/* -*- indent-tabs-mode: nil; js-indent-level: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /** File Name: 11.5.3.js ECMA Section: 11.5.3 Applying the % operator Description: The binary % operator is said to yield the remainder of its operands from an implied division; the left operand is the dividend and the right operand is the divisor. In C and C++, the remainder operator accepts only integral operands, but in ECMAScript, it also accepts floating-point operands. The result of a floating-point remainder operation as computed by the % operator is not the same as the "remainder" operation defined by IEEE 754. The IEEE 754 "remainder" operation computes the remainder from a rounding division, not a truncating division, and so its behavior is not analogous to that of the usual integer remainder operator. Instead the ECMAScript language defines % on floating-point operations to behave in a manner analogous to that of the Java integer remainder operator; this may be compared with the C library function fmod. The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic: If either operand is NaN, the result is NaN. The sign of the result equals the sign of the dividend. If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN. If the dividend is finite and the divisor is an infinity, the result equals the dividend. If the dividend is a zero and the divisor is finite, the result is the same as the dividend. In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as possible without exceeding the magnitude of the true mathematical quotient of n and d. Author: christine@netscape.com Date: 12 november 1997 */ var SECTION = "11.5.3"; var VERSION = "ECMA_1"; var BUGNUMBER="111202"; startTest(); writeHeaderToLog( SECTION + " Applying the % operator"); // if either operand is NaN, the result is NaN. new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN ); new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 ); new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN ); // If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN. // dividend is an infinity new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE ); // divisor is 0 new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 ); new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 ); new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 ); new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 ); new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 ); new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 ); new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 ); new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 ); new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 ); new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 ); new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 ); new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 ); // If the dividend is finite and the divisor is an infinity, the result equals the dividend. new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY ); new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY ); new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY ); new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY ); new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY ); new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY ); // If the dividend is a zero and the divisor is finite, the result is the same as the dividend. new TestCase( SECTION, "0 % 1", 0, 0 % 1 ); new TestCase( SECTION, "0 % -1", -0, 0 % -1 ); new TestCase( SECTION, "-0 % 1", -0, -0 % 1 ); new TestCase( SECTION, "-0 % -1", 0, -0 % -1 ); // In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r // from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that // is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as // possible without exceeding the magnitude of the true mathematical quotient of n and d. test();