/* * PKCS #11 FIPS Power-Up Self Test. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* $Id: fipstest.c,v 1.31 2012/06/28 17:55:06 rrelyea%redhat.com Exp $ */ #ifdef FREEBL_NO_DEPEND #include "stubs.h" #endif #include "blapi.h" #include "seccomon.h" /* Required for RSA and DSA. */ #include "secerr.h" #include "prtypes.h" #ifdef NSS_ENABLE_ECC #include "ec.h" /* Required for ECDSA */ #endif /* * different platforms have different ways of calling and initial entry point * when the dll/.so is loaded. Most platforms support either a posix pragma * or the GCC attribute. Some platforms suppor a pre-defined name, and some * platforms have a link line way of invoking this function. */ /* The pragma */ #if defined(USE_INIT_PRAGMA) #pragma init(bl_startup_tests) #endif /* GCC Attribute */ #if defined(__GNUC__) && !defined(NSS_NO_INIT_SUPPORT) #define INIT_FUNCTION __attribute__((constructor)) #else #define INIT_FUNCTION #endif static void INIT_FUNCTION bl_startup_tests(void); /* Windows pre-defined entry */ #if defined(XP_WIN) && !defined(NSS_NO_INIT_SUPPORT) #include BOOL WINAPI DllMain( HINSTANCE hinstDLL, // handle to DLL module DWORD fdwReason, // reason for calling function LPVOID lpReserved) // reserved { // Perform actions based on the reason for calling. switch (fdwReason) { case DLL_PROCESS_ATTACH: // Initialize once for each new process. // Return FALSE to fail DLL load. bl_startup_tests(); break; case DLL_THREAD_ATTACH: // Do thread-specific initialization. break; case DLL_THREAD_DETACH: // Do thread-specific cleanup. break; case DLL_PROCESS_DETACH: // Perform any necessary cleanup. break; } return TRUE; // Successful DLL_PROCESS_ATTACH. } #endif /* insert other platform dependent init entry points here, or modify * the linker line */ /* FIPS preprocessor directives for RC2-ECB and RC2-CBC. */ #define FIPS_RC2_KEY_LENGTH 5 /* 40-bits */ #define FIPS_RC2_ENCRYPT_LENGTH 8 /* 64-bits */ #define FIPS_RC2_DECRYPT_LENGTH 8 /* 64-bits */ /* FIPS preprocessor directives for RC4. */ #define FIPS_RC4_KEY_LENGTH 5 /* 40-bits */ #define FIPS_RC4_ENCRYPT_LENGTH 8 /* 64-bits */ #define FIPS_RC4_DECRYPT_LENGTH 8 /* 64-bits */ /* FIPS preprocessor directives for DES-ECB and DES-CBC. */ #define FIPS_DES_ENCRYPT_LENGTH 8 /* 64-bits */ #define FIPS_DES_DECRYPT_LENGTH 8 /* 64-bits */ /* FIPS preprocessor directives for DES3-CBC and DES3-ECB. */ #define FIPS_DES3_ENCRYPT_LENGTH 8 /* 64-bits */ #define FIPS_DES3_DECRYPT_LENGTH 8 /* 64-bits */ /* FIPS preprocessor directives for AES-ECB and AES-CBC. */ #define FIPS_AES_BLOCK_SIZE 16 /* 128-bits */ #define FIPS_AES_ENCRYPT_LENGTH 16 /* 128-bits */ #define FIPS_AES_DECRYPT_LENGTH 16 /* 128-bits */ #define FIPS_AES_128_KEY_SIZE 16 /* 128-bits */ #define FIPS_AES_192_KEY_SIZE 24 /* 192-bits */ #define FIPS_AES_256_KEY_SIZE 32 /* 256-bits */ /* FIPS preprocessor directives for message digests */ #define FIPS_KNOWN_HASH_MESSAGE_LENGTH 64 /* 512-bits */ /* FIPS preprocessor directives for RSA. */ #define FIPS_RSA_TYPE siBuffer #define FIPS_RSA_PUBLIC_EXPONENT_LENGTH 3 /* 24-bits */ #define FIPS_RSA_PRIVATE_VERSION_LENGTH 1 /* 8-bits */ #define FIPS_RSA_MESSAGE_LENGTH 256 /* 2048-bits */ #define FIPS_RSA_COEFFICIENT_LENGTH 128 /* 1024-bits */ #define FIPS_RSA_PRIME0_LENGTH 128 /* 1024-bits */ #define FIPS_RSA_PRIME1_LENGTH 128 /* 1024-bits */ #define FIPS_RSA_EXPONENT0_LENGTH 128 /* 1024-bits */ #define FIPS_RSA_EXPONENT1_LENGTH 128 /* 1024-bits */ #define FIPS_RSA_PRIVATE_EXPONENT_LENGTH 256 /* 2048-bits */ #define FIPS_RSA_ENCRYPT_LENGTH 256 /* 2048-bits */ #define FIPS_RSA_DECRYPT_LENGTH 256 /* 2048-bits */ #define FIPS_RSA_SIGNATURE_LENGTH 256 /* 2048-bits */ #define FIPS_RSA_MODULUS_LENGTH 256 /* 2048-bits */ /* FIPS preprocessor directives for DSA. */ #define FIPS_DSA_TYPE siBuffer #define FIPS_DSA_DIGEST_LENGTH 20 /* 160-bits */ #define FIPS_DSA_SUBPRIME_LENGTH 20 /* 160-bits */ #define FIPS_DSA_SIGNATURE_LENGTH 40 /* 320-bits */ #define FIPS_DSA_PRIME_LENGTH 128 /* 1024-bits */ #define FIPS_DSA_BASE_LENGTH 128 /* 1024-bits */ /* FIPS preprocessor directives for RNG. */ #define FIPS_RNG_XKEY_LENGTH 32 /* 256-bits */ static SECStatus freebl_fips_DES3_PowerUpSelfTest(void) { /* DES3 Known Key (56-bits). */ static const PRUint8 des3_known_key[] = { "ANSI Triple-DES Key Data" }; /* DES3-CBC Known Initialization Vector (64-bits). */ static const PRUint8 des3_cbc_known_initialization_vector[] = { "Security" }; /* DES3 Known Plaintext (64-bits). */ static const PRUint8 des3_ecb_known_plaintext[] = { "Netscape" }; static const PRUint8 des3_cbc_known_plaintext[] = { "Netscape" }; /* DES3 Known Ciphertext (64-bits). */ static const PRUint8 des3_ecb_known_ciphertext[] = { 0x55, 0x8e, 0xad, 0x3c, 0xee, 0x49, 0x69, 0xbe }; static const PRUint8 des3_cbc_known_ciphertext[] = { 0x43, 0xdc, 0x6a, 0xc1, 0xaf, 0xa6, 0x32, 0xf5 }; /* DES3 variables. */ PRUint8 des3_computed_ciphertext[FIPS_DES3_ENCRYPT_LENGTH]; PRUint8 des3_computed_plaintext[FIPS_DES3_DECRYPT_LENGTH]; DESContext *des3_context; unsigned int des3_bytes_encrypted; unsigned int des3_bytes_decrypted; SECStatus des3_status; /*******************************************************/ /* DES3-ECB Single-Round Known Answer Encryption Test. */ /*******************************************************/ des3_context = DES_CreateContext(des3_known_key, NULL, NSS_DES_EDE3, PR_TRUE); if (des3_context == NULL) { PORT_SetError(SEC_ERROR_NO_MEMORY); return (SECFailure); } des3_status = DES_Encrypt(des3_context, des3_computed_ciphertext, &des3_bytes_encrypted, FIPS_DES3_ENCRYPT_LENGTH, des3_ecb_known_plaintext, FIPS_DES3_DECRYPT_LENGTH); DES_DestroyContext(des3_context, PR_TRUE); if ((des3_status != SECSuccess) || (des3_bytes_encrypted != FIPS_DES3_ENCRYPT_LENGTH) || (PORT_Memcmp(des3_computed_ciphertext, des3_ecb_known_ciphertext, FIPS_DES3_ENCRYPT_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /*******************************************************/ /* DES3-ECB Single-Round Known Answer Decryption Test. */ /*******************************************************/ des3_context = DES_CreateContext(des3_known_key, NULL, NSS_DES_EDE3, PR_FALSE); if (des3_context == NULL) { PORT_SetError(SEC_ERROR_NO_MEMORY); return (SECFailure); } des3_status = DES_Decrypt(des3_context, des3_computed_plaintext, &des3_bytes_decrypted, FIPS_DES3_DECRYPT_LENGTH, des3_ecb_known_ciphertext, FIPS_DES3_ENCRYPT_LENGTH); DES_DestroyContext(des3_context, PR_TRUE); if ((des3_status != SECSuccess) || (des3_bytes_decrypted != FIPS_DES3_DECRYPT_LENGTH) || (PORT_Memcmp(des3_computed_plaintext, des3_ecb_known_plaintext, FIPS_DES3_DECRYPT_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /*******************************************************/ /* DES3-CBC Single-Round Known Answer Encryption Test. */ /*******************************************************/ des3_context = DES_CreateContext(des3_known_key, des3_cbc_known_initialization_vector, NSS_DES_EDE3_CBC, PR_TRUE); if (des3_context == NULL) { PORT_SetError(SEC_ERROR_NO_MEMORY); return (SECFailure); } des3_status = DES_Encrypt(des3_context, des3_computed_ciphertext, &des3_bytes_encrypted, FIPS_DES3_ENCRYPT_LENGTH, des3_cbc_known_plaintext, FIPS_DES3_DECRYPT_LENGTH); DES_DestroyContext(des3_context, PR_TRUE); if ((des3_status != SECSuccess) || (des3_bytes_encrypted != FIPS_DES3_ENCRYPT_LENGTH) || (PORT_Memcmp(des3_computed_ciphertext, des3_cbc_known_ciphertext, FIPS_DES3_ENCRYPT_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /*******************************************************/ /* DES3-CBC Single-Round Known Answer Decryption Test. */ /*******************************************************/ des3_context = DES_CreateContext(des3_known_key, des3_cbc_known_initialization_vector, NSS_DES_EDE3_CBC, PR_FALSE); if (des3_context == NULL) { PORT_SetError(SEC_ERROR_NO_MEMORY); return (SECFailure); } des3_status = DES_Decrypt(des3_context, des3_computed_plaintext, &des3_bytes_decrypted, FIPS_DES3_DECRYPT_LENGTH, des3_cbc_known_ciphertext, FIPS_DES3_ENCRYPT_LENGTH); DES_DestroyContext(des3_context, PR_TRUE); if ((des3_status != SECSuccess) || (des3_bytes_decrypted != FIPS_DES3_DECRYPT_LENGTH) || (PORT_Memcmp(des3_computed_plaintext, des3_cbc_known_plaintext, FIPS_DES3_DECRYPT_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } return (SECSuccess); } /* AES self-test for 128-bit, 192-bit, or 256-bit key sizes*/ static SECStatus freebl_fips_AES_PowerUpSelfTest(int aes_key_size) { /* AES Known Key (up to 256-bits). */ static const PRUint8 aes_known_key[] = { "AES-128 RIJNDAELLEADNJIR 821-SEA" }; /* AES-CBC Known Initialization Vector (128-bits). */ static const PRUint8 aes_cbc_known_initialization_vector[] = { "SecurityytiruceS" }; /* AES Known Plaintext (128-bits). (blocksize is 128-bits) */ static const PRUint8 aes_known_plaintext[] = { "NetscapeepacsteN" }; /* AES Known Ciphertext (128-bit key). */ static const PRUint8 aes_ecb128_known_ciphertext[] = { 0x3c, 0xa5, 0x96, 0xf3, 0x34, 0x6a, 0x96, 0xc1, 0x03, 0x88, 0x16, 0x7b, 0x20, 0xbf, 0x35, 0x47 }; static const PRUint8 aes_cbc128_known_ciphertext[] = { 0xcf, 0x15, 0x1d, 0x4f, 0x96, 0xe4, 0x4f, 0x63, 0x15, 0x54, 0x14, 0x1d, 0x4e, 0xd8, 0xd5, 0xea }; /* AES Known Ciphertext (192-bit key). */ static const PRUint8 aes_ecb192_known_ciphertext[] = { 0xa0, 0x18, 0x62, 0xed, 0x88, 0x19, 0xcb, 0x62, 0x88, 0x1d, 0x4d, 0xfe, 0x84, 0x02, 0x89, 0x0e }; static const PRUint8 aes_cbc192_known_ciphertext[] = { 0x83, 0xf7, 0xa4, 0x76, 0xd1, 0x6f, 0x07, 0xbe, 0x07, 0xbc, 0x43, 0x2f, 0x6d, 0xad, 0x29, 0xe1 }; /* AES Known Ciphertext (256-bit key). */ static const PRUint8 aes_ecb256_known_ciphertext[] = { 0xdb, 0xa6, 0x52, 0x01, 0x8a, 0x70, 0xae, 0x66, 0x3a, 0x99, 0xd8, 0x95, 0x7f, 0xfb, 0x01, 0x67 }; static const PRUint8 aes_cbc256_known_ciphertext[] = { 0x37, 0xea, 0x07, 0x06, 0x31, 0x1c, 0x59, 0x27, 0xc5, 0xc5, 0x68, 0x71, 0x6e, 0x34, 0x40, 0x16 }; const PRUint8 *aes_ecb_known_ciphertext = (aes_key_size == FIPS_AES_128_KEY_SIZE) ? aes_ecb128_known_ciphertext : (aes_key_size == FIPS_AES_192_KEY_SIZE) ? aes_ecb192_known_ciphertext : aes_ecb256_known_ciphertext; const PRUint8 *aes_cbc_known_ciphertext = (aes_key_size == FIPS_AES_128_KEY_SIZE) ? aes_cbc128_known_ciphertext : (aes_key_size == FIPS_AES_192_KEY_SIZE) ? aes_cbc192_known_ciphertext : aes_cbc256_known_ciphertext; /* AES variables. */ PRUint8 aes_computed_ciphertext[FIPS_AES_ENCRYPT_LENGTH]; PRUint8 aes_computed_plaintext[FIPS_AES_DECRYPT_LENGTH]; AESContext *aes_context; unsigned int aes_bytes_encrypted; unsigned int aes_bytes_decrypted; SECStatus aes_status; /*check if aes_key_size is 128, 192, or 256 bits */ if ((aes_key_size != FIPS_AES_128_KEY_SIZE) && (aes_key_size != FIPS_AES_192_KEY_SIZE) && (aes_key_size != FIPS_AES_256_KEY_SIZE)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /******************************************************/ /* AES-ECB Single-Round Known Answer Encryption Test: */ /******************************************************/ aes_context = AES_CreateContext(aes_known_key, NULL, NSS_AES, PR_TRUE, aes_key_size, FIPS_AES_BLOCK_SIZE); if (aes_context == NULL) { PORT_SetError(SEC_ERROR_NO_MEMORY); return (SECFailure); } aes_status = AES_Encrypt(aes_context, aes_computed_ciphertext, &aes_bytes_encrypted, FIPS_AES_ENCRYPT_LENGTH, aes_known_plaintext, FIPS_AES_DECRYPT_LENGTH); AES_DestroyContext(aes_context, PR_TRUE); if ((aes_status != SECSuccess) || (aes_bytes_encrypted != FIPS_AES_ENCRYPT_LENGTH) || (PORT_Memcmp(aes_computed_ciphertext, aes_ecb_known_ciphertext, FIPS_AES_ENCRYPT_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /******************************************************/ /* AES-ECB Single-Round Known Answer Decryption Test: */ /******************************************************/ aes_context = AES_CreateContext(aes_known_key, NULL, NSS_AES, PR_FALSE, aes_key_size, FIPS_AES_BLOCK_SIZE); if (aes_context == NULL) { PORT_SetError(SEC_ERROR_NO_MEMORY); return (SECFailure); } aes_status = AES_Decrypt(aes_context, aes_computed_plaintext, &aes_bytes_decrypted, FIPS_AES_DECRYPT_LENGTH, aes_ecb_known_ciphertext, FIPS_AES_ENCRYPT_LENGTH); AES_DestroyContext(aes_context, PR_TRUE); if ((aes_status != SECSuccess) || (aes_bytes_decrypted != FIPS_AES_DECRYPT_LENGTH) || (PORT_Memcmp(aes_computed_plaintext, aes_known_plaintext, FIPS_AES_DECRYPT_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /******************************************************/ /* AES-CBC Single-Round Known Answer Encryption Test. */ /******************************************************/ aes_context = AES_CreateContext(aes_known_key, aes_cbc_known_initialization_vector, NSS_AES_CBC, PR_TRUE, aes_key_size, FIPS_AES_BLOCK_SIZE); if (aes_context == NULL) { PORT_SetError(SEC_ERROR_NO_MEMORY); return (SECFailure); } aes_status = AES_Encrypt(aes_context, aes_computed_ciphertext, &aes_bytes_encrypted, FIPS_AES_ENCRYPT_LENGTH, aes_known_plaintext, FIPS_AES_DECRYPT_LENGTH); AES_DestroyContext(aes_context, PR_TRUE); if ((aes_status != SECSuccess) || (aes_bytes_encrypted != FIPS_AES_ENCRYPT_LENGTH) || (PORT_Memcmp(aes_computed_ciphertext, aes_cbc_known_ciphertext, FIPS_AES_ENCRYPT_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /******************************************************/ /* AES-CBC Single-Round Known Answer Decryption Test. */ /******************************************************/ aes_context = AES_CreateContext(aes_known_key, aes_cbc_known_initialization_vector, NSS_AES_CBC, PR_FALSE, aes_key_size, FIPS_AES_BLOCK_SIZE); if (aes_context == NULL) { PORT_SetError(SEC_ERROR_NO_MEMORY); return (SECFailure); } aes_status = AES_Decrypt(aes_context, aes_computed_plaintext, &aes_bytes_decrypted, FIPS_AES_DECRYPT_LENGTH, aes_cbc_known_ciphertext, FIPS_AES_ENCRYPT_LENGTH); AES_DestroyContext(aes_context, PR_TRUE); if ((aes_status != SECSuccess) || (aes_bytes_decrypted != FIPS_AES_DECRYPT_LENGTH) || (PORT_Memcmp(aes_computed_plaintext, aes_known_plaintext, FIPS_AES_DECRYPT_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } return (SECSuccess); } /* Known Hash Message (512-bits). Used for all hashes (incl. SHA-N [N>1]). */ static const PRUint8 known_hash_message[] = { "The test message for the MD2, MD5, and SHA-1 hashing algorithms." }; /****************************************************/ /* Single Round HMAC SHA-X test */ /****************************************************/ static SECStatus freebl_fips_HMAC(unsigned char *hmac_computed, const PRUint8 *secret_key, unsigned int secret_key_length, const PRUint8 *message, unsigned int message_length, HASH_HashType hashAlg) { SECStatus hmac_status = SECFailure; HMACContext *cx = NULL; SECHashObject *hashObj = NULL; unsigned int bytes_hashed = 0; hashObj = (SECHashObject *)HASH_GetRawHashObject(hashAlg); if (!hashObj) return (SECFailure); cx = HMAC_Create(hashObj, secret_key, secret_key_length, PR_TRUE); /* PR_TRUE for in FIPS mode */ if (cx == NULL) return (SECFailure); HMAC_Begin(cx); HMAC_Update(cx, message, message_length); hmac_status = HMAC_Finish(cx, hmac_computed, &bytes_hashed, hashObj->length); HMAC_Destroy(cx, PR_TRUE); return (hmac_status); } static SECStatus freebl_fips_HMAC_PowerUpSelfTest(void) { static const PRUint8 HMAC_known_secret_key[] = { "Firefox and ThunderBird are awesome!" }; static const PRUint8 HMAC_known_secret_key_length = sizeof HMAC_known_secret_key; /* known SHA1 hmac (20 bytes) */ static const PRUint8 known_SHA1_hmac[] = { 0xd5, 0x85, 0xf6, 0x5b, 0x39, 0xfa, 0xb9, 0x05, 0x3b, 0x57, 0x1d, 0x61, 0xe7, 0xb8, 0x84, 0x1e, 0x5d, 0x0e, 0x1e, 0x11 }; /* known SHA224 hmac (28 bytes) */ static const PRUint8 known_SHA224_hmac[] = { 0x1c, 0xc3, 0x06, 0x8e, 0xce, 0x37, 0x68, 0xfb, 0x1a, 0x82, 0x4a, 0xbe, 0x2b, 0x00, 0x51, 0xf8, 0x9d, 0xb6, 0xe0, 0x90, 0x0d, 0x00, 0xc9, 0x64, 0x9a, 0xb8, 0x98, 0x4e }; /* known SHA256 hmac (32 bytes) */ static const PRUint8 known_SHA256_hmac[] = { 0x05, 0x75, 0x9a, 0x9e, 0x70, 0x5e, 0xe7, 0x44, 0xe2, 0x46, 0x4b, 0x92, 0x22, 0x14, 0x22, 0xe0, 0x1b, 0x92, 0x8a, 0x0c, 0xfe, 0xf5, 0x49, 0xe9, 0xa7, 0x1b, 0x56, 0x7d, 0x1d, 0x29, 0x40, 0x48 }; /* known SHA384 hmac (48 bytes) */ static const PRUint8 known_SHA384_hmac[] = { 0xcd, 0x56, 0x14, 0xec, 0x05, 0x53, 0x06, 0x2b, 0x7e, 0x9c, 0x8a, 0x18, 0x5e, 0xea, 0xf3, 0x91, 0x33, 0xfb, 0x64, 0xf6, 0xe3, 0x9f, 0x89, 0x0b, 0xaf, 0xbe, 0x83, 0x4d, 0x3f, 0x3c, 0x43, 0x4d, 0x4a, 0x0c, 0x56, 0x98, 0xf8, 0xca, 0xb4, 0xaa, 0x9a, 0xf4, 0x0a, 0xaf, 0x4f, 0x69, 0xca, 0x87 }; /* known SHA512 hmac (64 bytes) */ static const PRUint8 known_SHA512_hmac[] = { 0xf6, 0x0e, 0x97, 0x12, 0x00, 0x67, 0x6e, 0xb9, 0x0c, 0xb2, 0x63, 0xf0, 0x60, 0xac, 0x75, 0x62, 0x70, 0x95, 0x2a, 0x52, 0x22, 0xee, 0xdd, 0xd2, 0x71, 0xb1, 0xe8, 0x26, 0x33, 0xd3, 0x13, 0x27, 0xcb, 0xff, 0x44, 0xef, 0x87, 0x97, 0x16, 0xfb, 0xd3, 0x0b, 0x48, 0xbe, 0x12, 0x4e, 0xda, 0xb1, 0x89, 0x90, 0xfb, 0x06, 0x0c, 0xbe, 0xe5, 0xc4, 0xff, 0x24, 0x37, 0x3d, 0xc7, 0xe4, 0xe4, 0x37 }; SECStatus hmac_status; PRUint8 hmac_computed[HASH_LENGTH_MAX]; /***************************************************/ /* HMAC SHA-1 Single-Round Known Answer HMAC Test. */ /***************************************************/ hmac_status = freebl_fips_HMAC(hmac_computed, HMAC_known_secret_key, HMAC_known_secret_key_length, known_hash_message, FIPS_KNOWN_HASH_MESSAGE_LENGTH, HASH_AlgSHA1); if ((hmac_status != SECSuccess) || (PORT_Memcmp(hmac_computed, known_SHA1_hmac, SHA1_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /***************************************************/ /* HMAC SHA-224 Single-Round Known Answer Test. */ /***************************************************/ hmac_status = freebl_fips_HMAC(hmac_computed, HMAC_known_secret_key, HMAC_known_secret_key_length, known_hash_message, FIPS_KNOWN_HASH_MESSAGE_LENGTH, HASH_AlgSHA224); if ((hmac_status != SECSuccess) || (PORT_Memcmp(hmac_computed, known_SHA224_hmac, SHA224_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /***************************************************/ /* HMAC SHA-256 Single-Round Known Answer Test. */ /***************************************************/ hmac_status = freebl_fips_HMAC(hmac_computed, HMAC_known_secret_key, HMAC_known_secret_key_length, known_hash_message, FIPS_KNOWN_HASH_MESSAGE_LENGTH, HASH_AlgSHA256); if ((hmac_status != SECSuccess) || (PORT_Memcmp(hmac_computed, known_SHA256_hmac, SHA256_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /***************************************************/ /* HMAC SHA-384 Single-Round Known Answer Test. */ /***************************************************/ hmac_status = freebl_fips_HMAC(hmac_computed, HMAC_known_secret_key, HMAC_known_secret_key_length, known_hash_message, FIPS_KNOWN_HASH_MESSAGE_LENGTH, HASH_AlgSHA384); if ((hmac_status != SECSuccess) || (PORT_Memcmp(hmac_computed, known_SHA384_hmac, SHA384_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /***************************************************/ /* HMAC SHA-512 Single-Round Known Answer Test. */ /***************************************************/ hmac_status = freebl_fips_HMAC(hmac_computed, HMAC_known_secret_key, HMAC_known_secret_key_length, known_hash_message, FIPS_KNOWN_HASH_MESSAGE_LENGTH, HASH_AlgSHA512); if ((hmac_status != SECSuccess) || (PORT_Memcmp(hmac_computed, known_SHA512_hmac, SHA512_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } return (SECSuccess); } static SECStatus freebl_fips_SHA_PowerUpSelfTest(void) { /* SHA-1 Known Digest Message (160-bits). */ static const PRUint8 sha1_known_digest[] = { 0x0a, 0x6d, 0x07, 0xba, 0x1e, 0xbd, 0x8a, 0x1b, 0x72, 0xf6, 0xc7, 0x22, 0xf1, 0x27, 0x9f, 0xf0, 0xe0, 0x68, 0x47, 0x7a }; /* SHA-224 Known Digest Message (224-bits). */ static const PRUint8 sha224_known_digest[] = { 0x89, 0x5e, 0x7f, 0xfd, 0x0e, 0xd8, 0x35, 0x6f, 0x64, 0x6d, 0xf2, 0xde, 0x5e, 0xed, 0xa6, 0x7f, 0x29, 0xd1, 0x12, 0x73, 0x42, 0x84, 0x95, 0x4f, 0x8e, 0x08, 0xe5, 0xcb }; /* SHA-256 Known Digest Message (256-bits). */ static const PRUint8 sha256_known_digest[] = { 0x38, 0xa9, 0xc1, 0xf0, 0x35, 0xf6, 0x5d, 0x61, 0x11, 0xd4, 0x0b, 0xdc, 0xce, 0x35, 0x14, 0x8d, 0xf2, 0xdd, 0xaf, 0xaf, 0xcf, 0xb7, 0x87, 0xe9, 0x96, 0xa5, 0xd2, 0x83, 0x62, 0x46, 0x56, 0x79 }; /* SHA-384 Known Digest Message (384-bits). */ static const PRUint8 sha384_known_digest[] = { 0x11, 0xfe, 0x1c, 0x00, 0x89, 0x48, 0xde, 0xb3, 0x99, 0xee, 0x1c, 0x18, 0xb4, 0x10, 0xfb, 0xfe, 0xe3, 0xa8, 0x2c, 0xf3, 0x04, 0xb0, 0x2f, 0xc8, 0xa3, 0xc4, 0x5e, 0xea, 0x7e, 0x60, 0x48, 0x7b, 0xce, 0x2c, 0x62, 0xf7, 0xbc, 0xa7, 0xe8, 0xa3, 0xcf, 0x24, 0xce, 0x9c, 0xe2, 0x8b, 0x09, 0x72 }; /* SHA-512 Known Digest Message (512-bits). */ static const PRUint8 sha512_known_digest[] = { 0xc8, 0xb3, 0x27, 0xf9, 0x0b, 0x24, 0xc8, 0xbf, 0x4c, 0xba, 0x33, 0x54, 0xf2, 0x31, 0xbf, 0xdb, 0xab, 0xfd, 0xb3, 0x15, 0xd7, 0xfa, 0x48, 0x99, 0x07, 0x60, 0x0f, 0x57, 0x41, 0x1a, 0xdd, 0x28, 0x12, 0x55, 0x25, 0xac, 0xba, 0x3a, 0x99, 0x12, 0x2c, 0x7a, 0x8f, 0x75, 0x3a, 0xe1, 0x06, 0x6f, 0x30, 0x31, 0xc9, 0x33, 0xc6, 0x1b, 0x90, 0x1a, 0x6c, 0x98, 0x9a, 0x87, 0xd0, 0xb2, 0xf8, 0x07 }; /* SHA-X variables. */ PRUint8 sha_computed_digest[HASH_LENGTH_MAX]; SECStatus sha_status; /*************************************************/ /* SHA-1 Single-Round Known Answer Hashing Test. */ /*************************************************/ sha_status = SHA1_HashBuf(sha_computed_digest, known_hash_message, FIPS_KNOWN_HASH_MESSAGE_LENGTH); if ((sha_status != SECSuccess) || (PORT_Memcmp(sha_computed_digest, sha1_known_digest, SHA1_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /***************************************************/ /* SHA-224 Single-Round Known Answer Hashing Test. */ /***************************************************/ sha_status = SHA224_HashBuf(sha_computed_digest, known_hash_message, FIPS_KNOWN_HASH_MESSAGE_LENGTH); if ((sha_status != SECSuccess) || (PORT_Memcmp(sha_computed_digest, sha224_known_digest, SHA224_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /***************************************************/ /* SHA-256 Single-Round Known Answer Hashing Test. */ /***************************************************/ sha_status = SHA256_HashBuf(sha_computed_digest, known_hash_message, FIPS_KNOWN_HASH_MESSAGE_LENGTH); if ((sha_status != SECSuccess) || (PORT_Memcmp(sha_computed_digest, sha256_known_digest, SHA256_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /***************************************************/ /* SHA-384 Single-Round Known Answer Hashing Test. */ /***************************************************/ sha_status = SHA384_HashBuf(sha_computed_digest, known_hash_message, FIPS_KNOWN_HASH_MESSAGE_LENGTH); if ((sha_status != SECSuccess) || (PORT_Memcmp(sha_computed_digest, sha384_known_digest, SHA384_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /***************************************************/ /* SHA-512 Single-Round Known Answer Hashing Test. */ /***************************************************/ sha_status = SHA512_HashBuf(sha_computed_digest, known_hash_message, FIPS_KNOWN_HASH_MESSAGE_LENGTH); if ((sha_status != SECSuccess) || (PORT_Memcmp(sha_computed_digest, sha512_known_digest, SHA512_LENGTH) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } return (SECSuccess); } static SECStatus freebl_fips_RSA_PowerUpSelfTest(void) { /* RSA Known Modulus used in both Public/Private Key Values (2048-bits). */ static const PRUint8 rsa_modulus[FIPS_RSA_MODULUS_LENGTH] = { 0xb8, 0x15, 0x00, 0x33, 0xda, 0x0c, 0x9d, 0xa5, 0x14, 0x8c, 0xde, 0x1f, 0x23, 0x07, 0x54, 0xe2, 0xc6, 0xb9, 0x51, 0x04, 0xc9, 0x65, 0x24, 0x6e, 0x0a, 0x46, 0x34, 0x5c, 0x37, 0x86, 0x6b, 0x88, 0x24, 0x27, 0xac, 0xa5, 0x02, 0x79, 0xfb, 0xed, 0x75, 0xc5, 0x3f, 0x6e, 0xdf, 0x05, 0x5f, 0x0f, 0x20, 0x70, 0xa0, 0x5b, 0x85, 0xdb, 0xac, 0xb9, 0x5f, 0x02, 0xc2, 0x64, 0x1e, 0x84, 0x5b, 0x3e, 0xad, 0xbf, 0xf6, 0x2e, 0x51, 0xd6, 0xad, 0xf7, 0xa7, 0x86, 0x75, 0x86, 0xec, 0xa7, 0xe1, 0xf7, 0x08, 0xbf, 0xdc, 0x56, 0xb1, 0x3b, 0xca, 0xd8, 0xfc, 0x51, 0xdf, 0x9a, 0x2a, 0x37, 0x06, 0xf2, 0xd1, 0x6b, 0x9a, 0x5e, 0x2a, 0xe5, 0x20, 0x57, 0x35, 0x9f, 0x1f, 0x98, 0xcf, 0x40, 0xc7, 0xd6, 0x98, 0xdb, 0xde, 0xf5, 0x64, 0x53, 0xf7, 0x9d, 0x45, 0xf3, 0xd6, 0x78, 0xb9, 0xe3, 0xa3, 0x20, 0xcd, 0x79, 0x43, 0x35, 0xef, 0xd7, 0xfb, 0xb9, 0x80, 0x88, 0x27, 0x2f, 0x63, 0xa8, 0x67, 0x3d, 0x4a, 0xfa, 0x06, 0xc6, 0xd2, 0x86, 0x0b, 0xa7, 0x28, 0xfd, 0xe0, 0x1e, 0x93, 0x4b, 0x17, 0x2e, 0xb0, 0x11, 0x6f, 0xc6, 0x2b, 0x98, 0x0f, 0x15, 0xe3, 0x87, 0x16, 0x7a, 0x7c, 0x67, 0x3e, 0x12, 0x2b, 0xf8, 0xbe, 0x48, 0xc1, 0x97, 0x47, 0xf4, 0x1f, 0x81, 0x80, 0x12, 0x28, 0xe4, 0x7b, 0x1e, 0xb7, 0x00, 0xa4, 0xde, 0xaa, 0xfb, 0x0f, 0x77, 0x84, 0xa3, 0xd6, 0xb2, 0x03, 0x48, 0xdd, 0x53, 0x8b, 0x46, 0x41, 0x28, 0x52, 0xc4, 0x53, 0xf0, 0x1c, 0x95, 0xd9, 0x36, 0xe0, 0x0f, 0x26, 0x46, 0x9c, 0x61, 0x0e, 0x80, 0xca, 0x86, 0xaf, 0x39, 0x95, 0xe5, 0x60, 0x43, 0x61, 0x3e, 0x2b, 0xb4, 0xe8, 0xbd, 0x8d, 0x77, 0x62, 0xf5, 0x32, 0x43, 0x2f, 0x4b, 0x65, 0x82, 0x14, 0xdd, 0x29, 0x5b }; /* RSA Known Public Key Values (24-bits). */ static const PRUint8 rsa_public_exponent[FIPS_RSA_PUBLIC_EXPONENT_LENGTH] = { 0x01, 0x00, 0x01 }; /* RSA Known Private Key Values (version is 8-bits), */ /* (private exponent is 2048-bits), */ /* (private prime0 is 1024-bits), */ /* (private prime1 is 1024-bits), */ /* (private prime exponent0 is 1024-bits), */ /* (private prime exponent1 is 1024-bits), */ /* and (private coefficient is 1024-bits). */ static const PRUint8 rsa_version[] = { 0x00 }; static const PRUint8 rsa_private_exponent[FIPS_RSA_PRIVATE_EXPONENT_LENGTH] = { 0x29, 0x08, 0x05, 0x53, 0x89, 0x76, 0xe6, 0x6c, 0xb5, 0x77, 0xf0, 0xca, 0xdf, 0xf3, 0xf2, 0x67, 0xda, 0x03, 0xd4, 0x9b, 0x4c, 0x88, 0xce, 0xe5, 0xf8, 0x44, 0x4d, 0xc7, 0x80, 0x58, 0xe5, 0xff, 0x22, 0x8f, 0xf5, 0x5b, 0x92, 0x81, 0xbe, 0x35, 0xdf, 0xda, 0x67, 0x99, 0x3e, 0xfc, 0xe3, 0x83, 0x6b, 0xa7, 0xaf, 0x16, 0xb7, 0x6f, 0x8f, 0xc0, 0x81, 0xfd, 0x0b, 0x77, 0x65, 0x95, 0xfb, 0x00, 0xad, 0x99, 0xec, 0x35, 0xc6, 0xe8, 0x23, 0x3e, 0xe0, 0x88, 0x88, 0x09, 0xdb, 0x16, 0x50, 0xb7, 0xcf, 0xab, 0x74, 0x61, 0x9e, 0x7f, 0xc5, 0x67, 0x38, 0x56, 0xc7, 0x90, 0x85, 0x78, 0x5e, 0x84, 0x21, 0x49, 0xea, 0xce, 0xb2, 0xa0, 0xff, 0xe4, 0x70, 0x7f, 0x57, 0x7b, 0xa8, 0x36, 0xb8, 0x54, 0x8d, 0x1d, 0xf5, 0x44, 0x9d, 0x68, 0x59, 0xf9, 0x24, 0x6e, 0x85, 0x8f, 0xc3, 0x5f, 0x8a, 0x2c, 0x94, 0xb7, 0xbc, 0x0e, 0xa5, 0xef, 0x93, 0x06, 0x38, 0xcd, 0x07, 0x0c, 0xae, 0xb8, 0x44, 0x1a, 0xd8, 0xe7, 0xf5, 0x9a, 0x1e, 0x9c, 0x18, 0xc7, 0x6a, 0xc2, 0x7f, 0x28, 0x01, 0x4f, 0xb4, 0xb8, 0x90, 0x97, 0x5a, 0x43, 0x38, 0xad, 0xe8, 0x95, 0x68, 0x83, 0x1a, 0x1b, 0x10, 0x07, 0xe6, 0x02, 0x52, 0x1f, 0xbf, 0x76, 0x6b, 0x46, 0xd6, 0xfb, 0xc3, 0xbe, 0xb5, 0xac, 0x52, 0x53, 0x01, 0x1c, 0xf3, 0xc5, 0xeb, 0x64, 0xf2, 0x1e, 0xc4, 0x38, 0xe9, 0xaa, 0xd9, 0xc3, 0x72, 0x51, 0xa5, 0x44, 0x58, 0x69, 0x0b, 0x1b, 0x98, 0x7f, 0xf2, 0x23, 0xff, 0xeb, 0xf0, 0x75, 0x24, 0xcf, 0xc5, 0x1e, 0xb8, 0x6a, 0xc5, 0x2f, 0x4f, 0x23, 0x50, 0x7d, 0x15, 0x9d, 0x19, 0x7a, 0x0b, 0x82, 0xe0, 0x21, 0x5b, 0x5f, 0x9d, 0x50, 0x2b, 0x83, 0xe4, 0x48, 0xcc, 0x39, 0xe5, 0xfb, 0x13, 0x7b, 0x6f, 0x81 }; static const PRUint8 rsa_prime0[FIPS_RSA_PRIME0_LENGTH] = { 0xe4, 0xbf, 0x21, 0x62, 0x9b, 0xa9, 0x77, 0x40, 0x8d, 0x2a, 0xce, 0xa1, 0x67, 0x5a, 0x4c, 0x96, 0x45, 0x98, 0x67, 0xbd, 0x75, 0x22, 0x33, 0x6f, 0xe6, 0xcb, 0x77, 0xde, 0x9e, 0x97, 0x7d, 0x96, 0x8c, 0x5e, 0x5d, 0x34, 0xfb, 0x27, 0xfc, 0x6d, 0x74, 0xdb, 0x9d, 0x2e, 0x6d, 0xf6, 0xea, 0xfc, 0xce, 0x9e, 0xda, 0xa7, 0x25, 0xa2, 0xf4, 0x58, 0x6d, 0x0a, 0x3f, 0x01, 0xc2, 0xb4, 0xab, 0x38, 0xc1, 0x14, 0x85, 0xb6, 0xfa, 0x94, 0xc3, 0x85, 0xf9, 0x3c, 0x2e, 0x96, 0x56, 0x01, 0xe7, 0xd6, 0x14, 0x71, 0x4f, 0xfb, 0x4c, 0x85, 0x52, 0xc4, 0x61, 0x1e, 0xa5, 0x1e, 0x96, 0x13, 0x0d, 0x8f, 0x66, 0xae, 0xa0, 0xcd, 0x7d, 0x25, 0x66, 0x19, 0x15, 0xc2, 0xcf, 0xc3, 0x12, 0x3c, 0xe8, 0xa4, 0x52, 0x4c, 0xcb, 0x28, 0x3c, 0xc4, 0xbf, 0x95, 0x33, 0xe3, 0x81, 0xea, 0x0c, 0x6c, 0xa2, 0x05 }; static const PRUint8 rsa_prime1[FIPS_RSA_PRIME1_LENGTH] = { 0xce, 0x03, 0x94, 0xf4, 0xa9, 0x2c, 0x1e, 0x06, 0xe7, 0x40, 0x30, 0x01, 0xf7, 0xbb, 0x68, 0x8c, 0x27, 0xd2, 0x15, 0xe3, 0x28, 0x49, 0x5b, 0xa8, 0xc1, 0x9a, 0x42, 0x7e, 0x31, 0xf9, 0x08, 0x34, 0x81, 0xa2, 0x0f, 0x04, 0x61, 0x34, 0xe3, 0x36, 0x92, 0xb1, 0x09, 0x2b, 0xe9, 0xef, 0x84, 0x88, 0xbe, 0x9c, 0x98, 0x60, 0xa6, 0x60, 0x84, 0xe9, 0x75, 0x6f, 0xcc, 0x81, 0xd1, 0x96, 0xef, 0xdd, 0x2e, 0xca, 0xc4, 0xf5, 0x42, 0xfb, 0x13, 0x2b, 0x57, 0xbf, 0x14, 0x5e, 0xc2, 0x7f, 0x77, 0x35, 0x29, 0xc4, 0xe5, 0xe0, 0xf9, 0x6d, 0x15, 0x4a, 0x42, 0x56, 0x1c, 0x3e, 0x0c, 0xc5, 0xce, 0x70, 0x08, 0x63, 0x1e, 0x73, 0xdb, 0x7e, 0x74, 0x05, 0x32, 0x01, 0xc6, 0x36, 0x32, 0x75, 0x6b, 0xed, 0x9d, 0xfe, 0x7c, 0x7e, 0xa9, 0x57, 0xb4, 0xe9, 0x22, 0xe4, 0xe7, 0xfe, 0x36, 0x07, 0x9b, 0xdf }; static const PRUint8 rsa_exponent0[FIPS_RSA_EXPONENT0_LENGTH] = { 0x04, 0x5a, 0x3a, 0xa9, 0x64, 0xaa, 0xd9, 0xd1, 0x09, 0x9e, 0x99, 0xe5, 0xea, 0x50, 0x86, 0x8a, 0x89, 0x72, 0x77, 0xee, 0xdb, 0xee, 0xb5, 0xa9, 0xd8, 0x6b, 0x60, 0xb1, 0x84, 0xb4, 0xff, 0x37, 0xc1, 0x1d, 0xfe, 0x8a, 0x06, 0x89, 0x61, 0x3d, 0x37, 0xef, 0x01, 0xd3, 0xa3, 0x56, 0x02, 0x6c, 0xa3, 0x05, 0xd4, 0xc5, 0x3f, 0x6b, 0x15, 0x59, 0x25, 0x61, 0xff, 0x86, 0xea, 0x0c, 0x84, 0x01, 0x85, 0x72, 0xfd, 0x84, 0x58, 0xca, 0x41, 0xda, 0x27, 0xbe, 0xe4, 0x68, 0x09, 0xe4, 0xe9, 0x63, 0x62, 0x6a, 0x31, 0x8a, 0x67, 0x8f, 0x55, 0xde, 0xd4, 0xb6, 0x3f, 0x90, 0x10, 0x6c, 0xf6, 0x62, 0x17, 0x23, 0x15, 0x7e, 0x33, 0x76, 0x65, 0xb5, 0xee, 0x7b, 0x11, 0x76, 0xf5, 0xbe, 0xe0, 0xf2, 0x57, 0x7a, 0x8c, 0x97, 0x0c, 0x68, 0xf5, 0xf8, 0x41, 0xcf, 0x7f, 0x66, 0x53, 0xac, 0x31, 0x7d }; static const PRUint8 rsa_exponent1[FIPS_RSA_EXPONENT1_LENGTH] = { 0x93, 0x54, 0x14, 0x6e, 0x73, 0x9d, 0x4d, 0x4b, 0xfa, 0x8c, 0xf8, 0xc8, 0x2f, 0x76, 0x22, 0xea, 0x38, 0x80, 0x11, 0x8f, 0x05, 0xfc, 0x90, 0x44, 0x3b, 0x50, 0x2a, 0x45, 0x3d, 0x4f, 0xaf, 0x02, 0x7d, 0xc2, 0x7b, 0xa2, 0xd2, 0x31, 0x94, 0x5c, 0x2e, 0xc3, 0xd4, 0x9f, 0x47, 0x09, 0x37, 0x6a, 0xe3, 0x85, 0xf1, 0xa3, 0x0c, 0xd8, 0xf1, 0xb4, 0x53, 0x7b, 0xc4, 0x71, 0x02, 0x86, 0x42, 0xbb, 0x96, 0xff, 0x03, 0xa3, 0xb2, 0x67, 0x03, 0xea, 0x77, 0x31, 0xfb, 0x4b, 0x59, 0x24, 0xf7, 0x07, 0x59, 0xfb, 0xa9, 0xba, 0x1e, 0x26, 0x58, 0x97, 0x66, 0xa1, 0x56, 0x49, 0x39, 0xb1, 0x2c, 0x55, 0x0a, 0x6a, 0x78, 0x18, 0xba, 0xdb, 0xcf, 0xf4, 0xf7, 0x32, 0x35, 0xa2, 0x04, 0xab, 0xdc, 0xa7, 0x6d, 0xd9, 0xd5, 0x06, 0x6f, 0xec, 0x7d, 0x40, 0x4c, 0xe8, 0x0e, 0xd0, 0xc9, 0xaa, 0xdf, 0x59 }; static const PRUint8 rsa_coefficient[FIPS_RSA_COEFFICIENT_LENGTH] = { 0x17, 0xd7, 0xf5, 0x0a, 0xf0, 0x68, 0x97, 0x96, 0xc4, 0x29, 0x18, 0x77, 0x9a, 0x1f, 0xe3, 0xf3, 0x12, 0x13, 0x0f, 0x7e, 0x7b, 0xb9, 0xc1, 0x91, 0xf9, 0xc7, 0x08, 0x56, 0x5c, 0xa4, 0xbc, 0x83, 0x71, 0xf9, 0x78, 0xd9, 0x2b, 0xec, 0xfe, 0x6b, 0xdc, 0x2f, 0x63, 0xc9, 0xcd, 0x50, 0x14, 0x5b, 0xd3, 0x6e, 0x85, 0x4d, 0x0c, 0xa2, 0x0b, 0xa0, 0x09, 0xb6, 0xca, 0x34, 0x9c, 0xc2, 0xc1, 0x4a, 0xb0, 0xbc, 0x45, 0x93, 0xa5, 0x7e, 0x99, 0xb5, 0xbd, 0xe4, 0x69, 0x29, 0x08, 0x28, 0xd2, 0xcd, 0xab, 0x24, 0x78, 0x48, 0x41, 0x26, 0x0b, 0x37, 0xa3, 0x43, 0xd1, 0x95, 0x1a, 0xd6, 0xee, 0x22, 0x1c, 0x00, 0x0b, 0xc2, 0xb7, 0xa4, 0xa3, 0x21, 0xa9, 0xcd, 0xe4, 0x69, 0xd3, 0x45, 0x02, 0xb1, 0xb7, 0x3a, 0xbf, 0x51, 0x35, 0x1b, 0x78, 0xc2, 0xcf, 0x0c, 0x0d, 0x60, 0x09, 0xa9, 0x44, 0x02 }; /* RSA Known Plaintext Message (1024-bits). */ static const PRUint8 rsa_known_plaintext_msg[FIPS_RSA_MESSAGE_LENGTH] = { "Known plaintext message utilized" "for RSA Encryption & Decryption" "blocks SHA256, SHA384 and " "SHA512 RSA Signature KAT tests. " "Known plaintext message utilized" "for RSA Encryption & Decryption" "blocks SHA256, SHA384 and " "SHA512 RSA Signature KAT tests." }; /* RSA Known Ciphertext (2048-bits). */ static const PRUint8 rsa_known_ciphertext[] = { 0x04, 0x12, 0x46, 0xe3, 0x6a, 0xee, 0xde, 0xdd, 0x49, 0xa1, 0xd9, 0x83, 0xf7, 0x35, 0xf9, 0x70, 0x88, 0x03, 0x2d, 0x01, 0x8b, 0xd1, 0xbf, 0xdb, 0xe5, 0x1c, 0x85, 0xbe, 0xb5, 0x0b, 0x48, 0x45, 0x7a, 0xf0, 0xa0, 0xe3, 0xa2, 0xbb, 0x4b, 0xf6, 0x27, 0xd0, 0x1b, 0x12, 0xe3, 0x77, 0x52, 0x34, 0x9e, 0x8e, 0x03, 0xd2, 0xf8, 0x79, 0x6e, 0x39, 0x79, 0x53, 0x3c, 0x44, 0x14, 0x94, 0xbb, 0x8d, 0xaa, 0x14, 0x44, 0xa0, 0x7b, 0xa5, 0x8c, 0x93, 0x5f, 0x99, 0xa4, 0xa3, 0x6e, 0x7a, 0x38, 0x40, 0x78, 0xfa, 0x36, 0x91, 0x5e, 0x9a, 0x9c, 0xba, 0x1e, 0xd4, 0xf9, 0xda, 0x4b, 0x0f, 0xa8, 0xa3, 0x1c, 0xf3, 0x3a, 0xd1, 0xa5, 0xb4, 0x51, 0x16, 0xed, 0x4b, 0xcf, 0xec, 0x93, 0x7b, 0x90, 0x21, 0xbc, 0x3a, 0xf4, 0x0b, 0xd1, 0x3a, 0x2b, 0xba, 0xa6, 0x7d, 0x5b, 0x53, 0xd8, 0x64, 0xf9, 0x29, 0x7b, 0x7f, 0x77, 0x3e, 0x51, 0x4c, 0x9a, 0x94, 0xd2, 0x4b, 0x4a, 0x8d, 0x61, 0x74, 0x97, 0xae, 0x53, 0x6a, 0xf4, 0x90, 0xc2, 0x2c, 0x49, 0xe2, 0xfa, 0xeb, 0x91, 0xc5, 0xe5, 0x83, 0x13, 0xc9, 0x44, 0x4b, 0x95, 0x2c, 0x57, 0x70, 0x15, 0x5c, 0x64, 0x8d, 0x1a, 0xfd, 0x2a, 0xc7, 0xb2, 0x9c, 0x5c, 0x99, 0xd3, 0x4a, 0xfd, 0xdd, 0xf6, 0x82, 0x87, 0x8c, 0x5a, 0xc4, 0xa8, 0x0d, 0x2a, 0xef, 0xc3, 0xa2, 0x7e, 0x8e, 0x67, 0x9f, 0x6f, 0x63, 0xdb, 0xbb, 0x1d, 0x31, 0xc4, 0xbb, 0xbc, 0x13, 0x3f, 0x54, 0xc6, 0xf6, 0xc5, 0x28, 0x32, 0xab, 0x96, 0x42, 0x10, 0x36, 0x40, 0x92, 0xbb, 0x57, 0x55, 0x38, 0xf5, 0x43, 0x7e, 0x43, 0xc4, 0x65, 0x47, 0x64, 0xaa, 0x0f, 0x4c, 0xe9, 0x49, 0x16, 0xec, 0x6a, 0x50, 0xfd, 0x14, 0x49, 0xca, 0xdb, 0x44, 0x54, 0xca, 0xbe, 0xa3, 0x0e, 0x5f, 0xef }; static const RSAPublicKey bl_public_key = { NULL, { FIPS_RSA_TYPE, (unsigned char *)rsa_modulus, FIPS_RSA_MODULUS_LENGTH }, { FIPS_RSA_TYPE, (unsigned char *)rsa_public_exponent, FIPS_RSA_PUBLIC_EXPONENT_LENGTH } }; static const RSAPrivateKey bl_private_key = { NULL, { FIPS_RSA_TYPE, (unsigned char *)rsa_version, FIPS_RSA_PRIVATE_VERSION_LENGTH }, { FIPS_RSA_TYPE, (unsigned char *)rsa_modulus, FIPS_RSA_MODULUS_LENGTH }, { FIPS_RSA_TYPE, (unsigned char *)rsa_public_exponent, FIPS_RSA_PUBLIC_EXPONENT_LENGTH }, { FIPS_RSA_TYPE, (unsigned char *)rsa_private_exponent, FIPS_RSA_PRIVATE_EXPONENT_LENGTH }, { FIPS_RSA_TYPE, (unsigned char *)rsa_prime0, FIPS_RSA_PRIME0_LENGTH }, { FIPS_RSA_TYPE, (unsigned char *)rsa_prime1, FIPS_RSA_PRIME1_LENGTH }, { FIPS_RSA_TYPE, (unsigned char *)rsa_exponent0, FIPS_RSA_EXPONENT0_LENGTH }, { FIPS_RSA_TYPE, (unsigned char *)rsa_exponent1, FIPS_RSA_EXPONENT1_LENGTH }, { FIPS_RSA_TYPE, (unsigned char *)rsa_coefficient, FIPS_RSA_COEFFICIENT_LENGTH } }; /* RSA variables. */ SECStatus rsa_status; RSAPublicKey rsa_public_key; RSAPrivateKey rsa_private_key; PRUint8 rsa_computed_ciphertext[FIPS_RSA_ENCRYPT_LENGTH]; PRUint8 rsa_computed_plaintext[FIPS_RSA_DECRYPT_LENGTH]; rsa_public_key = bl_public_key; rsa_private_key = bl_private_key; /**************************************************/ /* RSA Single-Round Known Answer Encryption Test. */ /**************************************************/ /* Perform RSA Public Key Encryption. */ rsa_status = RSA_PublicKeyOp(&rsa_public_key, rsa_computed_ciphertext, rsa_known_plaintext_msg); if ((rsa_status != SECSuccess) || (PORT_Memcmp(rsa_computed_ciphertext, rsa_known_ciphertext, FIPS_RSA_ENCRYPT_LENGTH) != 0)) goto rsa_loser; /**************************************************/ /* RSA Single-Round Known Answer Decryption Test. */ /**************************************************/ /* Perform RSA Private Key Decryption. */ rsa_status = RSA_PrivateKeyOp(&rsa_private_key, rsa_computed_plaintext, rsa_known_ciphertext); if ((rsa_status != SECSuccess) || (PORT_Memcmp(rsa_computed_plaintext, rsa_known_plaintext_msg, FIPS_RSA_DECRYPT_LENGTH) != 0)) goto rsa_loser; return (SECSuccess); rsa_loser: PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } #ifdef NSS_ENABLE_ECC static SECStatus freebl_fips_ECDSA_Test(ECParams *ecparams, const PRUint8 *knownSignature, unsigned int knownSignatureLen) { /* ECDSA Known Seed info for curves nistp256 and nistk283 */ static const PRUint8 ecdsa_Known_Seed[] = { 0x6a, 0x9b, 0xf6, 0xf7, 0xce, 0xed, 0x79, 0x11, 0xf0, 0xc7, 0xc8, 0x9a, 0xa5, 0xd1, 0x57, 0xb1, 0x7b, 0x5a, 0x3b, 0x76, 0x4e, 0x7b, 0x7c, 0xbc, 0xf2, 0x76, 0x1c, 0x1c, 0x7f, 0xc5, 0x53, 0x2f }; static const PRUint8 msg[] = { "Firefox and ThunderBird are awesome!" }; unsigned char sha1[SHA1_LENGTH]; /* SHA-1 hash (160 bits) */ unsigned char sig[2 * MAX_ECKEY_LEN]; SECItem signature, digest; ECPrivateKey *ecdsa_private_key = NULL; ECPublicKey ecdsa_public_key; SECStatus ecdsaStatus = SECSuccess; /* Generates a new EC key pair. The private key is a supplied * random value (in seed) and the public key is the result of * performing a scalar point multiplication of that value with * the curve's base point. */ ecdsaStatus = EC_NewKeyFromSeed(ecparams, &ecdsa_private_key, ecdsa_Known_Seed, sizeof(ecdsa_Known_Seed)); if (ecdsaStatus != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } /* construct public key from private key. */ ecdsa_public_key.ecParams = ecdsa_private_key->ecParams; ecdsa_public_key.publicValue = ecdsa_private_key->publicValue; /* validate public key value */ ecdsaStatus = EC_ValidatePublicKey(&ecdsa_public_key.ecParams, &ecdsa_public_key.publicValue); if (ecdsaStatus != SECSuccess) { goto loser; } /* validate public key value */ ecdsaStatus = EC_ValidatePublicKey(&ecdsa_private_key->ecParams, &ecdsa_private_key->publicValue); if (ecdsaStatus != SECSuccess) { goto loser; } /***************************************************/ /* ECDSA Single-Round Known Answer Signature Test. */ /***************************************************/ ecdsaStatus = SHA1_HashBuf(sha1, msg, sizeof msg); if (ecdsaStatus != SECSuccess) { goto loser; } digest.type = siBuffer; digest.data = sha1; digest.len = SHA1_LENGTH; memset(sig, 0, sizeof sig); signature.type = siBuffer; signature.data = sig; signature.len = sizeof sig; ecdsaStatus = ECDSA_SignDigestWithSeed(ecdsa_private_key, &signature, &digest, ecdsa_Known_Seed, sizeof ecdsa_Known_Seed); if (ecdsaStatus != SECSuccess) { goto loser; } if ((signature.len != knownSignatureLen) || (PORT_Memcmp(signature.data, knownSignature, knownSignatureLen) != 0)) { ecdsaStatus = SECFailure; goto loser; } /******************************************************/ /* ECDSA Single-Round Known Answer Verification Test. */ /******************************************************/ /* Perform ECDSA verification process. */ ecdsaStatus = ECDSA_VerifyDigest(&ecdsa_public_key, &signature, &digest); loser: /* free the memory for the private key arena*/ PORT_FreeArena(ecdsa_private_key->ecParams.arena, PR_FALSE); if (ecdsaStatus != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return (SECFailure); } return (SECSuccess); } static SECStatus freebl_fips_ECDSA_PowerUpSelfTest() { /* ECDSA Known curve nistp256 == ECCCurve_X9_62_PRIME_256V1 params */ static const unsigned char p256_prime[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static const unsigned char p256_a[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC }; static const unsigned char p256_b[] = { 0x5A, 0xC6, 0x35, 0xD8, 0xAA, 0x3A, 0x93, 0xE7, 0xB3, 0xEB, 0xBD, 0x55, 0x76, 0x98, 0x86, 0xBC, 0x65, 0x1D, 0x06, 0xB0, 0xCC, 0x53, 0xB0, 0xF6, 0x3B, 0xCE, 0x3C, 0x3E, 0x27, 0xD2, 0x60, 0x4B }; static const unsigned char p256_base[] = { 0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F, 0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B, 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40, 0x68, 0x37, 0xBF, 0x51, 0xF5 }; static const unsigned char p256_order[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51 }; static const unsigned char p256_encoding[] = { 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07 }; static const ECParams ecdsa_known_P256_Params = { NULL, ec_params_named, /* arena, type */ /* fieldID */ { 256, ec_field_GFp, /* size and type */ { { siBuffer, (unsigned char *)p256_prime, sizeof(p256_prime) } }, /* u.prime */ 0, 0, 0 }, /* curve */ { /* a = curvea b = curveb */ /* curve.a */ { siBuffer, (unsigned char *)p256_a, sizeof(p256_a) }, /* curve.b */ { siBuffer, (unsigned char *)p256_b, sizeof(p256_b) }, /* curve.seed */ { siBuffer, NULL, 0 } }, /* base = 04xy*/ { siBuffer, (unsigned char *)p256_base, sizeof(p256_base) }, /* order */ { siBuffer, (unsigned char *)p256_order, sizeof(p256_order) }, 1, /* cofactor */ /* DEREncoding */ { siBuffer, (unsigned char *)p256_encoding, sizeof(p256_encoding) }, ECCurve_X9_62_PRIME_256V1, /* curveOID */ { siBuffer, (unsigned char *)(p256_encoding) + 2, sizeof(p256_encoding) - 2 }, }; static const PRUint8 ecdsa_known_P256_signature[] = { 0x07, 0xb1, 0xcb, 0x57, 0x20, 0xa7, 0x10, 0xd6, 0x9d, 0x37, 0x4b, 0x1c, 0xdc, 0x35, 0x90, 0xff, 0x1a, 0x2d, 0x98, 0x95, 0x1b, 0x2f, 0xeb, 0x7f, 0xbb, 0x81, 0xca, 0xc0, 0x69, 0x75, 0xea, 0xc5, 0x59, 0x6a, 0x62, 0x49, 0x3d, 0x50, 0xc9, 0xe1, 0x27, 0x3b, 0xff, 0x9b, 0x13, 0x66, 0x67, 0xdd, 0x7d, 0xd1, 0x0d, 0x2d, 0x7c, 0x44, 0x04, 0x1b, 0x16, 0x21, 0x12, 0xc5, 0xcb, 0xbd, 0x9e, 0x75 }; ECParams ecparams; SECStatus rv; /* ECDSA GF(p) prime field curve test */ ecparams = ecdsa_known_P256_Params; rv = freebl_fips_ECDSA_Test(&ecparams, ecdsa_known_P256_signature, sizeof ecdsa_known_P256_signature); if (rv != SECSuccess) { return (SECFailure); } return (SECSuccess); } #endif /* NSS_ENABLE_ECC */ static SECStatus freebl_fips_DSA_PowerUpSelfTest(void) { /* DSA Known P (1024-bits), Q (160-bits), and G (1024-bits) Values. */ static const PRUint8 dsa_P[] = { 0x80, 0xb0, 0xd1, 0x9d, 0x6e, 0xa4, 0xf3, 0x28, 0x9f, 0x24, 0xa9, 0x8a, 0x49, 0xd0, 0x0c, 0x63, 0xe8, 0x59, 0x04, 0xf9, 0x89, 0x4a, 0x5e, 0xc0, 0x6d, 0xd2, 0x67, 0x6b, 0x37, 0x81, 0x83, 0x0c, 0xfe, 0x3a, 0x8a, 0xfd, 0xa0, 0x3b, 0x08, 0x91, 0x1c, 0xcb, 0xb5, 0x63, 0xb0, 0x1c, 0x70, 0xd0, 0xae, 0xe1, 0x60, 0x2e, 0x12, 0xeb, 0x54, 0xc7, 0xcf, 0xc6, 0xcc, 0xae, 0x97, 0x52, 0x32, 0x63, 0xd3, 0xeb, 0x55, 0xea, 0x2f, 0x4c, 0xd5, 0xd7, 0x3f, 0xda, 0xec, 0x49, 0x27, 0x0b, 0x14, 0x56, 0xc5, 0x09, 0xbe, 0x4d, 0x09, 0x15, 0x75, 0x2b, 0xa3, 0x42, 0x0d, 0x03, 0x71, 0xdf, 0x0f, 0xf4, 0x0e, 0xe9, 0x0c, 0x46, 0x93, 0x3d, 0x3f, 0xa6, 0x6c, 0xdb, 0xca, 0xe5, 0xac, 0x96, 0xc8, 0x64, 0x5c, 0xec, 0x4b, 0x35, 0x65, 0xfc, 0xfb, 0x5a, 0x1b, 0x04, 0x1b, 0xa1, 0x0e, 0xfd, 0x88, 0x15 }; static const PRUint8 dsa_Q[] = { 0xad, 0x22, 0x59, 0xdf, 0xe5, 0xec, 0x4c, 0x6e, 0xf9, 0x43, 0xf0, 0x4b, 0x2d, 0x50, 0x51, 0xc6, 0x91, 0x99, 0x8b, 0xcf }; static const PRUint8 dsa_G[] = { 0x78, 0x6e, 0xa9, 0xd8, 0xcd, 0x4a, 0x85, 0xa4, 0x45, 0xb6, 0x6e, 0x5d, 0x21, 0x50, 0x61, 0xf6, 0x5f, 0xdf, 0x5c, 0x7a, 0xde, 0x0d, 0x19, 0xd3, 0xc1, 0x3b, 0x14, 0xcc, 0x8e, 0xed, 0xdb, 0x17, 0xb6, 0xca, 0xba, 0x86, 0xa9, 0xea, 0x51, 0x2d, 0xc1, 0xa9, 0x16, 0xda, 0xf8, 0x7b, 0x59, 0x8a, 0xdf, 0xcb, 0xa4, 0x67, 0x00, 0x44, 0xea, 0x24, 0x73, 0xe5, 0xcb, 0x4b, 0xaf, 0x2a, 0x31, 0x25, 0x22, 0x28, 0x3f, 0x16, 0x10, 0x82, 0xf7, 0xeb, 0x94, 0x0d, 0xdd, 0x09, 0x22, 0x14, 0x08, 0x79, 0xba, 0x11, 0x0b, 0xf1, 0xff, 0x2d, 0x67, 0xac, 0xeb, 0xb6, 0x55, 0x51, 0x69, 0x97, 0xa7, 0x25, 0x6b, 0x9c, 0xa0, 0x9b, 0xd5, 0x08, 0x9b, 0x27, 0x42, 0x1c, 0x7a, 0x69, 0x57, 0xe6, 0x2e, 0xed, 0xa9, 0x5b, 0x25, 0xe8, 0x1f, 0xd2, 0xed, 0x1f, 0xdf, 0xe7, 0x80, 0x17, 0xba, 0x0d, 0x4d, 0x38 }; /* DSA Known Random Values (known random key block is 160-bits) */ /* and (known random signature block is 160-bits). */ static const PRUint8 dsa_known_random_key_block[] = { "Mozilla Rules World!" }; static const PRUint8 dsa_known_random_signature_block[] = { "Random DSA Signature" }; /* DSA Known Digest (160-bits) */ static const PRUint8 dsa_known_digest[] = { "DSA Signature Digest" }; /* DSA Known Signature (320-bits). */ static const PRUint8 dsa_known_signature[] = { 0x25, 0x7c, 0x3a, 0x79, 0x32, 0x45, 0xb7, 0x32, 0x70, 0xca, 0x62, 0x63, 0x2b, 0xf6, 0x29, 0x2c, 0x22, 0x2a, 0x03, 0xce, 0x48, 0x15, 0x11, 0x72, 0x7b, 0x7e, 0xf5, 0x7a, 0xf3, 0x10, 0x3b, 0xde, 0x34, 0xc1, 0x9e, 0xd7, 0x27, 0x9e, 0x77, 0x38 }; /* DSA variables. */ DSAPrivateKey *dsa_private_key; SECStatus dsa_status; SECItem dsa_signature_item; SECItem dsa_digest_item; DSAPublicKey dsa_public_key; PRUint8 dsa_computed_signature[FIPS_DSA_SIGNATURE_LENGTH]; static const PQGParams dsa_pqg = { NULL, { FIPS_DSA_TYPE, (unsigned char *)dsa_P, FIPS_DSA_PRIME_LENGTH }, { FIPS_DSA_TYPE, (unsigned char *)dsa_Q, FIPS_DSA_SUBPRIME_LENGTH }, { FIPS_DSA_TYPE, (unsigned char *)dsa_G, FIPS_DSA_BASE_LENGTH } }; /*******************************************/ /* Generate a DSA public/private key pair. */ /*******************************************/ /* Generate a DSA public/private key pair. */ dsa_status = DSA_NewKeyFromSeed(&dsa_pqg, dsa_known_random_key_block, &dsa_private_key); if (dsa_status != SECSuccess) { PORT_SetError(SEC_ERROR_NO_MEMORY); return (SECFailure); } /* construct public key from private key. */ dsa_public_key.params = dsa_private_key->params; dsa_public_key.publicValue = dsa_private_key->publicValue; /*************************************************/ /* DSA Single-Round Known Answer Signature Test. */ /*************************************************/ dsa_signature_item.data = dsa_computed_signature; dsa_signature_item.len = sizeof dsa_computed_signature; dsa_digest_item.data = (unsigned char *)dsa_known_digest; dsa_digest_item.len = SHA1_LENGTH; /* Perform DSA signature process. */ dsa_status = DSA_SignDigestWithSeed(dsa_private_key, &dsa_signature_item, &dsa_digest_item, dsa_known_random_signature_block); if ((dsa_status != SECSuccess) || (dsa_signature_item.len != FIPS_DSA_SIGNATURE_LENGTH) || (PORT_Memcmp(dsa_computed_signature, dsa_known_signature, FIPS_DSA_SIGNATURE_LENGTH) != 0)) { dsa_status = SECFailure; } else { /****************************************************/ /* DSA Single-Round Known Answer Verification Test. */ /****************************************************/ /* Perform DSA verification process. */ dsa_status = DSA_VerifyDigest(&dsa_public_key, &dsa_signature_item, &dsa_digest_item); } PORT_FreeArena(dsa_private_key->params.arena, PR_TRUE); /* Don't free public key, it uses same arena as private key */ /* Verify DSA signature. */ if (dsa_status != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } return (SECSuccess); } static SECStatus freebl_fips_RNG_PowerUpSelfTest(void) { static const PRUint8 Q[] = { 0x85, 0x89, 0x9c, 0x77, 0xa3, 0x79, 0xff, 0x1a, 0x86, 0x6f, 0x2f, 0x3e, 0x2e, 0xf9, 0x8c, 0x9c, 0x9d, 0xef, 0xeb, 0xed }; static const PRUint8 GENX[] = { 0x65, 0x48, 0xe3, 0xca, 0xac, 0x64, 0x2d, 0xf7, 0x7b, 0xd3, 0x4e, 0x79, 0xc9, 0x7d, 0xa6, 0xa8, 0xa2, 0xc2, 0x1f, 0x8f, 0xe9, 0xb9, 0xd3, 0xa1, 0x3f, 0xf7, 0x0c, 0xcd, 0xa6, 0xca, 0xbf, 0xce, 0x84, 0x0e, 0xb6, 0xf1, 0x0d, 0xbe, 0xa9, 0xa3 }; static const PRUint8 rng_known_DSAX[] = { 0x7a, 0x86, 0xf1, 0x7f, 0xbd, 0x4e, 0x6e, 0xd9, 0x0a, 0x26, 0x21, 0xd0, 0x19, 0xcb, 0x86, 0x73, 0x10, 0x1f, 0x60, 0xd7 }; SECStatus rng_status = SECSuccess; PRUint8 DSAX[FIPS_DSA_SUBPRIME_LENGTH]; /*******************************************/ /* Run the SP 800-90 Health tests */ /*******************************************/ rng_status = PRNGTEST_RunHealthTests(); if (rng_status != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } /*******************************************/ /* Generate DSAX fow given Q. */ /*******************************************/ rng_status = FIPS186Change_ReduceModQForDSA(GENX, Q, DSAX); /* Verify DSAX to perform the RNG integrity check */ if ((rng_status != SECSuccess) || (PORT_Memcmp(DSAX, rng_known_DSAX, (FIPS_DSA_SUBPRIME_LENGTH)) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } return (SECSuccess); } static SECStatus freebl_fipsSoftwareIntegrityTest(const char *libname) { SECStatus rv = SECSuccess; /* make sure that our check file signatures are OK */ if (!BLAPI_VerifySelf(libname)) { rv = SECFailure; } return rv; } #define DO_FREEBL 1 #define DO_REST 2 static SECStatus freebl_fipsPowerUpSelfTest(unsigned int tests) { SECStatus rv; /* * stand alone freebl. Test hash, and rng */ if (tests & DO_FREEBL) { /* SHA-X Power-Up SelfTest(s). */ rv = freebl_fips_SHA_PowerUpSelfTest(); if (rv != SECSuccess) return rv; /* RNG Power-Up SelfTest(s). */ rv = freebl_fips_RNG_PowerUpSelfTest(); if (rv != SECSuccess) return rv; } /* * test the rest of the algorithms not accessed through freebl * standalone */ if (tests & DO_REST) { /* DES3 Power-Up SelfTest(s). */ rv = freebl_fips_DES3_PowerUpSelfTest(); if (rv != SECSuccess) return rv; /* AES Power-Up SelfTest(s) for 128-bit key. */ rv = freebl_fips_AES_PowerUpSelfTest(FIPS_AES_128_KEY_SIZE); if (rv != SECSuccess) return rv; /* AES Power-Up SelfTest(s) for 192-bit key. */ rv = freebl_fips_AES_PowerUpSelfTest(FIPS_AES_192_KEY_SIZE); if (rv != SECSuccess) return rv; /* AES Power-Up SelfTest(s) for 256-bit key. */ rv = freebl_fips_AES_PowerUpSelfTest(FIPS_AES_256_KEY_SIZE); if (rv != SECSuccess) return rv; /* HMAC SHA-X Power-Up SelfTest(s). */ rv = freebl_fips_HMAC_PowerUpSelfTest(); if (rv != SECSuccess) return rv; /* NOTE: RSA can only be tested in full freebl. It requires access to * the locking primitives */ /* RSA Power-Up SelfTest(s). */ rv = freebl_fips_RSA_PowerUpSelfTest(); if (rv != SECSuccess) return rv; /* DSA Power-Up SelfTest(s). */ rv = freebl_fips_DSA_PowerUpSelfTest(); if (rv != SECSuccess) return rv; #ifdef NSS_ENABLE_ECC /* ECDSA Power-Up SelfTest(s). */ rv = freebl_fips_ECDSA_PowerUpSelfTest(); if (rv != SECSuccess) return rv; #endif } /* Passed Power-Up SelfTest(s). */ return (SECSuccess); } /* * state variables. NOTE: freebl has two uses: a standalone use which * provided limitted access to the hash functions throught the NSSLOWHASH_ * interface and an joint use from softoken, using the function pointer * table. The standalone use can operation without nspr or nss-util, while * the joint use requires both to be loaded. Certain functions (like RSA) * needs locking from NSPR, for instance. * * At load time, we need to handle the two uses separately. If nspr and * nss-util are loaded, then we can run all the selftests, but if nspr and * nss-util are not loaded, then we can't run all the selftests, and we need * to prevent the softoken function pointer table from operating until the * libraries are loaded and we try to use them. */ static PRBool self_tests_freebl_ran = PR_FALSE; static PRBool self_tests_ran = PR_FALSE; static PRBool self_tests_freebl_success = PR_FALSE; static PRBool self_tests_success = PR_FALSE; #if defined(DEBUG) static PRBool fips_mode_available = PR_FALSE; #endif /* * accessors for freebl */ PRBool BL_POSTRan(PRBool freebl_only) { SECStatus rv; /* if the freebl self tests didn't run, there is something wrong with * our on load tests */ if (!self_tests_freebl_ran) { return PR_FALSE; } /* if all the self tests have run, we are good */ if (self_tests_ran) { return PR_TRUE; } /* if we only care about the freebl tests, we are good */ if (freebl_only) { return PR_TRUE; } /* run the rest of the self tests */ /* We could get there if freebl was loaded without the rest of the support * libraries, but now we want to use more than just a standalone freebl. * This requires the other libraries to be loaded. * If they are now loaded, Try to run the rest of the selftests, * otherwise fail (disabling access to these algorithms) */ self_tests_ran = PR_TRUE; BL_Init(); /* required by RSA */ RNG_RNGInit(); /* required by RSA */ rv = freebl_fipsPowerUpSelfTest(DO_REST); if (rv == SECSuccess) { self_tests_success = PR_TRUE; } return PR_TRUE; } #include "blname.c" /* * This function is called at dll load time, the code tha makes this * happen is platform specific on defined above. */ static void bl_startup_tests(void) { const char *libraryName; PRBool freebl_only = PR_FALSE; SECStatus rv; PORT_Assert(self_tests_freebl_ran == PR_FALSE); PORT_Assert(self_tests_success == PR_FALSE); PORT_Assert(fips_mode_available == PR_FALSE); self_tests_freebl_ran = PR_TRUE; /* we are running the tests */ self_tests_success = PR_FALSE; /* force it just in case */ self_tests_freebl_success = PR_FALSE; /* force it just in case */ #ifdef FREEBL_NO_DEPEND rv = FREEBL_InitStubs(); if (rv != SECSuccess) { freebl_only = PR_TRUE; } #endif self_tests_freebl_ran = PR_TRUE; /* we are running the tests */ if (!freebl_only) { self_tests_ran = PR_TRUE; /* we're running all the tests */ BL_Init(); /* needs to be called before RSA can be used */ RNG_RNGInit(); } /* always run the post tests */ rv = freebl_fipsPowerUpSelfTest(freebl_only ? DO_FREEBL : DO_FREEBL | DO_REST); if (rv != SECSuccess) { return; } libraryName = getLibName(); rv = freebl_fipsSoftwareIntegrityTest(libraryName); if (rv != SECSuccess) { return; } /* posts are happy, allow the fips module to function now */ self_tests_freebl_success = PR_TRUE; /* we always test the freebl stuff */ if (!freebl_only) { self_tests_success = PR_TRUE; } } /* * this is called from the freebl init entry points that controll access to * all other freebl functions. This prevents freebl from operating if our * power on selftest failed. */ SECStatus BL_FIPSEntryOK(PRBool freebl_only) { #ifdef NSS_NO_INIT_SUPPORT /* this should only be set on platforms that can't handle one of the INIT * schemes. This code allows those platforms to continue to function, * though they don't meet the strict NIST requirements. If NSS_NO_INIT_SUPPORT * is not set, and init support has not been properly enabled, freebl * will always fail because of the test below */ if (!self_tests_freebl_ran) { bl_startup_tests(); } #endif /* if the general self tests succeeded, we're done */ if (self_tests_success) { return SECSuccess; } /* standalone freebl can initialize */ if (freebl_only & self_tests_freebl_success) { return SECSuccess; } PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; }