/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jit/LIR.h" #include #include "jsprf.h" #include "jit/JitSpewer.h" #include "jit/MIR.h" #include "jit/MIRGenerator.h" using namespace js; using namespace js::jit; LIRGraph::LIRGraph(MIRGraph* mir) : blocks_(), constantPool_(mir->alloc()), constantPoolMap_(mir->alloc()), safepoints_(mir->alloc()), nonCallSafepoints_(mir->alloc()), numVirtualRegisters_(0), numInstructions_(1), // First id is 1. localSlotCount_(0), argumentSlotCount_(0), entrySnapshot_(nullptr), mir_(*mir) { } bool LIRGraph::addConstantToPool(const Value& v, uint32_t* index) { MOZ_ASSERT(constantPoolMap_.initialized()); ConstantPoolMap::AddPtr p = constantPoolMap_.lookupForAdd(v); if (p) { *index = p->value(); return true; } *index = constantPool_.length(); return constantPool_.append(v) && constantPoolMap_.add(p, v, *index); } bool LIRGraph::noteNeedsSafepoint(LInstruction* ins) { // Instructions with safepoints must be in linear order. MOZ_ASSERT_IF(!safepoints_.empty(), safepoints_.back()->id() < ins->id()); if (!ins->isCall() && !nonCallSafepoints_.append(ins)) return false; return safepoints_.append(ins); } void LIRGraph::dump(GenericPrinter& out) { for (size_t i = 0; i < numBlocks(); i++) { getBlock(i)->dump(out); out.printf("\n"); } } void LIRGraph::dump() { Fprinter out(stderr); dump(out); out.finish(); } LBlock::LBlock(MBasicBlock* from) : block_(from), phis_(), entryMoveGroup_(nullptr), exitMoveGroup_(nullptr) { from->assignLir(this); } bool LBlock::init(TempAllocator& alloc) { // Count the number of LPhis we'll need. size_t numLPhis = 0; for (MPhiIterator i(block_->phisBegin()), e(block_->phisEnd()); i != e; ++i) { MPhi* phi = *i; switch (phi->type()) { case MIRType::Value: numLPhis += BOX_PIECES; break; case MIRType::Int64: numLPhis += INT64_PIECES; break; default: numLPhis += 1; break; } } // Allocate space for the LPhis. if (!phis_.init(alloc, numLPhis)) return false; // For each MIR phi, set up LIR phis as appropriate. We'll fill in their // operands on each incoming edge, and set their definitions at the start of // their defining block. size_t phiIndex = 0; size_t numPreds = block_->numPredecessors(); for (MPhiIterator i(block_->phisBegin()), e(block_->phisEnd()); i != e; ++i) { MPhi* phi = *i; MOZ_ASSERT(phi->numOperands() == numPreds); int numPhis; switch (phi->type()) { case MIRType::Value: numPhis = BOX_PIECES; break; case MIRType::Int64: numPhis = INT64_PIECES; break; default: numPhis = 1; break; } for (int i = 0; i < numPhis; i++) { LAllocation* inputs = alloc.allocateArray(numPreds); if (!inputs) return false; void* addr = &phis_[phiIndex++]; LPhi* lphi = new (addr) LPhi(phi, inputs); lphi->setBlock(this); } } return true; } const LInstruction* LBlock::firstInstructionWithId() const { for (LInstructionIterator i(instructions_.begin()); i != instructions_.end(); ++i) { if (i->id()) return *i; } return 0; } LMoveGroup* LBlock::getEntryMoveGroup(TempAllocator& alloc) { if (entryMoveGroup_) return entryMoveGroup_; entryMoveGroup_ = LMoveGroup::New(alloc); insertBefore(*begin(), entryMoveGroup_); return entryMoveGroup_; } LMoveGroup* LBlock::getExitMoveGroup(TempAllocator& alloc) { if (exitMoveGroup_) return exitMoveGroup_; exitMoveGroup_ = LMoveGroup::New(alloc); insertBefore(*rbegin(), exitMoveGroup_); return exitMoveGroup_; } void LBlock::dump(GenericPrinter& out) { out.printf("block%u:\n", mir()->id()); for (size_t i = 0; i < numPhis(); ++i) { getPhi(i)->dump(out); out.printf("\n"); } for (LInstructionIterator iter = begin(); iter != end(); iter++) { iter->dump(out); out.printf("\n"); } } void LBlock::dump() { Fprinter out(stderr); dump(out); out.finish(); } static size_t TotalOperandCount(LRecoverInfo* recoverInfo) { size_t accum = 0; for (LRecoverInfo::OperandIter it(recoverInfo); !it; ++it) { if (!it->isRecoveredOnBailout()) accum++; } return accum; } LRecoverInfo::LRecoverInfo(TempAllocator& alloc) : instructions_(alloc), recoverOffset_(INVALID_RECOVER_OFFSET) { } LRecoverInfo* LRecoverInfo::New(MIRGenerator* gen, MResumePoint* mir) { LRecoverInfo* recoverInfo = new(gen->alloc()) LRecoverInfo(gen->alloc()); if (!recoverInfo || !recoverInfo->init(mir)) return nullptr; JitSpew(JitSpew_IonSnapshots, "Generating LIR recover info %p from MIR (%p)", (void*)recoverInfo, (void*)mir); return recoverInfo; } bool LRecoverInfo::appendOperands(MNode* ins) { for (size_t i = 0, end = ins->numOperands(); i < end; i++) { MDefinition* def = ins->getOperand(i); // As there is no cycle in the data-flow (without MPhi), checking for // isInWorkList implies that the definition is already in the // instruction vector, and not processed by a caller of the current // function. if (def->isRecoveredOnBailout() && !def->isInWorklist()) { if (!appendDefinition(def)) return false; } } return true; } bool LRecoverInfo::appendDefinition(MDefinition* def) { MOZ_ASSERT(def->isRecoveredOnBailout()); def->setInWorklist(); if (!appendOperands(def)) return false; return instructions_.append(def); } bool LRecoverInfo::appendResumePoint(MResumePoint* rp) { // Stores should be recovered first. for (auto iter(rp->storesBegin()), end(rp->storesEnd()); iter != end; ++iter) { if (!appendDefinition(iter->operand)) return false; } if (rp->caller() && !appendResumePoint(rp->caller())) return false; if (!appendOperands(rp)) return false; return instructions_.append(rp); } bool LRecoverInfo::init(MResumePoint* rp) { // Sort operations in the order in which we need to restore the stack. This // implies that outer frames, as well as operations needed to recover the // current frame, are located before the current frame. The inner-most // resume point should be the last element in the list. if (!appendResumePoint(rp)) return false; // Remove temporary flags from all definitions. for (MNode** it = begin(); it != end(); it++) { if (!(*it)->isDefinition()) continue; (*it)->toDefinition()->setNotInWorklist(); } MOZ_ASSERT(mir() == rp); return true; } LSnapshot::LSnapshot(LRecoverInfo* recoverInfo, BailoutKind kind) : numSlots_(TotalOperandCount(recoverInfo) * BOX_PIECES), slots_(nullptr), recoverInfo_(recoverInfo), snapshotOffset_(INVALID_SNAPSHOT_OFFSET), bailoutId_(INVALID_BAILOUT_ID), bailoutKind_(kind) { } bool LSnapshot::init(MIRGenerator* gen) { slots_ = gen->allocate(numSlots_); return !!slots_; } LSnapshot* LSnapshot::New(MIRGenerator* gen, LRecoverInfo* recover, BailoutKind kind) { LSnapshot* snapshot = new(gen->alloc()) LSnapshot(recover, kind); if (!snapshot || !snapshot->init(gen)) return nullptr; JitSpew(JitSpew_IonSnapshots, "Generating LIR snapshot %p from recover (%p)", (void*)snapshot, (void*)recover); return snapshot; } void LSnapshot::rewriteRecoveredInput(LUse input) { // Mark any operands to this snapshot with the same value as input as being // equal to the instruction's result. for (size_t i = 0; i < numEntries(); i++) { if (getEntry(i)->isUse() && getEntry(i)->toUse()->virtualRegister() == input.virtualRegister()) setEntry(i, LUse(input.virtualRegister(), LUse::RECOVERED_INPUT)); } } void LNode::printName(GenericPrinter& out, Opcode op) { static const char * const names[] = { #define LIROP(x) #x, LIR_OPCODE_LIST(LIROP) #undef LIROP }; const char* name = names[op]; size_t len = strlen(name); for (size_t i = 0; i < len; i++) out.printf("%c", tolower(name[i])); } void LNode::printName(GenericPrinter& out) { printName(out, op()); } bool LAllocation::aliases(const LAllocation& other) const { if (isFloatReg() && other.isFloatReg()) return toFloatReg()->reg().aliases(other.toFloatReg()->reg()); return *this == other; } static const char* typeName(LDefinition::Type type) { switch (type) { case LDefinition::GENERAL: return "g"; case LDefinition::INT32: return "i"; case LDefinition::OBJECT: return "o"; case LDefinition::SLOTS: return "s"; case LDefinition::FLOAT32: return "f"; case LDefinition::DOUBLE: return "d"; case LDefinition::SIMD128INT: return "simd128int"; case LDefinition::SIMD128FLOAT: return "simd128float"; case LDefinition::SINCOS: return "sincos"; #ifdef JS_NUNBOX32 case LDefinition::TYPE: return "t"; case LDefinition::PAYLOAD: return "p"; #else case LDefinition::BOX: return "x"; #endif } MOZ_CRASH("Invalid type"); } UniqueChars LDefinition::toString() const { AutoEnterOOMUnsafeRegion oomUnsafe; char* buf; if (isBogusTemp()) { buf = JS_smprintf("bogus"); } else { buf = JS_smprintf("v%u<%s>", virtualRegister(), typeName(type())); if (buf) { if (policy() == LDefinition::FIXED) buf = JS_sprintf_append(buf, ":%s", output()->toString().get()); else if (policy() == LDefinition::MUST_REUSE_INPUT) buf = JS_sprintf_append(buf, ":tied(%u)", getReusedInput()); } } if (!buf) oomUnsafe.crash("LDefinition::toString()"); return UniqueChars(buf); } static char* PrintUse(const LUse* use) { switch (use->policy()) { case LUse::REGISTER: return JS_smprintf("v%d:r", use->virtualRegister()); case LUse::FIXED: return JS_smprintf("v%d:%s", use->virtualRegister(), AnyRegister::FromCode(use->registerCode()).name()); case LUse::ANY: return JS_smprintf("v%d:r?", use->virtualRegister()); case LUse::KEEPALIVE: return JS_smprintf("v%d:*", use->virtualRegister()); case LUse::RECOVERED_INPUT: return JS_smprintf("v%d:**", use->virtualRegister()); default: MOZ_CRASH("invalid use policy"); } } UniqueChars LAllocation::toString() const { AutoEnterOOMUnsafeRegion oomUnsafe; char* buf; if (isBogus()) { buf = JS_smprintf("bogus"); } else { switch (kind()) { case LAllocation::CONSTANT_VALUE: case LAllocation::CONSTANT_INDEX: buf = JS_smprintf("c"); break; case LAllocation::GPR: buf = JS_smprintf("%s", toGeneralReg()->reg().name()); break; case LAllocation::FPU: buf = JS_smprintf("%s", toFloatReg()->reg().name()); break; case LAllocation::STACK_SLOT: buf = JS_smprintf("stack:%d", toStackSlot()->slot()); break; case LAllocation::ARGUMENT_SLOT: buf = JS_smprintf("arg:%d", toArgument()->index()); break; case LAllocation::USE: buf = PrintUse(toUse()); break; default: MOZ_CRASH("what?"); } } if (!buf) oomUnsafe.crash("LAllocation::toString()"); return UniqueChars(buf); } void LAllocation::dump() const { fprintf(stderr, "%s\n", toString().get()); } void LDefinition::dump() const { fprintf(stderr, "%s\n", toString().get()); } void LNode::printOperands(GenericPrinter& out) { for (size_t i = 0, e = numOperands(); i < e; i++) { out.printf(" (%s)", getOperand(i)->toString().get()); if (i != numOperands() - 1) out.printf(","); } } void LInstruction::assignSnapshot(LSnapshot* snapshot) { MOZ_ASSERT(!snapshot_); snapshot_ = snapshot; #ifdef JS_JITSPEW if (JitSpewEnabled(JitSpew_IonSnapshots)) { JitSpewHeader(JitSpew_IonSnapshots); Fprinter& out = JitSpewPrinter(); out.printf("Assigning snapshot %p to instruction %p (", (void*)snapshot, (void*)this); printName(out); out.printf(")\n"); } #endif } void LNode::dump(GenericPrinter& out) { if (numDefs() != 0) { out.printf("{"); for (size_t i = 0; i < numDefs(); i++) { out.printf("%s", getDef(i)->toString().get()); if (i != numDefs() - 1) out.printf(", "); } out.printf("} <- "); } printName(out); printOperands(out); if (numTemps()) { out.printf(" t=("); for (size_t i = 0; i < numTemps(); i++) { out.printf("%s", getTemp(i)->toString().get()); if (i != numTemps() - 1) out.printf(", "); } out.printf(")"); } if (numSuccessors()) { out.printf(" s=("); for (size_t i = 0; i < numSuccessors(); i++) { out.printf("block%u", getSuccessor(i)->id()); if (i != numSuccessors() - 1) out.printf(", "); } out.printf(")"); } } void LNode::dump() { Fprinter out(stderr); dump(out); out.printf("\n"); out.finish(); } void LInstruction::initSafepoint(TempAllocator& alloc) { MOZ_ASSERT(!safepoint_); safepoint_ = new(alloc) LSafepoint(alloc); MOZ_ASSERT(safepoint_); } bool LMoveGroup::add(LAllocation from, LAllocation to, LDefinition::Type type) { #ifdef DEBUG MOZ_ASSERT(from != to); for (size_t i = 0; i < moves_.length(); i++) MOZ_ASSERT(to != moves_[i].to()); // Check that SIMD moves are aligned according to ABI requirements. if (LDefinition(type).isSimdType()) { MOZ_ASSERT(from.isMemory() || from.isFloatReg()); if (from.isMemory()) { if (from.isArgument()) MOZ_ASSERT(from.toArgument()->index() % SimdMemoryAlignment == 0); else MOZ_ASSERT(from.toStackSlot()->slot() % SimdMemoryAlignment == 0); } MOZ_ASSERT(to.isMemory() || to.isFloatReg()); if (to.isMemory()) { if (to.isArgument()) MOZ_ASSERT(to.toArgument()->index() % SimdMemoryAlignment == 0); else MOZ_ASSERT(to.toStackSlot()->slot() % SimdMemoryAlignment == 0); } } #endif return moves_.append(LMove(from, to, type)); } bool LMoveGroup::addAfter(LAllocation from, LAllocation to, LDefinition::Type type) { // Transform the operands to this move so that performing the result // simultaneously with existing moves in the group will have the same // effect as if the original move took place after the existing moves. for (size_t i = 0; i < moves_.length(); i++) { if (moves_[i].to() == from) { from = moves_[i].from(); break; } } if (from == to) return true; for (size_t i = 0; i < moves_.length(); i++) { if (to == moves_[i].to()) { moves_[i] = LMove(from, to, type); return true; } } return add(from, to, type); } void LMoveGroup::printOperands(GenericPrinter& out) { for (size_t i = 0; i < numMoves(); i++) { const LMove& move = getMove(i); out.printf(" [%s -> %s", move.from().toString().get(), move.to().toString().get()); #ifdef DEBUG out.printf(", %s", typeName(move.type())); #endif out.printf("]"); if (i != numMoves() - 1) out.printf(","); } }