtlsData[2] = 0; dtlsData[3] = 0; dtlsData[4] = 0; /* Fragment length */ dtlsData[5] = (PRUint8)(length >> 16); dtlsData[6] = (PRUint8)(length >> 8); dtlsData[7] = (PRUint8)(length); rv = updateHashes(ss, (unsigned char *)dtlsData, sizeof(dtlsData)); if (rv != SECSuccess) return rv; /* err code already set. */ } /* The message body */ rv = updateHashes(ss, b, length); if (rv != SECSuccess) return rv; /* err code already set. */ return SECSuccess; } SECStatus ssl_HashHandshakeMessage(sslSocket *ss, SSLHandshakeType ct, const PRUint8 *b, PRUint32 length) { return ssl_HashHandshakeMessageInt(ss, ct, ss->ssl3.hs.recvMessageSeq, b, length, ssl3_UpdateHandshakeHashes); } SECStatus ssl_HashPostHandshakeMessage(sslSocket *ss, SSLHandshakeType ct, const PRUint8 *b, PRUint32 length) { return ssl_HashHandshakeMessageInt(ss, ct, ss->ssl3.hs.recvMessageSeq, b, length, ssl3_UpdatePostHandshakeHashes); } /* Called from ssl3_HandleHandshake() when it has gathered a complete ssl3 * handshake message. * Caller must hold Handshake and RecvBuf locks. */ SECStatus ssl3_HandleHandshakeMessage(sslSocket *ss, PRUint8 *b, PRUint32 length, PRBool endOfRecord) { SECStatus rv = SECSuccess; PRUint16 epoch; PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); SSL_TRC(30, ("%d: SSL3[%d]: handle handshake message: %s", SSL_GETPID(), ss->fd, ssl3_DecodeHandshakeType(ss->ssl3.hs.msg_type))); /* Start new handshake hashes when we start a new handshake. */ if (ss->ssl3.hs.msg_type == ssl_hs_client_hello) { ssl3_RestartHandshakeHashes(ss); } switch (ss->ssl3.hs.msg_type) { case ssl_hs_hello_request: case ssl_hs_hello_verify_request: /* We don't include hello_request and hello_verify_request messages * in the handshake hashes */ break; /* Defer hashing of these messages until the message handlers. */ case ssl_hs_client_hello: case ssl_hs_server_hello: case ssl_hs_certificate_verify: case ssl_hs_finished: break; default: if (!tls13_IsPostHandshake(ss)) { rv = ssl_HashHandshakeMessage(ss, ss->ssl3.hs.msg_type, b, length); if (rv != SECSuccess) { return SECFailure; } } } PORT_SetError(0); /* each message starts with no error. */ if (ss->ssl3.hs.ws == wait_certificate_status && ss->ssl3.hs.msg_type != ssl_hs_certificate_status) { /* If we negotiated the certificate_status extension then we deferred * certificate validation until we get the CertificateStatus messsage. * But the CertificateStatus message is optional. If the server did * not send it then we need to validate the certificate now. If the * server does send the CertificateStatus message then we will * authenticate the certificate in ssl3_HandleCertificateStatus. */ rv = ssl3_AuthCertificate(ss); /* sets ss->ssl3.hs.ws */ if (rv != SECSuccess) { /* This can't block. */ PORT_Assert(PORT_GetError() != PR_WOULD_BLOCK_ERROR); return SECFailure; } } epoch = ss->ssl3.crSpec->epoch; switch (ss->ssl3.hs.msg_type) { case ssl_hs_client_hello: if (!ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CLIENT_HELLO); return SECFailure; } rv = ssl3_HandleClientHello(ss, b, length); break; case ssl_hs_server_hello: if (ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_SERVER_HELLO); return SECFailure; } rv = ssl3_HandleServerHello(ss, b, length); break; default: if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) { rv = ssl3_HandlePostHelloHandshakeMessage(ss, b, length); } else { rv = tls13_HandlePostHelloHandshakeMessage(ss, b, length); } break; } if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3 && (epoch != ss->ssl3.crSpec->epoch) && !endOfRecord) { /* If we changed read cipher states, there must not be any * data in the input queue. */ (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HANDSHAKE); return SECFailure; } if (IS_DTLS(ss) && (rv != SECFailure)) { /* Increment the expected sequence number */ ss->ssl3.hs.recvMessageSeq++; } /* Taint the message so that it's easier to detect UAFs. */ PORT_Memset(b, 'N', length); return rv; } static SECStatus ssl3_HandlePostHelloHandshakeMessage(sslSocket *ss, PRUint8 *b, PRUint32 length) { SECStatus rv; PORT_Assert(ss->version < SSL_LIBRARY_VERSION_TLS_1_3); switch (ss->ssl3.hs.msg_type) { case ssl_hs_hello_request: if (length != 0) { (void)ssl3_DecodeError(ss); PORT_SetError(SSL_ERROR_RX_MALFORMED_HELLO_REQUEST); return SECFailure; } if (ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_REQUEST); return SECFailure; } rv = ssl3_HandleHelloRequest(ss); break; case ssl_hs_hello_verify_request: if (!IS_DTLS(ss) || ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_VERIFY_REQUEST); return SECFailure; } rv = dtls_HandleHelloVerifyRequest(ss, b, length); break; case ssl_hs_certificate: rv = ssl3_HandleCertificate(ss, b, length); break; case ssl_hs_certificate_status: rv = ssl3_HandleCertificateStatus(ss, b, length); break; case ssl_hs_server_key_exchange: if (ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_SERVER_KEY_EXCH); return SECFailure; } rv = ssl3_HandleServerKeyExchange(ss, b, length); break; case ssl_hs_certificate_request: if (ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CERT_REQUEST); return SECFailure; } rv = ssl3_HandleCertificateRequest(ss, b, length); break; case ssl_hs_server_hello_done: if (length != 0) { (void)ssl3_DecodeError(ss); PORT_SetError(SSL_ERROR_RX_MALFORMED_HELLO_DONE); return SECFailure; } if (ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_DONE); return SECFailure; } rv = ssl3_HandleServerHelloDone(ss); break; case ssl_hs_certificate_verify: if (!ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CERT_VERIFY); return SECFailure; } rv = ssl3_HandleCertificateVerify(ss, b, length); break; case ssl_hs_client_key_exchange: if (!ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CLIENT_KEY_EXCH); return SECFailure; } rv = ssl3_HandleClientKeyExchange(ss, b, length); break; case ssl_hs_new_session_ticket: if (ss->sec.isServer) { (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_NEW_SESSION_TICKET); return SECFailure; } rv = ssl3_HandleNewSessionTicket(ss, b, length); break; case ssl_hs_finished: rv = ssl3_HandleFinished(ss, b, length); break; default: (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNKNOWN_HANDSHAKE); rv = SECFailure; } return rv; } /* Called only from ssl3_HandleRecord, for each (deciphered) ssl3 record. * origBuf is the decrypted ssl record content. * Caller must hold the handshake and RecvBuf locks. */ static SECStatus ssl3_HandleHandshake(sslSocket *ss, sslBuffer *origBuf) { sslBuffer buf = *origBuf; /* Work from a copy. */ SECStatus rv; PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); while (buf.len > 0) { if (ss->ssl3.hs.header_bytes < 4) { PRUint8 t; t = *(buf.buf++); buf.len--; if (ss->ssl3.hs.header_bytes++ == 0) ss->ssl3.hs.msg_type = (SSLHandshakeType)t; else ss->ssl3.hs.msg_len = (ss->ssl3.hs.msg_len << 8) + t; if (ss->ssl3.hs.header_bytes < 4) continue; #define MAX_HANDSHAKE_MSG_LEN 0x1ffff /* 128k - 1 */ if (ss->ssl3.hs.msg_len > MAX_HANDSHAKE_MSG_LEN) { (void)ssl3_DecodeError(ss); PORT_SetError(SSL_ERROR_RX_MALFORMED_HANDSHAKE); goto loser; } #undef MAX_HANDSHAKE_MSG_LEN /* If msg_len is zero, be sure we fall through, ** even if buf.len is zero. */ if (ss->ssl3.hs.msg_len > 0) continue; } /* * Header has been gathered and there is at least one byte of new * data available for this message. If it can be done right out * of the original buffer, then use it from there. */ if (ss->ssl3.hs.msg_body.len == 0 && buf.len >= ss->ssl3.hs.msg_len) { /* handle it from input buffer */ rv = ssl3_HandleHandshakeMessage(ss, buf.buf, ss->ssl3.hs.msg_len, buf.len == ss->ssl3.hs.msg_len); buf.buf += ss->ssl3.hs.msg_len; buf.len -= ss->ssl3.hs.msg_len; ss->ssl3.hs.msg_len = 0; ss->ssl3.hs.header_bytes = 0; if (rv != SECSuccess) { goto loser; } } else { /* must be copied to msg_body and dealt with from there */ unsigned int bytes; PORT_Assert(ss->ssl3.hs.msg_body.len < ss->ssl3.hs.msg_len); bytes = PR_MIN(buf.len, ss->ssl3.hs.msg_len - ss->ssl3.hs.msg_body.len); /* Grow the buffer if needed */ rv = sslBuffer_Grow(&ss->ssl3.hs.msg_body, ss->ssl3.hs.msg_len); if (rv != SECSuccess) { /* sslBuffer_Grow has set a memory error code. */ goto loser; } PORT_Memcpy(ss->ssl3.hs.msg_body.buf + ss->ssl3.hs.msg_body.len, buf.buf, bytes); ss->ssl3.hs.msg_body.len += bytes; buf.buf += bytes; buf.len -= bytes; PORT_Assert(ss->ssl3.hs.msg_body.len <= ss->ssl3.hs.msg_len); /* if we have a whole message, do it */ if (ss->ssl3.hs.msg_body.len == ss->ssl3.hs.msg_len) { rv = ssl3_HandleHandshakeMessage( ss, ss->ssl3.hs.msg_body.buf, ss->ssl3.hs.msg_len, buf.len == 0); ss->ssl3.hs.msg_body.len = 0; ss->ssl3.hs.msg_len = 0; ss->ssl3.hs.header_bytes = 0; if (rv != SECSuccess) { goto loser; } } else { PORT_Assert(buf.len == 0); break; } } } /* end loop */ origBuf->len = 0; /* So ssl3_GatherAppDataRecord will keep looping. */ return SECSuccess; loser : { /* Make sure to remove any data that was consumed. */ unsigned int consumed = origBuf->len - buf.len; PORT_Assert(consumed == buf.buf - origBuf->buf); if (consumed > 0) { memmove(origBuf->buf, origBuf->buf + consumed, buf.len); origBuf->len = buf.len; } } return SECFailure; } /* These macros return the given value with the MSB copied to all the other * bits. They use the fact that arithmetic shift shifts-in the sign bit. * However, this is not ensured by the C standard so you may need to replace * them with something else for odd compilers. */ #define DUPLICATE_MSB_TO_ALL(x) ((unsigned)((int)(x) >> (sizeof(int) * 8 - 1))) #define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x))) /* SECStatusToMask returns, in constant time, a mask value of all ones if * rv == SECSuccess. Otherwise it returns zero. */ static unsigned int SECStatusToMask(SECStatus rv) { unsigned int good; /* rv ^ SECSuccess is zero iff rv == SECSuccess. Subtracting one results * in the MSB being set to one iff it was zero before. */ good = rv ^ SECSuccess; good--; return DUPLICATE_MSB_TO_ALL(good); } /* ssl_ConstantTimeGE returns 0xff if a>=b and 0x00 otherwise. */ static unsigned char ssl_ConstantTimeGE(unsigned int a, unsigned int b) { a -= b; return DUPLICATE_MSB_TO_ALL(~a); } /* ssl_ConstantTimeEQ8 returns 0xff if a==b and 0x00 otherwise. */ static unsigned char ssl_ConstantTimeEQ8(unsigned char a, unsigned char b) { unsigned int c = a ^ b; c--; return DUPLICATE_MSB_TO_ALL_8(c); } /* ssl_constantTimeSelect return a if mask is 0xFF and b if mask is 0x00 */ static unsigned char ssl_constantTimeSelect(unsigned char mask, unsigned char a, unsigned char b) { return (mask & a) | (~mask & b); } static SECStatus ssl_RemoveSSLv3CBCPadding(sslBuffer *plaintext, unsigned int blockSize, unsigned int macSize) { unsigned int paddingLength, good, t; const unsigned int overhead = 1 /* padding length byte */ + macSize; /* These lengths are all public so we can test them in non-constant * time. */ if (overhead > plaintext->len) { return SECFailure; } paddingLength = plaintext->buf[plaintext->len - 1]; /* SSLv3 padding bytes are random and cannot be checked. */ t = plaintext->len; t -= paddingLength + overhead; /* If len >= paddingLength+overhead then the MSB of t is zero. */ good = DUPLICATE_MSB_TO_ALL(~t); /* SSLv3 requires that the padding is minimal. */ t = blockSize - (paddingLength + 1); good &= DUPLICATE_MSB_TO_ALL(~t); plaintext->len -= good & (paddingLength + 1); return (good & SECSuccess) | (~good & SECFailure); } SECStatus ssl_RemoveTLSCBCPadding(sslBuffer *plaintext, unsigned int macSize) { unsigned int paddingLength, good, t, toCheck, i; const unsigned int overhead = 1 /* padding length byte */ + macSize; /* These lengths are all public so we can test them in non-constant * time. */ if (overhead > plaintext->len) { return SECFailure; } paddingLength = plaintext->buf[plaintext->len - 1]; t = plaintext->len; t -= paddingLength + overhead; /* If len >= paddingLength+overhead then the MSB of t is zero. */ good = DUPLICATE_MSB_TO_ALL(~t); /* The padding consists of a length byte at the end of the record and then * that many bytes of padding, all with the same value as the length byte. * Thus, with the length byte included, there are paddingLength+1 bytes of * padding. * * We can't check just |paddingLength+1| bytes because that leaks * decrypted information. Therefore we always have to check the maximum * amount of padding possible. (Again, the length of the record is * public information so we can use it.) */ toCheck = 256; /* maximum amount of padding + 1. */ if (toCheck > plaintext->len) { toCheck = plaintext->len; } for (i = 0; i < toCheck; i++) { t = paddingLength - i; /* If i <= paddingLength then the MSB of t is zero and mask is * 0xff. Otherwise, mask is 0. */ unsigned char mask = DUPLICATE_MSB_TO_ALL(~t); unsigned char b = plaintext->buf[plaintext->len - 1 - i]; /* The final |paddingLength+1| bytes should all have the value * |paddingLength|. Therefore the XOR should be zero. */ good &= ~(mask & (paddingLength ^ b)); } /* If any of the final |paddingLength+1| bytes had the wrong value, * one or more of the lower eight bits of |good| will be cleared. We * AND the bottom 8 bits together and duplicate the result to all the * bits. */ good &= good >> 4; good &= good >> 2; good &= good >> 1; good <<= sizeof(good) * 8 - 1; good = DUPLICATE_MSB_TO_ALL(good); plaintext->len -= good & (paddingLength + 1); return (good & SECSuccess) | (~good & SECFailure); } /* On entry: * originalLength >= macSize * macSize <= MAX_MAC_LENGTH * plaintext->len >= macSize */ static void ssl_CBCExtractMAC(sslBuffer *plaintext, unsigned int originalLength, PRUint8 *out, unsigned int macSize) { unsigned char rotatedMac[MAX_MAC_LENGTH]; /* macEnd is the index of |plaintext->buf| just after the end of the * MAC. */ unsigned macEnd = plaintext->len; unsigned macStart = macEnd - macSize; /* scanStart contains the number of bytes that we can ignore because * the MAC's position can only vary by 255 bytes. */ unsigned scanStart = 0; unsigned i, j; unsigned char rotateOffset; if (originalLength > macSize + 255 + 1) { scanStart = originalLength - (macSize + 255 + 1); } /* We want to compute * rotateOffset = (macStart - scanStart) % macSize * But the time to compute this varies based on the amount of padding. Thus * we explicitely handle all mac sizes with (hopefully) constant time modulo * using Barrett reduction: * q := (rotateOffset * m) >> k * rotateOffset -= q * n * if (n <= rotateOffset) rotateOffset -= n */ rotateOffset = macStart - scanStart; /* rotateOffset < 255 + 1 + 48 = 304 */ if (macSize == 16) { rotateOffset &= 15; } else if (macSize == 20) { /* * Correctness: rotateOffset * ( 1/20 - 25/2^9 ) < 1 * with rotateOffset <= 853 */ unsigned q = (rotateOffset * 25) >> 9; rotateOffset -= q * 20; rotateOffset -= ssl_constantTimeSelect(ssl_ConstantTimeGE(rotateOffset, 20), 20, 0); } else if (macSize == 32) { rotateOffset &= 31; } else if (macSize == 48) { /* * Correctness: rotateOffset * ( 1/48 - 10/2^9 ) < 1 * with rotateOffset < 768 */ unsigned q = (rotateOffset * 10) >> 9; rotateOffset -= q * 48; rotateOffset -= ssl_constantTimeSelect(ssl_ConstantTimeGE(rotateOffset, 48), 48, 0); } else { /* * SHA384 (macSize == 48) is the largest we support. We should never * get here. */ PORT_Assert(0); rotateOffset = rotateOffset % macSize; } memset(rotatedMac, 0, macSize); for (i = scanStart; i < originalLength;) { for (j = 0; j < macSize && i < originalLength; i++, j++) { unsigned char macStarted = ssl_ConstantTimeGE(i, macStart); unsigned char macEnded = ssl_ConstantTimeGE(i, macEnd); unsigned char b = 0; b = plaintext->buf[i]; rotatedMac[j] |= b & macStarted & ~macEnded; } } /* Now rotate the MAC. If we knew that the MAC fit into a CPU cache line * we could line-align |rotatedMac| and rotate in place. */ memset(out, 0, macSize); rotateOffset = macSize - rotateOffset; rotateOffset = ssl_constantTimeSelect(ssl_ConstantTimeGE(rotateOffset, macSize), 0, rotateOffset); for (i = 0; i < macSize; i++) { for (j = 0; j < macSize; j++) { out[j] |= rotatedMac[i] & ssl_ConstantTimeEQ8(j, rotateOffset); } rotateOffset++; rotateOffset = ssl_constantTimeSelect(ssl_ConstantTimeGE(rotateOffset, macSize), 0, rotateOffset); } } /* Unprotect an SSL3 record and leave the result in plaintext. * * If SECFailure is returned, we: * 1. Set |*alert| to the alert to be sent. * 2. Call PORT_SetError() with an appropriate code. * * Called by ssl3_HandleRecord. Caller must hold the spec read lock. * Therefore, we MUST not call SSL3_SendAlert(). * */ static SECStatus ssl3_UnprotectRecord(sslSocket *ss, ssl3CipherSpec *spec, SSL3Ciphertext *cText, sslBuffer *plaintext, SSL3AlertDescription *alert) { const ssl3BulkCipherDef *cipher_def = spec->cipherDef; PRBool isTLS; unsigned int good; unsigned int ivLen = 0; SSLContentType rType; SSL3ProtocolVersion rVersion; unsigned int minLength; unsigned int originalLen = 0; PRUint8 headerBuf[13]; sslBuffer header = SSL_BUFFER(headerBuf); PRUint8 hash[MAX_MAC_LENGTH]; PRUint8 givenHashBuf[MAX_MAC_LENGTH]; PRUint8 *givenHash; unsigned int hashBytes = MAX_MAC_LENGTH + 1; SECStatus rv; PORT_Assert(spec->direction == ssl_secret_read); good = ~0U; minLength = spec->macDef->mac_size; if (cipher_def->type == type_block) { /* CBC records have a padding length byte at the end. */ minLength++; if (spec->version >= SSL_LIBRARY_VERSION_TLS_1_1) { /* With >= TLS 1.1, CBC records have an explicit IV. */ minLength += cipher_def->iv_size; } } else if (cipher_def->type == type_aead) { minLength = cipher_def->explicit_nonce_size + cipher_def->tag_size; } /* We can perform this test in variable time because the record's total * length and the ciphersuite are both public knowledge. */ if (cText->buf->len < minLength) { goto decrypt_loser; } if (cipher_def->type == type_block && spec->version >= SSL_LIBRARY_VERSION_TLS_1_1) { /* Consume the per-record explicit IV. RFC 4346 Section 6.2.3.2 states * "The receiver decrypts the entire GenericBlockCipher structure and * then discards the first cipher block corresponding to the IV * component." Instead, we decrypt the first cipher block and then * discard it before decrypting the rest. */ PRUint8 iv[MAX_IV_LENGTH]; unsigned int decoded; ivLen = cipher_def->iv_size; if (ivLen < 8 || ivLen > sizeof(iv)) { *alert = internal_error; PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } PRINT_BUF(80, (ss, "IV (ciphertext):", cText->buf->buf, ivLen)); /* The decryption result is garbage, but since we just throw away * the block it doesn't matter. The decryption of the next block * depends only on the ciphertext of the IV block. */ rv = spec->cipher(spec->cipherContext, iv, &decoded, sizeof(iv), cText->buf->buf, ivLen); good &= SECStatusToMask(rv); } PRINT_BUF(80, (ss, "ciphertext:", cText->buf->buf + ivLen, cText->buf->len - ivLen)); isTLS = (PRBool)(spec->version > SSL_LIBRARY_VERSION_3_0); if (isTLS && cText->buf->len - ivLen > (MAX_FRAGMENT_LENGTH + 2048)) { *alert = record_overflow; PORT_SetError(SSL_ERROR_RX_RECORD_TOO_LONG); return SECFailure; } rType = (SSLContentType)cText->hdr[0]; rVersion = ((SSL3ProtocolVersion)cText->hdr[1] << 8) | (SSL3ProtocolVersion)cText->hdr[2]; if (cipher_def->type == type_aead) { /* XXX For many AEAD ciphers, the plaintext is shorter than the * ciphertext by a fixed byte count, but it is not true in general. * Each AEAD cipher should provide a function that returns the * plaintext length for a given ciphertext. */ unsigned int decryptedLen = cText->buf->len - cipher_def->explicit_nonce_size - cipher_def->tag_size; rv = ssl3_BuildRecordPseudoHeader( spec->epoch, cText->seqNum, rType, isTLS, rVersion, IS_DTLS(ss), decryptedLen, &header); PORT_Assert(rv == SECSuccess); rv = spec->aead(&spec->keyMaterial, PR_TRUE, /* do decrypt */ plaintext->buf, /* out */ &plaintext->len, /* outlen */ plaintext->space, /* maxout */ cText->buf->buf, /* in */ cText->buf->len, /* inlen */ SSL_BUFFER_BASE(&header), SSL_BUFFER_LEN(&header)); if (rv != SECSuccess) { good = 0; } } else { if (cipher_def->type == type_block && ((cText->buf->len - ivLen) % cipher_def->block_size) != 0) { goto decrypt_loser; } /* decrypt from cText buf to plaintext. */ rv = spec->cipher( spec->cipherContext, plaintext->buf, &plaintext->len, plaintext->space, cText->buf->buf + ivLen, cText->buf->len - ivLen); if (rv != SECSuccess) { goto decrypt_loser; } PRINT_BUF(80, (ss, "cleartext:", plaintext->buf, plaintext->len)); originalLen = plaintext->len; /* If it's a block cipher, check and strip the padding. */ if (cipher_def->type == type_block) { const unsigned int blockSize = cipher_def->block_size; const unsigned int macSize = spec->macDef->mac_size; if (!isTLS) { good &= SECStatusToMask(ssl_RemoveSSLv3CBCPadding( plaintext, blockSize, macSize)); } else { good &= SECStatusToMask(ssl_RemoveTLSCBCPadding( plaintext, macSize)); } } /* compute the MAC */ rv = ssl3_BuildRecordPseudoHeader( spec->epoch, cText->seqNum, rType, isTLS, rVersion, IS_DTLS(ss), plaintext->len - spec->macDef->mac_size, &header); PORT_Assert(rv == SECSuccess); if (cipher_def->type == type_block) { rv = ssl3_ComputeRecordMACConstantTime( spec, SSL_BUFFER_BASE(&header), SSL_BUFFER_LEN(&header), plaintext->buf, plaintext->len, originalLen, hash, &hashBytes); ssl_CBCExtractMAC(plaintext, originalLen, givenHashBuf, spec->macDef->mac_size); givenHash = givenHashBuf; /* plaintext->len will always have enough space to remove the MAC * because in ssl_Remove{SSLv3|TLS}CBCPadding we only adjust * plaintext->len if the result has enough space for the MAC and we * tested the unadjusted size against minLength, above. */ plaintext->len -= spec->macDef->mac_size; } else { /* This is safe because we checked the minLength above. */ plaintext->len -= spec->macDef->mac_size; rv = ssl3_ComputeRecordMAC( spec, SSL_BUFFER_BASE(&header), SSL_BUFFER_LEN(&header), plaintext->buf, plaintext->len, hash, &hashBytes); /* We can read the MAC directly from the record because its location * is public when a stream cipher is used. */ givenHash = plaintext->buf + plaintext->len; } good &= SECStatusToMask(rv); if (hashBytes != (unsigned)spec->macDef->mac_size || NSS_SecureMemcmp(givenHash, hash, spec->macDef->mac_size) != 0) { /* We're allowed to leak whether or not the MAC check was correct */ good = 0; } } if (good == 0) { decrypt_loser: /* always log mac error, in case attacker can read server logs. */ PORT_SetError(SSL_ERROR_BAD_MAC_READ); *alert = bad_record_mac; return SECFailure; } return SECSuccess; } SECStatus ssl3_HandleNonApplicationData(sslSocket *ss, SSLContentType rType, DTLSEpoch epoch, sslSequenceNumber seqNum, sslBuffer *databuf) { SECStatus rv; /* check for Token Presence */ if (!ssl3_ClientAuthTokenPresent(ss->sec.ci.sid)) { PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL); return SECFailure; } ssl_GetSSL3HandshakeLock(ss); /* All the functions called in this switch MUST set error code if ** they return SECFailure. */ switch (rType) { case ssl_ct_change_cipher_spec: rv = ssl3_HandleChangeCipherSpecs(ss, databuf); break; case ssl_ct_alert: rv = ssl3_HandleAlert(ss, databuf); break; case ssl_ct_handshake: if (!IS_DTLS(ss)) { rv = ssl3_HandleHandshake(ss, databuf); } else { rv = dtls_HandleHandshake(ss, epoch, seqNum, databuf); } break; case ssl_ct_ack: if (IS_DTLS(ss) && tls13_MaybeTls13(ss)) { rv = dtls13_HandleAck(ss, databuf); break; } /* Fall through. */ default: SSL_DBG(("%d: SSL3[%d]: bogus content type=%d", SSL_GETPID(), ss->fd, rType)); PORT_SetError(SSL_ERROR_RX_UNKNOWN_RECORD_TYPE); ssl3_DecodeError(ss); rv = SECFailure; break; } ssl_ReleaseSSL3HandshakeLock(ss); return rv; } /* Find the cipher spec to use for a given record. For TLS, this * is the current cipherspec. For DTLS, we look up by epoch. * In DTLS < 1.3 this just means the current epoch or nothing, * but in DTLS >= 1.3, we keep multiple reading cipherspecs. * Returns NULL if no appropriate cipher spec is found. */ static ssl3CipherSpec * ssl3_GetCipherSpec(sslSocket *ss, SSL3Ciphertext *cText) { ssl3CipherSpec *crSpec = ss->ssl3.crSpec; ssl3CipherSpec *newSpec = NULL; DTLSEpoch epoch; if (!IS_DTLS(ss)) { return crSpec; } epoch = dtls_ReadEpoch(crSpec, cText->hdr); if (crSpec->epoch == epoch) { return crSpec; } if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) { /* Try to find the cipher spec. */ newSpec = ssl_FindCipherSpecByEpoch(ss, ssl_secret_read, epoch); if (newSpec != NULL) { return newSpec; } } SSL_TRC(10, ("%d: DTLS[%d]: Couldn't find cipherspec from epoch %d", SSL_GETPID(), ss->fd, epoch)); return NULL; } /* MAX_EXPANSION is the amount by which a record might plausibly be expanded * when protected. It's the worst case estimate, so the sum of block cipher * padding (up to 256 octets), HMAC (48 octets for SHA-384), and IV (16 * octets for AES). */ #define MAX_EXPANSION (256 + 48 + 16) /* if cText is non-null, then decipher and check the MAC of the * SSL record from cText->buf (typically gs->inbuf) * into databuf (typically gs->buf), and any previous contents of databuf * is lost. Then handle databuf according to its SSL record type, * unless it's an application record. * * If cText is NULL, then the ciphertext has previously been deciphered and * checked, and is already sitting in databuf. It is processed as an SSL * Handshake message. * * DOES NOT process the decrypted application data. * On return, databuf contains the decrypted record. * * Called from ssl3_GatherCompleteHandshake * ssl3_RestartHandshakeAfterCertReq * * Caller must hold the RecvBufLock. * * This function aquires and releases the SSL3Handshake Lock, holding the * lock around any calls to functions that handle records other than * Application Data records. */ SECStatus ssl3_HandleRecord(sslSocket *ss, SSL3Ciphertext *cText) { SECStatus rv; PRBool isTLS; DTLSEpoch epoch; ssl3CipherSpec *spec = NULL; PRUint16 recordSizeLimit; PRBool outOfOrderSpec = PR_FALSE; SSLContentType rType; sslBuffer *plaintext = &ss->gs.buf; SSL3AlertDescription alert = internal_error; PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss)); /* check for Token Presence */ if (!ssl3_ClientAuthTokenPresent(ss->sec.ci.sid)) { PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL); return SECFailure; } /* Clear out the buffer in case this exits early. Any data then won't be * processed twice. */ plaintext->len = 0; /* We're waiting for another ClientHello, which will appear unencrypted. * Use the content type to tell whether this should be discarded. */ if (ss->ssl3.hs.zeroRttIgnore == ssl_0rtt_ignore_hrr && cText->hdr[0] == ssl_ct_application_data) { PORT_Assert(ss->ssl3.hs.ws == wait_client_hello); return SECSuccess; } ssl_GetSpecReadLock(ss); /******************************************/ spec = ssl3_GetCipherSpec(ss, cText); if (!spec) { PORT_Assert(IS_DTLS(ss)); ssl_ReleaseSpecReadLock(ss); /*****************************/ return SECSuccess; } if (spec != ss->ssl3.crSpec) { PORT_Assert(IS_DTLS(ss)); SSL_TRC(3, ("%d: DTLS[%d]: Handling out-of-epoch record from epoch=%d", SSL_GETPID(), ss->fd, spec->epoch)); outOfOrderSpec = PR_TRUE; } isTLS = (PRBool)(spec->version > SSL_LIBRARY_VERSION_3_0); if (IS_DTLS(ss)) { if (!dtls_IsRelevant(ss, spec, cText, &cText->seqNum)) { ssl_ReleaseSpecReadLock(ss); /*****************************/ return SECSuccess; } } else { cText->seqNum = spec->nextSeqNum; } if (cText->seqNum >= spec->cipherDef->max_records) { ssl_ReleaseSpecReadLock(ss); /*****************************/ SSL_TRC(3, ("%d: SSL[%d]: read sequence number at limit 0x%0llx", SSL_GETPID(), ss->fd, cText->seqNum)); PORT_SetError(SSL_ERROR_TOO_MANY_RECORDS); return SECFailure; } recordSizeLimit = spec->recordSizeLimit; if (cText->buf->len > recordSizeLimit + MAX_EXPANSION) { ssl_ReleaseSpecReadLock(ss); /*****************************/ SSL3_SendAlert(ss, alert_fatal, record_overflow); PORT_SetError(SSL_ERROR_RX_RECORD_TOO_LONG); return SECFailure; } if (plaintext->space < recordSizeLimit + MAX_EXPANSION) { rv = sslBuffer_Grow(plaintext, recordSizeLimit + MAX_EXPANSION); if (rv != SECSuccess) { ssl_ReleaseSpecReadLock(ss); /*************************/ SSL_DBG(("%d: SSL3[%d]: HandleRecord, tried to get %d bytes", SSL_GETPID(), ss->fd, recordSizeLimit + MAX_EXPANSION)); /* sslBuffer_Grow has set a memory error code. */ /* Perhaps we should send an alert. (but we have no memory!) */ return SECFailure; } } /* Most record types aside from protected TLS 1.3 records carry the content * type in the first octet. TLS 1.3 will override this value later. */ rType = cText->hdr[0]; /* Encrypted application data records could arrive before the handshake * completes in DTLS 1.3. These can look like valid TLS 1.2 application_data * records in epoch 0, which is never valid. Pretend they didn't decrypt. */ if (spec->epoch == 0 && rType == ssl_ct_application_data) { PORT_SetError(SSL_ERROR_RX_UNEXPECTED_APPLICATION_DATA); alert = unexpected_message; rv = SECFailure; } else { #ifdef UNSAFE_FUZZER_MODE rv = Null_Cipher(NULL, plaintext->buf, &plaintext->len, plaintext->space, cText->buf->buf, cText->buf->len); #else /* IMPORTANT: Unprotect functions MUST NOT send alerts * because we still hold the spec read lock. Instead, if they * return SECFailure, they set *alert to the alert to be sent. */ if (spec->version < SSL_LIBRARY_VERSION_TLS_1_3 || spec->epoch == 0) { rv = ssl3_UnprotectRecord(ss, spec, cText, plaintext, &alert); } else { rv = tls13_UnprotectRecord(ss, spec, cText, plaintext, &rType, &alert); } #endif } if (rv != SECSuccess) { ssl_ReleaseSpecReadLock(ss); /***************************/ SSL_DBG(("%d: SSL3[%d]: decryption failed", SSL_GETPID(), ss->fd)); /* Ensure that we don't process this data again. */ plaintext->len = 0; /* Ignore a CCS if compatibility mode is negotiated. Note that this * will fail if the server fails to negotiate compatibility mode in a * 0-RTT session that is resumed from a session that did negotiate it. * We don't care about that corner case right now. */ if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3 && cText->hdr[0] == ssl_ct_change_cipher_spec && ss->ssl3.hs.ws != idle_handshake && cText->buf->len == 1 && cText->buf->buf[0] == change_cipher_spec_choice) { /* Ignore the CCS. */ return SECSuccess; } if (IS_DTLS(ss) || (ss->sec.isServer && ss->ssl3.hs.zeroRttIgnore == ssl_0rtt_ignore_trial)) { /* Silently drop the packet unless we sent a fatal alert. */ if (ss->ssl3.fatalAlertSent) { return SECFailure; } return SECSuccess; } int errCode = PORT_GetError(); SSL3_SendAlert(ss, alert_fatal, alert); /* Reset the error code in case SSL3_SendAlert called * PORT_SetError(). */ PORT_SetError(errCode); return SECFailure; } /* SECSuccess */ if (IS_DTLS(ss)) { dtls_RecordSetRecvd(&spec->recvdRecords, cText->seqNum); spec->nextSeqNum = PR_MAX(spec->nextSeqNum, cText->seqNum + 1); } else { ++spec->nextSeqNum; } epoch = spec->epoch; ssl_ReleaseSpecReadLock(ss); /*****************************************/ /* * The decrypted data is now in plaintext. */ /* IMPORTANT: We are in DTLS 1.3 mode and we have processed something * from the wrong epoch. Divert to a divert processing function to make * sure we don't accidentally use the data unsafely. */ if (outOfOrderSpec) { PORT_Assert(IS_DTLS(ss) && ss->version >= SSL_LIBRARY_VERSION_TLS_1_3); return dtls13_HandleOutOfEpochRecord(ss, spec, rType, plaintext); } /* Check the length of the plaintext. */ if (isTLS && plaintext->len > recordSizeLimit) { plaintext->len = 0; SSL3_SendAlert(ss, alert_fatal, record_overflow); PORT_SetError(SSL_ERROR_RX_RECORD_TOO_LONG); return SECFailure; } /* Application data records are processed by the caller of this ** function, not by this function. */ if (rType == ssl_ct_application_data) { if (ss->firstHsDone) return SECSuccess; if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3 && ss->sec.isServer && ss->ssl3.hs.zeroRttState == ssl_0rtt_accepted) { return tls13_HandleEarlyApplicationData(ss, plaintext); } plaintext->len = 0; (void)SSL3_SendAlert(ss, alert_fatal, unexpected_message); PORT_SetError(SSL_ERROR_RX_UNEXPECTED_APPLICATION_DATA); return SECFailure; } return ssl3_HandleNonApplicationData(ss, rType, epoch, cText->seqNum, plaintext); } /* * Initialization functions */ void ssl_InitSecState(sslSecurityInfo *sec) { sec->authType = ssl_auth_null; sec->authKeyBits = 0; sec->signatureScheme = ssl_sig_none; sec->keaType = ssl_kea_null; sec->keaKeyBits = 0; sec->keaGroup = NULL; } SECStatus ssl3_InitState(sslSocket *ss) { SECStatus rv; ss->ssl3.policy = SSL_ALLOWED; ssl_InitSecState(&ss->sec); ssl_GetSpecWriteLock(ss); PR_INIT_CLIST(&ss->ssl3.hs.cipherSpecs); rv = ssl_SetupNullCipherSpec(ss, ssl_secret_read); rv |= ssl_SetupNullCipherSpec(ss, ssl_secret_write); ss->ssl3.pwSpec = ss->ssl3.prSpec = NULL; ssl_ReleaseSpecWriteLock(ss); if (rv != SECSuccess) { /* Rely on ssl_CreateNullCipherSpec() to set error code. */ return SECFailure; } ss->ssl3.hs.sendingSCSV = PR_FALSE; ss->ssl3.hs.preliminaryInfo = 0; ss->ssl3.hs.ws = (ss->sec.isServer) ? wait_client_hello : idle_handshake; ssl3_ResetExtensionData(&ss->xtnData, ss); PR_INIT_CLIST(&ss->ssl3.hs.remoteExtensions); if (IS_DTLS(ss)) { ss->ssl3.hs.sendMessageSeq = 0; ss->ssl3.hs.recvMessageSeq = 0; ss->ssl3.hs.rtTimer->timeout = DTLS_RETRANSMIT_INITIAL_MS; ss->ssl3.hs.rtRetries = 0; ss->ssl3.hs.recvdHighWater = -1; PR_INIT_CLIST(&ss->ssl3.hs.lastMessageFlight); dtls_SetMTU(ss, 0); /* Set the MTU to the highest plateau */ } ss->ssl3.hs.currentSecret = NULL; ss->ssl3.hs.resumptionMasterSecret = NULL; ss->ssl3.hs.dheSecret = NULL; ss->ssl3.hs.pskBinderKey = NULL; ss->ssl3.hs.clientEarlyTrafficSecret = NULL; ss->ssl3.hs.clientHsTrafficSecret = NULL; ss->ssl3.hs.serverHsTrafficSecret = NULL; ss->ssl3.hs.clientTrafficSecret = NULL; ss->ssl3.hs.serverTrafficSecret = NULL; PORT_Assert(!ss->ssl3.hs.messages.buf && !ss->ssl3.hs.messages.space); ss->ssl3.hs.messages.buf = NULL; ss->ssl3.hs.messages.space = 0; ss->ssl3.hs.receivedNewSessionTicket = PR_FALSE; PORT_Memset(&ss->ssl3.hs.newSessionTicket, 0, sizeof(ss->ssl3.hs.newSessionTicket)); ss->ssl3.hs.zeroRttState = ssl_0rtt_none; return SECSuccess; } /* record the export policy for this cipher suite */ SECStatus ssl3_SetPolicy(ssl3CipherSuite which, int policy) { ssl3CipherSuiteCfg *suite; suite = ssl_LookupCipherSuiteCfgMutable(which, cipherSuites); if (suite == NULL) { return SECFailure; /* err code was set by ssl_LookupCipherSuiteCfg */ } suite->policy = policy; return SECSuccess; } SECStatus ssl3_GetPolicy(ssl3CipherSuite which, PRInt32 *oPolicy) { const ssl3CipherSuiteCfg *suite; PRInt32 policy; SECStatus rv; suite = ssl_LookupCipherSuiteCfg(which, cipherSuites); if (suite) { policy = suite->policy; rv = SECSuccess; } else { policy = SSL_NOT_ALLOWED; rv = SECFailure; /* err code was set by Lookup. */ } *oPolicy = policy; return rv; } /* record the user preference for this suite */ SECStatus ssl3_CipherPrefSetDefault(ssl3CipherSuite which, PRBool enabled) { ssl3CipherSuiteCfg *suite; suite = ssl_LookupCipherSuiteCfgMutable(which, cipherSuites); if (suite == NULL) { return SECFailure; /* err code was set by ssl_LookupCipherSuiteCfg */ } suite->enabled = enabled; return SECSuccess; } /* return the user preference for this suite */ SECStatus ssl3_CipherPrefGetDefault(ssl3CipherSuite which, PRBool *enabled) { const ssl3CipherSuiteCfg *suite; PRBool pref; SECStatus rv; suite = ssl_LookupCipherSuiteCfg(which, cipherSuites); if (suite) { pref = suite->enabled; rv = SECSuccess; } else { pref = SSL_NOT_ALLOWED; rv = SECFailure; /* err code was set by Lookup. */ } *enabled = pref; return rv; } SECStatus ssl3_CipherPrefSet(sslSocket *ss, ssl3CipherSuite which, PRBool enabled) { ssl3CipherSuiteCfg *suite; suite = ssl_LookupCipherSuiteCfgMutable(which, ss->cipherSuites); if (suite == NULL) { return SECFailure; /* err code was set by ssl_LookupCipherSuiteCfg */ } suite->enabled = enabled; return SECSuccess; } SECStatus ssl3_CipherPrefGet(const sslSocket *ss, ssl3CipherSuite which, PRBool *enabled) { const ssl3CipherSuiteCfg *suite; PRBool pref; SECStatus rv; suite = ssl_LookupCipherSuiteCfg(which, ss->cipherSuites); if (suite) { pref = suite->enabled; rv = SECSuccess; } else { pref = SSL_NOT_ALLOWED; rv = SECFailure; /* err code was set by Lookup. */ } *enabled = pref; return rv; } SECStatus SSL_SignatureSchemePrefSet(PRFileDesc *fd, const SSLSignatureScheme *schemes, unsigned int count) { sslSocket *ss; unsigned int i; unsigned int supported = 0; ss = ssl_FindSocket(fd); if (!ss) { SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SignatureSchemePrefSet", SSL_GETPID(), fd)); PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } if (!count) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } for (i = 0; i < count; ++i) { if (ssl_IsSupportedSignatureScheme(schemes[i])) { ++supported; } } /* We don't check for duplicates, so it's possible to get too many. */ if (supported > MAX_SIGNATURE_SCHEMES) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } ss->ssl3.signatureSchemeCount = 0; for (i = 0; i < count; ++i) { if (!ssl_IsSupportedSignatureScheme(schemes[i])) { SSL_DBG(("%d: SSL[%d]: invalid signature scheme %d ignored", SSL_GETPID(), fd, schemes[i])); continue; } ss->ssl3.signatureSchemes[ss->ssl3.signatureSchemeCount++] = schemes[i]; } if (ss->ssl3.signatureSchemeCount == 0) { PORT_SetError(SSL_ERROR_NO_SUPPORTED_SIGNATURE_ALGORITHM); return SECFailure; } return SECSuccess; } SECStatus SSL_SignaturePrefSet(PRFileDesc *fd, const SSLSignatureAndHashAlg *algorithms, unsigned int count) { SSLSignatureScheme schemes[MAX_SIGNATURE_SCHEMES]; unsigned int i; count = PR_MIN(PR_ARRAY_SIZE(schemes), count); for (i = 0; i < count; ++i) { schemes[i] = (algorithms[i].hashAlg << 8) | algorithms[i].sigAlg; } return SSL_SignatureSchemePrefSet(fd, schemes, count); } SECStatus SSL_SignatureSchemePrefGet(PRFileDesc *fd, SSLSignatureScheme *schemes, unsigned int *count, unsigned int maxCount) { sslSocket *ss; ss = ssl_FindSocket(fd); if (!ss) { SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SignatureSchemePrefGet", SSL_GETPID(), fd)); PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } if (!schemes || !count || maxCount < ss->ssl3.signatureSchemeCount) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } PORT_Memcpy(schemes, ss->ssl3.signatureSchemes, ss->ssl3.signatureSchemeCount * sizeof(SSLSignatureScheme)); *count = ss->ssl3.signatureSchemeCount; return SECSuccess; } SECStatus SSL_SignaturePrefGet(PRFileDesc *fd, SSLSignatureAndHashAlg *algorithms, unsigned int *count, unsigned int maxCount) { sslSocket *ss; unsigned int i; ss = ssl_FindSocket(fd); if (!ss) { SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SignaturePrefGet", SSL_GETPID(), fd)); PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } if (!algorithms || !count || maxCount < ss->ssl3.signatureSchemeCount) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } for (i = 0; i < ss->ssl3.signatureSchemeCount; ++i) { algorithms[i].hashAlg = (ss->ssl3.signatureSchemes[i] >> 8) & 0xff; algorithms[i].sigAlg = ss->ssl3.signatureSchemes[i] & 0xff; } *count = ss->ssl3.signatureSchemeCount; return SECSuccess; } unsigned int SSL_SignatureMaxCount(void) { return MAX_SIGNATURE_SCHEMES; } /* copy global default policy into socket. */ void ssl3_InitSocketPolicy(sslSocket *ss) { PORT_Memcpy(ss->cipherSuites, cipherSuites, sizeof(cipherSuites)); PORT_Memcpy(ss->ssl3.signatureSchemes, defaultSignatureSchemes, sizeof(defaultSignatureSchemes)); ss->ssl3.signatureSchemeCount = PR_ARRAY_SIZE(defaultSignatureSchemes); } /* ** If ssl3 socket has completed the first handshake, and is in idle state, ** then start a new handshake. ** If flushCache is true, the SID cache will be flushed first, forcing a ** "Full" handshake (not a session restart handshake), to be done. ** ** called from SSL_RedoHandshake(), which already holds the handshake locks. */ SECStatus ssl3_RedoHandshake(sslSocket *ss, PRBool flushCache) { sslSessionID *sid = ss->sec.ci.sid; SECStatus rv; PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); if (!ss->firstHsDone || (ss->ssl3.hs.ws != idle_handshake)) { PORT_SetError(SSL_ERROR_HANDSHAKE_NOT_COMPLETED); return SECFailure; } if (IS_DTLS(ss)) { dtls_RehandshakeCleanup(ss); } if (ss->opt.enableRenegotiation == SSL_RENEGOTIATE_NEVER || ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) { PORT_SetError(SSL_ERROR_RENEGOTIATION_NOT_ALLOWED); return SECFailure; } if (ss->version > ss->vrange.max || ss->version < ss->vrange.min) { PORT_SetError(SSL_ERROR_UNSUPPORTED_VERSION); return SECFailure; } if (sid && flushCache) { ssl_UncacheSessionID(ss); /* remove it from whichever cache it's in. */ ssl_FreeSID(sid); /* dec ref count and free if zero. */ ss->sec.ci.sid = NULL; } ssl_GetXmitBufLock(ss); /**************************************/ /* start off a new handshake. */ if (ss->sec.isServer) { rv = ssl3_SendHelloRequest(ss); } else { rv = ssl3_SendClientHello(ss, client_hello_renegotiation); } ssl_ReleaseXmitBufLock(ss); /**************************************/ return rv; } /* Called from ssl_DestroySocketContents() in sslsock.c */ void ssl3_DestroySSL3Info(sslSocket *ss) { if (ss->ssl3.clientCertificate != NULL) CERT_DestroyCertificate(ss->ssl3.clientCertificate); if (ss->ssl3.clientPrivateKey != NULL) SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey); if (ss->ssl3.peerCertArena != NULL) ssl3_CleanupPeerCerts(ss); if (ss->ssl3.clientCertChain != NULL) { CERT_DestroyCertificateList(ss->ssl3.clientCertChain); ss->ssl3.clientCertChain = NULL; } if (ss->ssl3.ca_list) { CERT_FreeDistNames(ss->ssl3.ca_list); } /* clean up handshake */ if (ss->ssl3.hs.md5) { PK11_DestroyContext(ss->ssl3.hs.md5, PR_TRUE); } if (ss->ssl3.hs.sha) { PK11_DestroyContext(ss->ssl3.hs.sha, PR_TRUE); } if (ss->ssl3.hs.shaPostHandshake) { PK11_DestroyContext(ss->ssl3.hs.shaPostHandshake, PR_TRUE); } if (ss->ssl3.hs.messages.buf) { sslBuffer_Clear(&ss->ssl3.hs.messages); } /* free the SSL3Buffer (msg_body) */ PORT_Free(ss->ssl3.hs.msg_body.buf); SECITEM_FreeItem(&ss->ssl3.hs.newSessionTicket.ticket, PR_FALSE); SECITEM_FreeItem(&ss->ssl3.hs.srvVirtName, PR_FALSE); SECITEM_FreeItem(&ss->ssl3.hs.fakeSid, PR_FALSE); /* Destroy the DTLS data */ if (IS_DTLS(ss)) { dtls_FreeHandshakeMessages(&ss->ssl3.hs.lastMessageFlight); if (ss->ssl3.hs.recvdFragments.buf) { PORT_Free(ss->ssl3.hs.recvdFragments.buf); } } /* Destroy remote extensions */ ssl3_DestroyRemoteExtensions(&ss->ssl3.hs.remoteExtensions); ssl3_DestroyExtensionData(&ss->xtnData); /* Destroy cipher specs */ ssl_DestroyCipherSpecs(&ss->ssl3.hs.cipherSpecs); /* Destroy TLS 1.3 keys */ if (ss->ssl3.hs.currentSecret) PK11_FreeSymKey(ss->ssl3.hs.currentSecret); if (ss->ssl3.hs.resumptionMasterSecret) PK11_FreeSymKey(ss->ssl3.hs.resumptionMasterSecret); if (ss->ssl3.hs.dheSecret) PK11_FreeSymKey(ss->ssl3.hs.dheSecret); if (ss->ssl3.hs.pskBinderKey) PK11_FreeSymKey(ss->ssl3.hs.pskBinderKey); if (ss->ssl3.hs.clientEarlyTrafficSecret) PK11_FreeSymKey(ss->ssl3.hs.clientEarlyTrafficSecret); if (ss->ssl3.hs.clientHsTrafficSecret) PK11_FreeSymKey(ss->ssl3.hs.clientHsTrafficSecret); if (ss->ssl3.hs.serverHsTrafficSecret) PK11_FreeSymKey(ss->ssl3.hs.serverHsTrafficSecret); if (ss->ssl3.hs.clientTrafficSecret) PK11_FreeSymKey(ss->ssl3.hs.clientTrafficSecret); if (ss->ssl3.hs.serverTrafficSecret) PK11_FreeSymKey(ss->ssl3.hs.serverTrafficSecret); if (ss->ssl3.hs.earlyExporterSecret) PK11_FreeSymKey(ss->ssl3.hs.earlyExporterSecret); if (ss->ssl3.hs.exporterSecret) PK11_FreeSymKey(ss->ssl3.hs.exporterSecret); ss->ssl3.hs.zeroRttState = ssl_0rtt_none; /* Destroy TLS 1.3 buffered early data. */ tls13_DestroyEarlyData(&ss->ssl3.hs.bufferedEarlyData); } #define MAP_NULL(x) (((x) != 0) ? (x) : SEC_OID_NULL_CIPHER) SECStatus ssl3_ApplyNSSPolicy(void) { unsigned i; SECStatus rv; PRUint32 policy = 0; rv = NSS_GetAlgorithmPolicy(SEC_OID_APPLY_SSL_POLICY, &policy); if (rv != SECSuccess || !(policy & NSS_USE_POLICY_IN_SSL)) { return SECSuccess; /* do nothing */ } /* disable every ciphersuite */ for (i = 1; i < PR_ARRAY_SIZE(cipher_suite_defs); ++i) { const ssl3CipherSuiteDef *suite = &cipher_suite_defs[i]; SECOidTag policyOid; policyOid = MAP_NULL(kea_defs[suite->key_exchange_alg].oid); rv = NSS_GetAlgorithmPolicy(policyOid, &policy); if (rv == SECSuccess && !(policy & NSS_USE_ALG_IN_SSL_KX)) { ssl_CipherPrefSetDefault(suite->cipher_suite, PR_FALSE); ssl_CipherPolicySet(suite->cipher_suite, SSL_NOT_ALLOWED); continue; } policyOid = MAP_NULL(ssl_GetBulkCipherDef(suite)->oid); rv = NSS_GetAlgorithmPolicy(policyOid, &policy); if (rv == SECSuccess && !(policy & NSS_USE_ALG_IN_SSL)) { ssl_CipherPrefSetDefault(suite->cipher_suite, PR_FALSE); ssl_CipherPolicySet(suite->cipher_suite, SSL_NOT_ALLOWED); continue; } if (ssl_GetBulkCipherDef(suite)->type != type_aead) { policyOid = MAP_NULL(ssl_GetMacDefByAlg(suite->mac_alg)->oid); rv = NSS_GetAlgorithmPolicy(policyOid, &policy); if (rv == SECSuccess && !(policy & NSS_USE_ALG_IN_SSL)) { ssl_CipherPrefSetDefault(suite->cipher_suite, PR_FALSE); ssl_CipherPolicySet(suite->cipher_suite, SSL_NOT_ALLOWED); continue; } } } rv = ssl3_ConstrainRangeByPolicy(); return rv; } /* End of ssl3con.c */