/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef jit_arm64_LIR_arm64_h #define jit_arm64_LIR_arm64_h namespace js { namespace jit { class LUnboxBase : public LInstructionHelper<1, 1, 0> { public: LUnboxBase(const LAllocation& input) { setOperand(0, input); } static const size_t Input = 0; MUnbox* mir() const { return mir_->toUnbox(); } }; class LUnbox : public LUnboxBase { public: LIR_HEADER(Unbox); LUnbox(const LAllocation& input) : LUnboxBase(input) { } const char* extraName() const { return StringFromMIRType(mir()->type()); } }; class LUnboxFloatingPoint : public LUnboxBase { MIRType type_; public: LIR_HEADER(UnboxFloatingPoint); LUnboxFloatingPoint(const LAllocation& input, MIRType type) : LUnboxBase(input), type_(type) { } MIRType type() const { return type_; } const char* extraName() const { return StringFromMIRType(type_); } }; // Convert a 32-bit unsigned integer to a double. class LWasmUint32ToDouble : public LInstructionHelper<1, 1, 0> { public: LIR_HEADER(WasmUint32ToDouble) LWasmUint32ToDouble(const LAllocation& input) { setOperand(0, input); } }; // Convert a 32-bit unsigned integer to a float32. class LWasmUint32ToFloat32 : public LInstructionHelper<1, 1, 0> { public: LIR_HEADER(WasmUint32ToFloat32) LWasmUint32ToFloat32(const LAllocation& input) { setOperand(0, input); } }; class LDivI : public LBinaryMath<1> { public: LIR_HEADER(DivI); LDivI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp) { setOperand(0, lhs); setOperand(1, rhs); setTemp(0, temp); } MDiv* mir() const { return mir_->toDiv(); } }; // LSoftDivI is a software divide for ARM cores that don't support a hardware // divide instruction. // // It is implemented as a proper C function so it trashes r0, r1, r2 and r3. // The call also trashes lr, and has the ability to trash ip. The function also // takes two arguments (dividend in r0, divisor in r1). The LInstruction gets // encoded such that the divisor and dividend are passed in their apropriate // registers and end their life at the start of the instruction by the use of // useFixedAtStart. The result is returned in r0 and the other three registers // that can be trashed are marked as temps. For the time being, the link // register is not marked as trashed because we never allocate to the link // register. The FP registers are not trashed. class LSoftDivI : public LBinaryMath<3> { public: LIR_HEADER(SoftDivI); LSoftDivI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp1, const LDefinition& temp2, const LDefinition& temp3) { setOperand(0, lhs); setOperand(1, rhs); setTemp(0, temp1); setTemp(1, temp2); setTemp(2, temp3); } MDiv* mir() const { return mir_->toDiv(); } }; class LDivPowTwoI : public LInstructionHelper<1, 1, 0> { const int32_t shift_; public: LIR_HEADER(DivPowTwoI) LDivPowTwoI(const LAllocation& lhs, int32_t shift) : shift_(shift) { setOperand(0, lhs); } const LAllocation* numerator() { return getOperand(0); } int32_t shift() { return shift_; } MDiv* mir() const { return mir_->toDiv(); } }; class LModI : public LBinaryMath<1> { public: LIR_HEADER(ModI); LModI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& callTemp) { setOperand(0, lhs); setOperand(1, rhs); setTemp(0, callTemp); } const LDefinition* callTemp() { return getTemp(0); } MMod* mir() const { return mir_->toMod(); } }; class LSoftModI : public LBinaryMath<4> { public: LIR_HEADER(SoftModI); LSoftModI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp1, const LDefinition& temp2, const LDefinition& temp3, const LDefinition& callTemp) { setOperand(0, lhs); setOperand(1, rhs); setTemp(0, temp1); setTemp(1, temp2); setTemp(2, temp3); setTemp(3, callTemp); } const LDefinition* callTemp() { return getTemp(3); } MMod* mir() const { return mir_->toMod(); } }; class LModPowTwoI : public LInstructionHelper<1, 1, 0> { const int32_t shift_; public: LIR_HEADER(ModPowTwoI); int32_t shift() { return shift_; } LModPowTwoI(const LAllocation& lhs, int32_t shift) : shift_(shift) { setOperand(0, lhs); } MMod* mir() const { return mir_->toMod(); } }; class LModMaskI : public LInstructionHelper<1, 1, 1> { const int32_t shift_; public: LIR_HEADER(ModMaskI); LModMaskI(const LAllocation& lhs, const LDefinition& temp1, int32_t shift) : shift_(shift) { setOperand(0, lhs); setTemp(0, temp1); } int32_t shift() const { return shift_; } MMod* mir() const { return mir_->toMod(); } }; // Takes a tableswitch with an integer to decide class LTableSwitch : public LInstructionHelper<0, 1, 1> { public: LIR_HEADER(TableSwitch); LTableSwitch(const LAllocation& in, const LDefinition& inputCopy, MTableSwitch* ins) { setOperand(0, in); setTemp(0, inputCopy); setMir(ins); } MTableSwitch* mir() const { return mir_->toTableSwitch(); } const LAllocation* index() { return getOperand(0); } const LDefinition* tempInt() { return getTemp(0); } // This is added to share the same CodeGenerator prefixes. const LDefinition* tempPointer() { return nullptr; } }; // Takes a tableswitch with an integer to decide class LTableSwitchV : public LInstructionHelper<0, BOX_PIECES, 2> { public: LIR_HEADER(TableSwitchV); LTableSwitchV(const LBoxAllocation& input, const LDefinition& inputCopy, const LDefinition& floatCopy, MTableSwitch* ins) { setBoxOperand(InputValue, input); setTemp(0, inputCopy); setTemp(1, floatCopy); setMir(ins); } MTableSwitch* mir() const { return mir_->toTableSwitch(); } static const size_t InputValue = 0; const LDefinition* tempInt() { return getTemp(0); } const LDefinition* tempFloat() { return getTemp(1); } const LDefinition* tempPointer() { return nullptr; } }; class LGuardShape : public LInstructionHelper<0, 1, 1> { public: LIR_HEADER(GuardShape); LGuardShape(const LAllocation& in, const LDefinition& temp) { setOperand(0, in); setTemp(0, temp); } const MGuardShape* mir() const { return mir_->toGuardShape(); } const LDefinition* tempInt() { return getTemp(0); } }; class LGuardObjectGroup : public LInstructionHelper<0, 1, 1> { public: LIR_HEADER(GuardObjectGroup); LGuardObjectGroup(const LAllocation& in, const LDefinition& temp) { setOperand(0, in); setTemp(0, temp); } const MGuardObjectGroup* mir() const { return mir_->toGuardObjectGroup(); } const LDefinition* tempInt() { return getTemp(0); } }; class LMulI : public LBinaryMath<0> { public: LIR_HEADER(MulI); MMul* mir() { return mir_->toMul(); } }; class LUDiv : public LBinaryMath<0> { public: LIR_HEADER(UDiv); MDiv* mir() { return mir_->toDiv(); } }; class LUMod : public LBinaryMath<0> { public: LIR_HEADER(UMod); MMod* mir() { return mir_->toMod(); } }; // This class performs a simple x86 'div', yielding either a quotient or remainder depending on // whether this instruction is defined to output eax (quotient) or edx (remainder). class LSoftUDivOrMod : public LBinaryMath<3> { public: LIR_HEADER(SoftUDivOrMod); LSoftUDivOrMod(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp1, const LDefinition& temp2, const LDefinition& temp3) { setOperand(0, lhs); setOperand(1, rhs); setTemp(0, temp1); setTemp(1, temp2); setTemp(2, temp3); } }; } // namespace jit } // namespace js #endif /* jit_arm64_LIR_arm64_h */