/* Copyright (c) 2014, Cisco Systems, INC Written by XiangMingZhu WeiZhou MinPeng YanWang Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include "main.h" #include "celt/x86/x86cpu.h" void silk_warped_LPC_analysis_filter_FIX_sse4_1( opus_int32 state[], /* I/O State [order + 1] */ opus_int32 res_Q2[], /* O Residual signal [length] */ const opus_int16 coef_Q13[], /* I Coefficients [order] */ const opus_int16 input[], /* I Input signal [length] */ const opus_int16 lambda_Q16, /* I Warping factor */ const opus_int length, /* I Length of input signal */ const opus_int order /* I Filter order (even) */ ) { opus_int n, i; opus_int32 acc_Q11, tmp1, tmp2; /* Order must be even */ silk_assert( ( order & 1 ) == 0 ); if (order == 10) { if (0 == lambda_Q16) { __m128i coef_Q13_3210, coef_Q13_7654; __m128i coef_Q13_0123, coef_Q13_4567; __m128i state_0123, state_4567; __m128i xmm_product1, xmm_product2; __m128i xmm_tempa, xmm_tempb; register opus_int32 sum; register opus_int32 state_8, state_9, state_a; register opus_int64 coef_Q13_8, coef_Q13_9; silk_assert( length > 0 ); coef_Q13_3210 = OP_CVTEPI16_EPI32_M64( &coef_Q13[ 0 ] ); coef_Q13_7654 = OP_CVTEPI16_EPI32_M64( &coef_Q13[ 4 ] ); coef_Q13_0123 = _mm_shuffle_epi32( coef_Q13_3210, _MM_SHUFFLE( 0, 1, 2, 3 ) ); coef_Q13_4567 = _mm_shuffle_epi32( coef_Q13_7654, _MM_SHUFFLE( 0, 1, 2, 3 ) ); coef_Q13_8 = (opus_int64) coef_Q13[ 8 ]; coef_Q13_9 = (opus_int64) coef_Q13[ 9 ]; state_0123 = _mm_loadu_si128( (__m128i *)(&state[ 0 ] ) ); state_4567 = _mm_loadu_si128( (__m128i *)(&state[ 4 ] ) ); state_0123 = _mm_shuffle_epi32( state_0123, _MM_SHUFFLE( 0, 1, 2, 3 ) ); state_4567 = _mm_shuffle_epi32( state_4567, _MM_SHUFFLE( 0, 1, 2, 3 ) ); state_8 = state[ 8 ]; state_9 = state[ 9 ]; state_a = 0; for( n = 0; n < length; n++ ) { xmm_product1 = _mm_mul_epi32( coef_Q13_0123, state_0123 ); /* 64-bit multiply, only 2 pairs */ xmm_product2 = _mm_mul_epi32( coef_Q13_4567, state_4567 ); xmm_tempa = _mm_shuffle_epi32( state_0123, _MM_SHUFFLE( 0, 1, 2, 3 ) ); xmm_tempb = _mm_shuffle_epi32( state_4567, _MM_SHUFFLE( 0, 1, 2, 3 ) ); xmm_product1 = _mm_srli_epi64( xmm_product1, 16 ); /* >> 16, zero extending works */ xmm_product2 = _mm_srli_epi64( xmm_product2, 16 ); xmm_tempa = _mm_mul_epi32( coef_Q13_3210, xmm_tempa ); xmm_tempb = _mm_mul_epi32( coef_Q13_7654, xmm_tempb ); xmm_tempa = _mm_srli_epi64( xmm_tempa, 16 ); xmm_tempb = _mm_srli_epi64( xmm_tempb, 16 ); xmm_tempa = _mm_add_epi32( xmm_tempa, xmm_product1 ); xmm_tempb = _mm_add_epi32( xmm_tempb, xmm_product2 ); xmm_tempa = _mm_add_epi32( xmm_tempa, xmm_tempb ); sum = (coef_Q13_8 * state_8) >> 16; sum += (coef_Q13_9 * state_9) >> 16; xmm_tempa = _mm_add_epi32( xmm_tempa, _mm_shuffle_epi32( xmm_tempa, _MM_SHUFFLE( 0, 0, 0, 2 ) ) ); sum += _mm_cvtsi128_si32( xmm_tempa); res_Q2[ n ] = silk_LSHIFT( (opus_int32)input[ n ], 2 ) - silk_RSHIFT_ROUND( ( 5 + sum ), 9); /* move right */ state_a = state_9; state_9 = state_8; state_8 = _mm_cvtsi128_si32( state_4567 ); state_4567 = _mm_alignr_epi8( state_0123, state_4567, 4 ); state_0123 = _mm_alignr_epi8( _mm_cvtsi32_si128( silk_LSHIFT( input[ n ], 14 ) ), state_0123, 4 ); } _mm_storeu_si128( (__m128i *)( &state[ 0 ] ), _mm_shuffle_epi32( state_0123, _MM_SHUFFLE( 0, 1, 2, 3 ) ) ); _mm_storeu_si128( (__m128i *)( &state[ 4 ] ), _mm_shuffle_epi32( state_4567, _MM_SHUFFLE( 0, 1, 2, 3 ) ) ); state[ 8 ] = state_8; state[ 9 ] = state_9; state[ 10 ] = state_a; return; } } for( n = 0; n < length; n++ ) { /* Output of lowpass section */ tmp2 = silk_SMLAWB( state[ 0 ], state[ 1 ], lambda_Q16 ); state[ 0 ] = silk_LSHIFT( input[ n ], 14 ); /* Output of allpass section */ tmp1 = silk_SMLAWB( state[ 1 ], state[ 2 ] - tmp2, lambda_Q16 ); state[ 1 ] = tmp2; acc_Q11 = silk_RSHIFT( order, 1 ); acc_Q11 = silk_SMLAWB( acc_Q11, tmp2, coef_Q13[ 0 ] ); /* Loop over allpass sections */ for( i = 2; i < order; i += 2 ) { /* Output of allpass section */ tmp2 = silk_SMLAWB( state[ i ], state[ i + 1 ] - tmp1, lambda_Q16 ); state[ i ] = tmp1; acc_Q11 = silk_SMLAWB( acc_Q11, tmp1, coef_Q13[ i - 1 ] ); /* Output of allpass section */ tmp1 = silk_SMLAWB( state[ i + 1 ], state[ i + 2 ] - tmp2, lambda_Q16 ); state[ i + 1 ] = tmp2; acc_Q11 = silk_SMLAWB( acc_Q11, tmp2, coef_Q13[ i ] ); } state[ order ] = tmp1; acc_Q11 = silk_SMLAWB( acc_Q11, tmp1, coef_Q13[ order - 1 ] ); res_Q2[ n ] = silk_LSHIFT( (opus_int32)input[ n ], 2 ) - silk_RSHIFT_ROUND( acc_Q11, 9 ); } }