/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Due to a header conflict between math.h and intrinsics includes with ceil() // in certain configurations under vs9 this include needs to precede // tmmintrin.h. #include "./vp9_rtcd.h" #include #include "vp9/common/x86/convolve.h" #include "vpx_ports/mem.h" #include "vpx_ports/emmintrin_compat.h" // filters only for the 4_h8 convolution DECLARE_ALIGNED(16, static const uint8_t, filt1_4_h8[16]) = { 0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6 }; DECLARE_ALIGNED(16, static const uint8_t, filt2_4_h8[16]) = { 4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10 }; // filters for 8_h8 and 16_h8 DECLARE_ALIGNED(16, static const uint8_t, filt1_global[16]) = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; DECLARE_ALIGNED(16, static const uint8_t, filt2_global[16]) = { 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10 }; DECLARE_ALIGNED(16, static const uint8_t, filt3_global[16]) = { 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12 }; DECLARE_ALIGNED(16, static const uint8_t, filt4_global[16]) = { 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14 }; // These are reused by the avx2 intrinsics. filter8_1dfunction vp9_filter_block1d8_v8_intrin_ssse3; filter8_1dfunction vp9_filter_block1d8_h8_intrin_ssse3; filter8_1dfunction vp9_filter_block1d4_h8_intrin_ssse3; void vp9_filter_block1d4_h8_intrin_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i firstFilters, secondFilters, shuffle1, shuffle2; __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4; __m128i addFilterReg64, filtersReg, srcReg, minReg; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 =_mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits in the filter into the first lane firstFilters = _mm_shufflelo_epi16(filtersReg, 0); // duplicate only the third 16 bit in the filter into the first lane secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu); // duplicate only the seconds 16 bits in the filter into the second lane // firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3 firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u); // duplicate only the forth 16 bits in the filter into the second lane // secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7 secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu); // loading the local filters shuffle1 =_mm_load_si128((__m128i const *)filt1_4_h8); shuffle2 = _mm_load_si128((__m128i const *)filt2_4_h8); for (i = 0; i < output_height; i++) { srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); // filter the source buffer srcRegFilt1= _mm_shuffle_epi8(srcReg, shuffle1); srcRegFilt2= _mm_shuffle_epi8(srcReg, shuffle2); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters); // extract the higher half of the lane srcRegFilt3 = _mm_srli_si128(srcRegFilt1, 8); srcRegFilt4 = _mm_srli_si128(srcRegFilt2, 8); minReg = _mm_min_epi16(srcRegFilt3, srcRegFilt2); // add and saturate all the results together srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); srcRegFilt3 = _mm_max_epi16(srcRegFilt3, srcRegFilt2); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); // shift by 7 bit each 16 bits srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); src_ptr+=src_pixels_per_line; // save only 4 bytes *((int*)&output_ptr[0])= _mm_cvtsi128_si32(srcRegFilt1); output_ptr+=output_pitch; } } void vp9_filter_block1d8_h8_intrin_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i firstFilters, secondFilters, thirdFilters, forthFilters, srcReg; __m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg; __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4; __m128i addFilterReg64, filtersReg, minReg; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits (first and second byte) // across 128 bit register firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 128 bit register secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 128 bit register thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 128 bit register forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); filt1Reg = _mm_load_si128((__m128i const *)filt1_global); filt2Reg = _mm_load_si128((__m128i const *)filt2_global); filt3Reg = _mm_load_si128((__m128i const *)filt3_global); filt4Reg = _mm_load_si128((__m128i const *)filt4_global); for (i = 0; i < output_height; i++) { srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); // filter the source buffer srcRegFilt1= _mm_shuffle_epi8(srcReg, filt1Reg); srcRegFilt2= _mm_shuffle_epi8(srcReg, filt2Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters); // filter the source buffer srcRegFilt3= _mm_shuffle_epi8(srcReg, filt3Reg); srcRegFilt4= _mm_shuffle_epi8(srcReg, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, thirdFilters); srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, forthFilters); // add and saturate all the results together minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); srcRegFilt2= _mm_max_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); // shift by 7 bit each 16 bits srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); src_ptr+=src_pixels_per_line; // save only 8 bytes _mm_storel_epi64((__m128i*)&output_ptr[0], srcRegFilt1); output_ptr+=output_pitch; } } static void vp9_filter_block1d16_h8_intrin_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i addFilterReg64, filtersReg, srcReg1, srcReg2; __m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg; __m128i firstFilters, secondFilters, thirdFilters, forthFilters; __m128i srcRegFilt1_1, srcRegFilt2_1, srcRegFilt2, srcRegFilt3; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits (first and second byte) // across 128 bit register firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 128 bit register secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 128 bit register thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 128 bit register forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); filt1Reg = _mm_load_si128((__m128i const *)filt1_global); filt2Reg = _mm_load_si128((__m128i const *)filt2_global); filt3Reg = _mm_load_si128((__m128i const *)filt3_global); filt4Reg = _mm_load_si128((__m128i const *)filt4_global); for (i = 0; i < output_height; i++) { srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); // filter the source buffer srcRegFilt1_1= _mm_shuffle_epi8(srcReg1, filt1Reg); srcRegFilt2= _mm_shuffle_epi8(srcReg1, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, forthFilters); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2); // filter the source buffer srcRegFilt3= _mm_shuffle_epi8(srcReg1, filt2Reg); srcRegFilt2= _mm_shuffle_epi8(srcReg1, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm_min_epi16(srcRegFilt3, srcRegFilt2)); // reading the next 16 bytes. // (part of it was being read by earlier read) srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + 5)); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm_max_epi16(srcRegFilt3, srcRegFilt2)); // filter the source buffer srcRegFilt2_1= _mm_shuffle_epi8(srcReg2, filt1Reg); srcRegFilt2= _mm_shuffle_epi8(srcReg2, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, forthFilters); // add and saturate the results together srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2); // filter the source buffer srcRegFilt3= _mm_shuffle_epi8(srcReg2, filt2Reg); srcRegFilt2= _mm_shuffle_epi8(srcReg2, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters); // add and saturate the results together srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, _mm_min_epi16(srcRegFilt3, srcRegFilt2)); srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, _mm_max_epi16(srcRegFilt3, srcRegFilt2)); srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, addFilterReg64); srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, addFilterReg64); // shift by 7 bit each 16 bit srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7); srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1); src_ptr+=src_pixels_per_line; // save 16 bytes _mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1); output_ptr+=output_pitch; } } void vp9_filter_block1d8_v8_intrin_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i addFilterReg64, filtersReg, minReg; __m128i firstFilters, secondFilters, thirdFilters, forthFilters; __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt5; __m128i srcReg1, srcReg2, srcReg3, srcReg4, srcReg5, srcReg6, srcReg7; __m128i srcReg8; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits in the filter firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); // duplicate only the second 16 bits in the filter secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits in the filter thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // duplicate only the forth 16 bits in the filter forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); // load the first 7 rows of 8 bytes srcReg1 = _mm_loadl_epi64((const __m128i *)src_ptr); srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch)); srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); srcReg7 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); for (i = 0; i < output_height; i++) { // load the last 8 bytes srcReg8 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7)); // merge the result together srcRegFilt1 = _mm_unpacklo_epi8(srcReg1, srcReg2); srcRegFilt3 = _mm_unpacklo_epi8(srcReg3, srcReg4); // merge the result together srcRegFilt2 = _mm_unpacklo_epi8(srcReg5, srcReg6); srcRegFilt5 = _mm_unpacklo_epi8(srcReg7, srcReg8); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters); srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, forthFilters); // add and saturate the results together minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt5); srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); // shift by 7 bit each 16 bit srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); src_ptr+=src_pitch; // shift down a row srcReg1 = srcReg2; srcReg2 = srcReg3; srcReg3 = srcReg4; srcReg4 = srcReg5; srcReg5 = srcReg6; srcReg6 = srcReg7; srcReg7 = srcReg8; // save only 8 bytes convolve result _mm_storel_epi64((__m128i*)&output_ptr[0], srcRegFilt1); output_ptr+=out_pitch; } } static void vp9_filter_block1d16_v8_intrin_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i addFilterReg64, filtersReg, srcRegFilt1, srcRegFilt3; __m128i firstFilters, secondFilters, thirdFilters, forthFilters; __m128i srcRegFilt5, srcRegFilt6, srcRegFilt7, srcRegFilt8; __m128i srcReg1, srcReg2, srcReg3, srcReg4, srcReg5, srcReg6, srcReg7; __m128i srcReg8; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits in the filter firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); // duplicate only the second 16 bits in the filter secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits in the filter thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // duplicate only the forth 16 bits in the filter forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); // load the first 7 rows of 16 bytes srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr)); srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch)); srcReg3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2)); srcReg4 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3)); srcReg5 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)); srcReg6 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)); srcReg7 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)); for (i = 0; i < output_height; i++) { // load the last 16 bytes srcReg8 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)); // merge the result together srcRegFilt5 = _mm_unpacklo_epi8(srcReg1, srcReg2); srcRegFilt6 = _mm_unpacklo_epi8(srcReg7, srcReg8); srcRegFilt1 = _mm_unpackhi_epi8(srcReg1, srcReg2); srcRegFilt3 = _mm_unpackhi_epi8(srcReg7, srcReg8); // multiply 2 adjacent elements with the filter and add the result srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, firstFilters); srcRegFilt6 = _mm_maddubs_epi16(srcRegFilt6, forthFilters); srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, forthFilters); // add and saturate the results together srcRegFilt5 = _mm_adds_epi16(srcRegFilt5, srcRegFilt6); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3); // merge the result together srcRegFilt3 = _mm_unpacklo_epi8(srcReg3, srcReg4); srcRegFilt6 = _mm_unpackhi_epi8(srcReg3, srcReg4); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters); srcRegFilt6 = _mm_maddubs_epi16(srcRegFilt6, secondFilters); // merge the result together srcRegFilt7 = _mm_unpacklo_epi8(srcReg5, srcReg6); srcRegFilt8 = _mm_unpackhi_epi8(srcReg5, srcReg6); // multiply 2 adjacent elements with the filter and add the result srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7, thirdFilters); srcRegFilt8 = _mm_maddubs_epi16(srcRegFilt8, thirdFilters); // add and saturate the results together srcRegFilt5 = _mm_adds_epi16(srcRegFilt5, _mm_min_epi16(srcRegFilt3, srcRegFilt7)); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, _mm_min_epi16(srcRegFilt6, srcRegFilt8)); // add and saturate the results together srcRegFilt5 = _mm_adds_epi16(srcRegFilt5, _mm_max_epi16(srcRegFilt3, srcRegFilt7)); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, _mm_max_epi16(srcRegFilt6, srcRegFilt8)); srcRegFilt5 = _mm_adds_epi16(srcRegFilt5, addFilterReg64); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); // shift by 7 bit each 16 bit srcRegFilt5 = _mm_srai_epi16(srcRegFilt5, 7); srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt1 = _mm_packus_epi16(srcRegFilt5, srcRegFilt1); src_ptr+=src_pitch; // shift down a row srcReg1 = srcReg2; srcReg2 = srcReg3; srcReg3 = srcReg4; srcReg4 = srcReg5; srcReg5 = srcReg6; srcReg6 = srcReg7; srcReg7 = srcReg8; // save 16 bytes convolve result _mm_store_si128((__m128i*)output_ptr, srcRegFilt1); output_ptr+=out_pitch; } } #if ARCH_X86_64 filter8_1dfunction vp9_filter_block1d16_v8_intrin_ssse3; filter8_1dfunction vp9_filter_block1d16_h8_intrin_ssse3; filter8_1dfunction vp9_filter_block1d8_v8_intrin_ssse3; filter8_1dfunction vp9_filter_block1d8_h8_intrin_ssse3; filter8_1dfunction vp9_filter_block1d4_v8_ssse3; filter8_1dfunction vp9_filter_block1d4_h8_intrin_ssse3; #define vp9_filter_block1d16_v8_ssse3 vp9_filter_block1d16_v8_intrin_ssse3 #define vp9_filter_block1d16_h8_ssse3 vp9_filter_block1d16_h8_intrin_ssse3 #define vp9_filter_block1d8_v8_ssse3 vp9_filter_block1d8_v8_intrin_ssse3 #define vp9_filter_block1d8_h8_ssse3 vp9_filter_block1d8_h8_intrin_ssse3 #define vp9_filter_block1d4_h8_ssse3 vp9_filter_block1d4_h8_intrin_ssse3 #else // ARCH_X86 filter8_1dfunction vp9_filter_block1d16_v8_ssse3; filter8_1dfunction vp9_filter_block1d16_h8_ssse3; filter8_1dfunction vp9_filter_block1d8_v8_ssse3; filter8_1dfunction vp9_filter_block1d8_h8_ssse3; filter8_1dfunction vp9_filter_block1d4_v8_ssse3; filter8_1dfunction vp9_filter_block1d4_h8_ssse3; #endif // ARCH_X86_64 filter8_1dfunction vp9_filter_block1d16_v8_avg_ssse3; filter8_1dfunction vp9_filter_block1d16_h8_avg_ssse3; filter8_1dfunction vp9_filter_block1d8_v8_avg_ssse3; filter8_1dfunction vp9_filter_block1d8_h8_avg_ssse3; filter8_1dfunction vp9_filter_block1d4_v8_avg_ssse3; filter8_1dfunction vp9_filter_block1d4_h8_avg_ssse3; filter8_1dfunction vp9_filter_block1d16_v2_ssse3; filter8_1dfunction vp9_filter_block1d16_h2_ssse3; filter8_1dfunction vp9_filter_block1d8_v2_ssse3; filter8_1dfunction vp9_filter_block1d8_h2_ssse3; filter8_1dfunction vp9_filter_block1d4_v2_ssse3; filter8_1dfunction vp9_filter_block1d4_h2_ssse3; filter8_1dfunction vp9_filter_block1d16_v2_avg_ssse3; filter8_1dfunction vp9_filter_block1d16_h2_avg_ssse3; filter8_1dfunction vp9_filter_block1d8_v2_avg_ssse3; filter8_1dfunction vp9_filter_block1d8_h2_avg_ssse3; filter8_1dfunction vp9_filter_block1d4_v2_avg_ssse3; filter8_1dfunction vp9_filter_block1d4_h2_avg_ssse3; // void vp9_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const int16_t *filter_x, int x_step_q4, // const int16_t *filter_y, int y_step_q4, // int w, int h); // void vp9_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const int16_t *filter_x, int x_step_q4, // const int16_t *filter_y, int y_step_q4, // int w, int h); // void vp9_convolve8_avg_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const int16_t *filter_x, int x_step_q4, // const int16_t *filter_y, int y_step_q4, // int w, int h); // void vp9_convolve8_avg_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const int16_t *filter_x, int x_step_q4, // const int16_t *filter_y, int y_step_q4, // int w, int h); FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , ssse3); FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , ssse3); FUN_CONV_1D(avg_horiz, x_step_q4, filter_x, h, src, avg_, ssse3); FUN_CONV_1D(avg_vert, y_step_q4, filter_y, v, src - src_stride * 3, avg_, ssse3); // void vp9_convolve8_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const int16_t *filter_x, int x_step_q4, // const int16_t *filter_y, int y_step_q4, // int w, int h); // void vp9_convolve8_avg_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const int16_t *filter_x, int x_step_q4, // const int16_t *filter_y, int y_step_q4, // int w, int h); FUN_CONV_2D(, ssse3); FUN_CONV_2D(avg_ , ssse3);