/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: */ // Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "irregexp/RegExpEngine.h" #include "irregexp/NativeRegExpMacroAssembler.h" #include "irregexp/RegExpMacroAssembler.h" #include "jit/ExecutableAllocator.h" #include "jit/JitCommon.h" using namespace js; using namespace js::irregexp; using mozilla::ArrayLength; using mozilla::DebugOnly; using mozilla::Maybe; #define DEFINE_ACCEPT(Type) \ void Type##Node::Accept(NodeVisitor* visitor) { \ visitor->Visit##Type(this); \ } FOR_EACH_NODE_TYPE(DEFINE_ACCEPT) #undef DEFINE_ACCEPT void LoopChoiceNode::Accept(NodeVisitor* visitor) { visitor->VisitLoopChoice(this); } static const int kMaxLookaheadForBoyerMoore = 8; RegExpNode::RegExpNode(LifoAlloc* alloc) : replacement_(nullptr), trace_count_(0), alloc_(alloc) { bm_info_[0] = bm_info_[1] = nullptr; } // ------------------------------------------------------------------- // CharacterRange // The '2' variant has inclusive from and exclusive to. // This covers \s as defined in ECMA-262 5.1, 15.10.2.12, // which include WhiteSpace (7.2) or LineTerminator (7.3) values. static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1, 0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B, 0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001, 0xFEFF, 0xFF00, 0x10000 }; static const int kSpaceRangeCount = ArrayLength(kSpaceRanges); static const int kSpaceAndSurrogateRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1, 0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B, 0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001, unicode::LeadSurrogateMin, unicode::TrailSurrogateMax + 1, 0xFEFF, 0xFF00, 0x10000 }; static const int kSpaceAndSurrogateRangeCount = ArrayLength(kSpaceAndSurrogateRanges); static const int kWordRanges[] = { '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 }; static const int kWordRangeCount = ArrayLength(kWordRanges); static const int kIgnoreCaseWordRanges[] = { '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x017F, 0x017F + 1, 0x212A, 0x212A + 1, 0x10000 }; static const int kIgnoreCaseWordCount = ArrayLength(kIgnoreCaseWordRanges); static const int kWordAndSurrogateRanges[] = { '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, unicode::LeadSurrogateMin, unicode::TrailSurrogateMax + 1, 0x10000 }; static const int kWordAndSurrogateRangeCount = ArrayLength(kWordAndSurrogateRanges); static const int kNegatedIgnoreCaseWordAndSurrogateRanges[] = { 0, '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x017F, 0x017F + 1, 0x212A, 0x212A + 1, unicode::LeadSurrogateMin, unicode::TrailSurrogateMax + 1, 0x10000, 0x10000 }; static const int kNegatedIgnoreCaseWordAndSurrogateRangeCount = ArrayLength(kNegatedIgnoreCaseWordAndSurrogateRanges); static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 }; static const int kDigitRangeCount = ArrayLength(kDigitRanges); static const int kDigitAndSurrogateRanges[] = { '0', '9' + 1, unicode::LeadSurrogateMin, unicode::TrailSurrogateMax + 1, 0x10000 }; static const int kDigitAndSurrogateRangeCount = ArrayLength(kDigitAndSurrogateRanges); static const int kSurrogateRanges[] = { unicode::LeadSurrogateMin, unicode::TrailSurrogateMax + 1, 0x10000 }; static const int kSurrogateRangeCount = ArrayLength(kSurrogateRanges); static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, 0x10000 }; static const int kLineTerminatorRangeCount = ArrayLength(kLineTerminatorRanges); static const int kMaxOneByteCharCode = 0xff; static const int kMaxUtf16CodeUnit = 0xffff; static char16_t MaximumCharacter(bool ascii) { return ascii ? kMaxOneByteCharCode : kMaxUtf16CodeUnit; } static void AddClass(const int* elmv, int elmc, CharacterRangeVector* ranges) { elmc--; MOZ_ASSERT(elmv[elmc] == 0x10000); for (int i = 0; i < elmc; i += 2) { MOZ_ASSERT(elmv[i] < elmv[i + 1]); ranges->append(CharacterRange(elmv[i], elmv[i + 1] - 1)); } } static void AddClassNegated(const int* elmv, int elmc, CharacterRangeVector* ranges) { elmc--; MOZ_ASSERT(elmv[elmc] == 0x10000); MOZ_ASSERT(elmv[0] != 0x0000); MOZ_ASSERT(elmv[elmc-1] != kMaxUtf16CodeUnit); char16_t last = 0x0000; for (int i = 0; i < elmc; i += 2) { MOZ_ASSERT(last <= elmv[i] - 1); MOZ_ASSERT(elmv[i] < elmv[i + 1]); ranges->append(CharacterRange(last, elmv[i] - 1)); last = elmv[i + 1]; } ranges->append(CharacterRange(last, kMaxUtf16CodeUnit)); } void CharacterRange::AddClassEscape(LifoAlloc* alloc, char16_t type, CharacterRangeVector* ranges) { switch (type) { case 's': AddClass(kSpaceRanges, kSpaceRangeCount, ranges); break; case 'S': AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges); break; case 'w': AddClass(kWordRanges, kWordRangeCount, ranges); break; case 'W': AddClassNegated(kWordRanges, kWordRangeCount, ranges); break; case 'd': AddClass(kDigitRanges, kDigitRangeCount, ranges); break; case 'D': AddClassNegated(kDigitRanges, kDigitRangeCount, ranges); break; case '.': AddClassNegated(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges); break; // This is not a character range as defined by the spec but a // convenient shorthand for a character class that matches any // character. case '*': ranges->append(CharacterRange::Everything()); break; // This is the set of characters matched by the $ and ^ symbols // in multiline mode. case 'n': AddClass(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges); break; default: MOZ_CRASH("Bad character class escape"); } } // Add class escape, excluding surrogate pair range. void CharacterRange::AddClassEscapeUnicode(LifoAlloc* alloc, char16_t type, CharacterRangeVector* ranges, bool ignore_case) { switch (type) { case 's': case 'd': return AddClassEscape(alloc, type, ranges); break; case 'S': AddClassNegated(kSpaceAndSurrogateRanges, kSpaceAndSurrogateRangeCount, ranges); break; case 'w': if (ignore_case) AddClass(kIgnoreCaseWordRanges, kIgnoreCaseWordCount, ranges); else AddClassEscape(alloc, type, ranges); break; case 'W': if (ignore_case) { AddClass(kNegatedIgnoreCaseWordAndSurrogateRanges, kNegatedIgnoreCaseWordAndSurrogateRangeCount, ranges); } else { AddClassNegated(kWordAndSurrogateRanges, kWordAndSurrogateRangeCount, ranges); } break; case 'D': AddClassNegated(kDigitAndSurrogateRanges, kDigitAndSurrogateRangeCount, ranges); break; default: MOZ_CRASH("Bad type!"); } } #define FOR_EACH_NON_ASCII_TO_ASCII_FOLDING(macro) \ /* LATIN CAPITAL LETTER Y WITH DIAERESIS */ \ macro(0x0178, 0x00FF) \ /* LATIN SMALL LETTER LONG S */ \ macro(0x017F, 0x0073) \ /* LATIN CAPITAL LETTER SHARP S */ \ macro(0x1E9E, 0x00DF) \ /* KELVIN SIGN */ \ macro(0x212A, 0x006B) \ /* ANGSTROM SIGN */ \ macro(0x212B, 0x00E5) // We need to check for the following characters: 0x39c 0x3bc 0x178. static inline bool RangeContainsLatin1Equivalents(CharacterRange range, bool unicode) { /* TODO(dcarney): this could be a lot more efficient. */ if (unicode) { #define CHECK_RANGE(C, F) \ if (range.Contains(C)) return true; FOR_EACH_NON_ASCII_TO_ASCII_FOLDING(CHECK_RANGE) #undef CHECK_RANGE } return range.Contains(0x39c) || range.Contains(0x3bc) || range.Contains(0x178); } static bool RangesContainLatin1Equivalents(const CharacterRangeVector& ranges, bool unicode) { for (size_t i = 0; i < ranges.length(); i++) { // TODO(dcarney): this could be a lot more efficient. if (RangeContainsLatin1Equivalents(ranges[i], unicode)) return true; } return false; } static const size_t kEcma262UnCanonicalizeMaxWidth = 4; // Returns the number of characters in the equivalence class, omitting those // that cannot occur in the source string if it is a one byte string. static int GetCaseIndependentLetters(char16_t character, bool ascii_subject, bool unicode, const char16_t* choices, size_t choices_length, char16_t* letters) { size_t count = 0; for (size_t i = 0; i < choices_length; i++) { char16_t c = choices[i]; // Skip characters that can't appear in one byte strings. if (!unicode && ascii_subject && c > kMaxOneByteCharCode) continue; // Watch for duplicates. bool found = false; for (size_t j = 0; j < count; j++) { if (letters[j] == c) { found = true; break; } } if (found) continue; letters[count++] = c; } return count; } static int GetCaseIndependentLetters(char16_t character, bool ascii_subject, bool unicode, char16_t* letters) { if (unicode) { const char16_t choices[] = { character, unicode::FoldCase(character), unicode::ReverseFoldCase1(character), unicode::ReverseFoldCase2(character), unicode::ReverseFoldCase3(character), }; return GetCaseIndependentLetters(character, ascii_subject, unicode, choices, ArrayLength(choices), letters); } char16_t upper = unicode::ToUpperCase(character); unicode::CodepointsWithSameUpperCase others(character); char16_t other1 = others.other1(); char16_t other2 = others.other2(); char16_t other3 = others.other3(); // ES 2017 draft 996af87b7072b3c3dd2b1def856c66f456102215 21.2.4.2 // step 3.g. // The standard requires that non-ASCII characters cannot have ASCII // character codes in their equivalence class, even though this // situation occurs multiple times in the unicode tables. static const unsigned kMaxAsciiCharCode = 127; if (upper <= kMaxAsciiCharCode) { if (character > kMaxAsciiCharCode) { // If Canonicalize(character) == character, all other characters // should be ignored. return GetCaseIndependentLetters(character, ascii_subject, unicode, &character, 1, letters); } if (other1 > kMaxAsciiCharCode) other1 = character; if (other2 > kMaxAsciiCharCode) other2 = character; if (other3 > kMaxAsciiCharCode) other3 = character; } const char16_t choices[] = { character, upper, other1, other2, other3 }; return GetCaseIndependentLetters(character, ascii_subject, unicode, choices, ArrayLength(choices), letters); } static char16_t ConvertNonLatin1ToLatin1(char16_t c, bool unicode) { MOZ_ASSERT(c > kMaxOneByteCharCode); if (unicode) { switch (c) { #define CONVERT(C, F) case C: return F; FOR_EACH_NON_ASCII_TO_ASCII_FOLDING(CONVERT) #undef CONVERT } } switch (c) { // This are equivalent characters in unicode. case 0x39c: case 0x3bc: return 0xb5; // This is an uppercase of a Latin-1 character // outside of Latin-1. case 0x178: return 0xff; } return 0; } void CharacterRange::AddCaseEquivalents(bool is_ascii, bool unicode, CharacterRangeVector* ranges) { char16_t bottom = from(); char16_t top = to(); if (is_ascii && !RangeContainsLatin1Equivalents(*this, unicode)) { if (bottom > kMaxOneByteCharCode) return; if (top > kMaxOneByteCharCode) top = kMaxOneByteCharCode; } for (char16_t c = bottom;; c++) { char16_t chars[kEcma262UnCanonicalizeMaxWidth]; size_t length = GetCaseIndependentLetters(c, is_ascii, unicode, chars); for (size_t i = 0; i < length; i++) { char16_t other = chars[i]; if (other == c) continue; // Try to combine with an existing range. bool found = false; for (size_t i = 0; i < ranges->length(); i++) { CharacterRange& range = (*ranges)[i]; if (range.Contains(other)) { found = true; break; } else if (other == range.from() - 1) { range.set_from(other); found = true; break; } else if (other == range.to() + 1) { range.set_to(other); found = true; break; } } if (!found) ranges->append(CharacterRange::Singleton(other)); } if (c == top) break; } } static bool CompareInverseRanges(const CharacterRangeVector& ranges, const int* special_class, size_t length) { length--; // Remove final 0x10000. MOZ_ASSERT(special_class[length] == 0x10000); MOZ_ASSERT(ranges.length() != 0); MOZ_ASSERT(length != 0); MOZ_ASSERT(special_class[0] != 0); if (ranges.length() != (length >> 1) + 1) return false; CharacterRange range = ranges[0]; if (range.from() != 0) return false; for (size_t i = 0; i < length; i += 2) { if (special_class[i] != (range.to() + 1)) return false; range = ranges[(i >> 1) + 1]; if (special_class[i+1] != range.from()) return false; } if (range.to() != 0xffff) return false; return true; } static bool CompareRanges(const CharacterRangeVector& ranges, const int* special_class, size_t length) { length--; // Remove final 0x10000. MOZ_ASSERT(special_class[length] == 0x10000); if (ranges.length() * 2 != length) return false; for (size_t i = 0; i < length; i += 2) { CharacterRange range = ranges[i >> 1]; if (range.from() != special_class[i] || range.to() != special_class[i + 1] - 1) return false; } return true; } bool RegExpCharacterClass::is_standard(LifoAlloc* alloc) { // TODO(lrn): Remove need for this function, by not throwing away information // along the way. if (is_negated_) return false; if (set_.is_standard()) return true; if (CompareRanges(set_.ranges(alloc), kSpaceRanges, kSpaceRangeCount)) { set_.set_standard_set_type('s'); return true; } if (CompareInverseRanges(set_.ranges(alloc), kSpaceRanges, kSpaceRangeCount)) { set_.set_standard_set_type('S'); return true; } if (CompareInverseRanges(set_.ranges(alloc), kLineTerminatorRanges, kLineTerminatorRangeCount)) { set_.set_standard_set_type('.'); return true; } if (CompareRanges(set_.ranges(alloc), kLineTerminatorRanges, kLineTerminatorRangeCount)) { set_.set_standard_set_type('n'); return true; } if (CompareRanges(set_.ranges(alloc), kWordRanges, kWordRangeCount)) { set_.set_standard_set_type('w'); return true; } if (CompareInverseRanges(set_.ranges(alloc), kWordRanges, kWordRangeCount)) { set_.set_standard_set_type('W'); return true; } return false; } bool CharacterRange::IsCanonical(const CharacterRangeVector& ranges) { int n = ranges.length(); if (n <= 1) return true; int max = ranges[0].to(); for (int i = 1; i < n; i++) { CharacterRange next_range = ranges[i]; if (next_range.from() <= max + 1) return false; max = next_range.to(); } return true; } // Move a number of elements in a zonelist to another position // in the same list. Handles overlapping source and target areas. static void MoveRanges(CharacterRangeVector& list, int from, int to, int count) { // Ranges are potentially overlapping. if (from < to) { for (int i = count - 1; i >= 0; i--) list[to + i] = list[from + i]; } else { for (int i = 0; i < count; i++) list[to + i] = list[from + i]; } } static int InsertRangeInCanonicalList(CharacterRangeVector& list, int count, CharacterRange insert) { // Inserts a range into list[0..count[, which must be sorted // by from value and non-overlapping and non-adjacent, using at most // list[0..count] for the result. Returns the number of resulting // canonicalized ranges. Inserting a range may collapse existing ranges into // fewer ranges, so the return value can be anything in the range 1..count+1. char16_t from = insert.from(); char16_t to = insert.to(); int start_pos = 0; int end_pos = count; for (int i = count - 1; i >= 0; i--) { CharacterRange current = list[i]; if (current.from() > to + 1) { end_pos = i; } else if (current.to() + 1 < from) { start_pos = i + 1; break; } } // Inserted range overlaps, or is adjacent to, ranges at positions // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are // not affected by the insertion. // If start_pos == end_pos, the range must be inserted before start_pos. // if start_pos < end_pos, the entire range from start_pos to end_pos // must be merged with the insert range. if (start_pos == end_pos) { // Insert between existing ranges at position start_pos. if (start_pos < count) { MoveRanges(list, start_pos, start_pos + 1, count - start_pos); } list[start_pos] = insert; return count + 1; } if (start_pos + 1 == end_pos) { // Replace single existing range at position start_pos. CharacterRange to_replace = list[start_pos]; int new_from = Min(to_replace.from(), from); int new_to = Max(to_replace.to(), to); list[start_pos] = CharacterRange(new_from, new_to); return count; } // Replace a number of existing ranges from start_pos to end_pos - 1. // Move the remaining ranges down. int new_from = Min(list[start_pos].from(), from); int new_to = Max(list[end_pos - 1].to(), to); if (end_pos < count) { MoveRanges(list, end_pos, start_pos + 1, count - end_pos); } list[start_pos] = CharacterRange(new_from, new_to); return count - (end_pos - start_pos) + 1; } void CharacterRange::Canonicalize(CharacterRangeVector& character_ranges) { if (character_ranges.length() <= 1) return; // Check whether ranges are already canonical (increasing, non-overlapping, // non-adjacent). int n = character_ranges.length(); int max = character_ranges[0].to(); int i = 1; while (i < n) { CharacterRange current = character_ranges[i]; if (current.from() <= max + 1) { break; } max = current.to(); i++; } // Canonical until the i'th range. If that's all of them, we are done. if (i == n) return; // The ranges at index i and forward are not canonicalized. Make them so by // doing the equivalent of insertion sort (inserting each into the previous // list, in order). // Notice that inserting a range can reduce the number of ranges in the // result due to combining of adjacent and overlapping ranges. int read = i; // Range to insert. size_t num_canonical = i; // Length of canonicalized part of list. do { num_canonical = InsertRangeInCanonicalList(character_ranges, num_canonical, character_ranges[read]); read++; } while (read < n); while (character_ranges.length() > num_canonical) character_ranges.popBack(); MOZ_ASSERT(CharacterRange::IsCanonical(character_ranges)); } // ------------------------------------------------------------------- // SeqRegExpNode class VisitMarker { public: explicit VisitMarker(NodeInfo* info) : info_(info) { MOZ_ASSERT(!info->visited); info->visited = true; } ~VisitMarker() { info_->visited = false; } private: NodeInfo* info_; }; bool SeqRegExpNode::FillInBMInfo(int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { if (!bm->CheckOverRecursed()) return false; if (!on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start)) return false; if (offset == 0) set_bm_info(not_at_start, bm); return true; } RegExpNode* SeqRegExpNode::FilterASCII(int depth, bool ignore_case, bool unicode) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; MOZ_ASSERT(!info()->visited); VisitMarker marker(info()); return FilterSuccessor(depth - 1, ignore_case, unicode); } RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case, bool unicode) { RegExpNode* next = on_success_->FilterASCII(depth - 1, ignore_case, unicode); if (next == nullptr) return set_replacement(nullptr); on_success_ = next; return set_replacement(this); } // ------------------------------------------------------------------- // ActionNode int ActionNode::EatsAtLeast(int still_to_find, int budget, bool not_at_start) { if (budget <= 0) return 0; if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input! return on_success()->EatsAtLeast(still_to_find, budget - 1, not_at_start); } bool ActionNode::FillInBMInfo(int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { if (!bm->CheckOverRecursed()) return false; if (action_type_ == BEGIN_SUBMATCH) { bm->SetRest(offset); } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) { if (!on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start)) return false; } SaveBMInfo(bm, not_at_start, offset); return true; } /* static */ ActionNode* ActionNode::SetRegister(int reg, int val, RegExpNode* on_success) { ActionNode* result = on_success->alloc()->newInfallible(SET_REGISTER, on_success); result->data_.u_store_register.reg = reg; result->data_.u_store_register.value = val; return result; } /* static */ ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) { ActionNode* result = on_success->alloc()->newInfallible(INCREMENT_REGISTER, on_success); result->data_.u_increment_register.reg = reg; return result; } /* static */ ActionNode* ActionNode::StorePosition(int reg, bool is_capture, RegExpNode* on_success) { ActionNode* result = on_success->alloc()->newInfallible(STORE_POSITION, on_success); result->data_.u_position_register.reg = reg; result->data_.u_position_register.is_capture = is_capture; return result; } /* static */ ActionNode* ActionNode::ClearCaptures(Interval range, RegExpNode* on_success) { ActionNode* result = on_success->alloc()->newInfallible(CLEAR_CAPTURES, on_success); result->data_.u_clear_captures.range_from = range.from(); result->data_.u_clear_captures.range_to = range.to(); return result; } /* static */ ActionNode* ActionNode::BeginSubmatch(int stack_pointer_reg, int position_reg, RegExpNode* on_success) { ActionNode* result = on_success->alloc()->newInfallible(BEGIN_SUBMATCH, on_success); result->data_.u_submatch.stack_pointer_register = stack_pointer_reg; result->data_.u_submatch.current_position_register = position_reg; return result; } /* static */ ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_pointer_reg, int restore_reg, int clear_capture_count, int clear_capture_from, RegExpNode* on_success) { ActionNode* result = on_success->alloc()->newInfallible(POSITIVE_SUBMATCH_SUCCESS, on_success); result->data_.u_submatch.stack_pointer_register = stack_pointer_reg; result->data_.u_submatch.current_position_register = restore_reg; result->data_.u_submatch.clear_register_count = clear_capture_count; result->data_.u_submatch.clear_register_from = clear_capture_from; return result; } /* static */ ActionNode* ActionNode::EmptyMatchCheck(int start_register, int repetition_register, int repetition_limit, RegExpNode* on_success) { ActionNode* result = on_success->alloc()->newInfallible(EMPTY_MATCH_CHECK, on_success); result->data_.u_empty_match_check.start_register = start_register; result->data_.u_empty_match_check.repetition_register = repetition_register; result->data_.u_empty_match_check.repetition_limit = repetition_limit; return result; } // ------------------------------------------------------------------- // TextNode int TextNode::EatsAtLeast(int still_to_find, int budget, bool not_at_start) { int answer = Length(); if (answer >= still_to_find) return answer; if (budget <= 0) return answer; // We are not at start after this node so we set the last argument to 'true'. return answer + on_success()->EatsAtLeast(still_to_find - answer, budget - 1, true); } int TextNode::GreedyLoopTextLength() { TextElement elm = elements()[elements().length() - 1]; return elm.cp_offset() + elm.length(); } RegExpNode* TextNode::FilterASCII(int depth, bool ignore_case, bool unicode) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; MOZ_ASSERT(!info()->visited); VisitMarker marker(info()); int element_count = elements().length(); for (int i = 0; i < element_count; i++) { TextElement elm = elements()[i]; if (elm.text_type() == TextElement::ATOM) { CharacterVector& quarks = const_cast(elm.atom()->data()); for (size_t j = 0; j < quarks.length(); j++) { uint16_t c = quarks[j]; if (c <= kMaxOneByteCharCode) continue; if (!ignore_case) return set_replacement(nullptr); // Here, we need to check for characters whose upper and lower cases // are outside the Latin-1 range. char16_t converted = ConvertNonLatin1ToLatin1(c, unicode); if (converted == 0) { // Character is outside Latin-1 completely return set_replacement(nullptr); } // Convert quark to Latin-1 in place. quarks[j] = converted; } } else { MOZ_ASSERT(elm.text_type() == TextElement::CHAR_CLASS); RegExpCharacterClass* cc = elm.char_class(); CharacterRangeVector& ranges = cc->ranges(alloc()); if (!CharacterRange::IsCanonical(ranges)) CharacterRange::Canonicalize(ranges); // Now they are in order so we only need to look at the first. int range_count = ranges.length(); if (cc->is_negated()) { if (range_count != 0 && ranges[0].from() == 0 && ranges[0].to() >= kMaxOneByteCharCode) { // This will be handled in a later filter. if (ignore_case && RangesContainLatin1Equivalents(ranges, unicode)) continue; return set_replacement(nullptr); } } else { if (range_count == 0 || ranges[0].from() > kMaxOneByteCharCode) { // This will be handled in a later filter. if (ignore_case && RangesContainLatin1Equivalents(ranges, unicode)) continue; return set_replacement(nullptr); } } } } return FilterSuccessor(depth - 1, ignore_case, unicode); } void TextNode::CalculateOffsets() { int element_count = elements().length(); // Set up the offsets of the elements relative to the start. This is a fixed // quantity since a TextNode can only contain fixed-width things. int cp_offset = 0; for (int i = 0; i < element_count; i++) { TextElement& elm = elements()[i]; elm.set_cp_offset(cp_offset); cp_offset += elm.length(); } } void TextNode::MakeCaseIndependent(bool is_ascii, bool unicode) { int element_count = elements().length(); for (int i = 0; i < element_count; i++) { TextElement elm = elements()[i]; if (elm.text_type() == TextElement::CHAR_CLASS) { RegExpCharacterClass* cc = elm.char_class(); // None of the standard character classes is different in the case // independent case and it slows us down if we don't know that. if (cc->is_standard(alloc())) continue; CharacterRangeVector& ranges = cc->ranges(alloc()); int range_count = ranges.length(); for (int j = 0; j < range_count; j++) ranges[j].AddCaseEquivalents(is_ascii, unicode, &ranges); } } } // ------------------------------------------------------------------- // AssertionNode int AssertionNode::EatsAtLeast(int still_to_find, int budget, bool not_at_start) { if (budget <= 0) return 0; // If we know we are not at the start and we are asked "how many characters // will you match if you succeed?" then we can answer anything since false // implies false. So lets just return the max answer (still_to_find) since // that won't prevent us from preloading a lot of characters for the other // branches in the node graph. if (assertion_type() == AT_START && not_at_start) return still_to_find; return on_success()->EatsAtLeast(still_to_find, budget - 1, not_at_start); } bool AssertionNode::FillInBMInfo(int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { if (!bm->CheckOverRecursed()) return false; // Match the behaviour of EatsAtLeast on this node. if (assertion_type() == AT_START && not_at_start) return true; if (!on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start)) return false; SaveBMInfo(bm, not_at_start, offset); return true; } // ------------------------------------------------------------------- // BackReferenceNode int BackReferenceNode::EatsAtLeast(int still_to_find, int budget, bool not_at_start) { if (budget <= 0) return 0; return on_success()->EatsAtLeast(still_to_find, budget - 1, not_at_start); } bool BackReferenceNode::FillInBMInfo(int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { // Working out the set of characters that a backreference can match is too // hard, so we just say that any character can match. bm->SetRest(offset); SaveBMInfo(bm, not_at_start, offset); return true; } // ------------------------------------------------------------------- // ChoiceNode int ChoiceNode::EatsAtLeastHelper(int still_to_find, int budget, RegExpNode* ignore_this_node, bool not_at_start) { if (budget <= 0) return 0; int min = 100; size_t choice_count = alternatives().length(); budget = (budget - 1) / choice_count; for (size_t i = 0; i < choice_count; i++) { RegExpNode* node = alternatives()[i].node(); if (node == ignore_this_node) continue; int node_eats_at_least = node->EatsAtLeast(still_to_find, budget, not_at_start); if (node_eats_at_least < min) min = node_eats_at_least; if (min == 0) return 0; } return min; } int ChoiceNode::EatsAtLeast(int still_to_find, int budget, bool not_at_start) { return EatsAtLeastHelper(still_to_find, budget, nullptr, not_at_start); } void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) { not_at_start = (not_at_start || not_at_start_); int choice_count = alternatives().length(); MOZ_ASSERT(choice_count > 0); alternatives()[0].node()->GetQuickCheckDetails(details, compiler, characters_filled_in, not_at_start); for (int i = 1; i < choice_count; i++) { QuickCheckDetails new_details(details->characters()); RegExpNode* node = alternatives()[i].node(); node->GetQuickCheckDetails(&new_details, compiler, characters_filled_in, not_at_start); // Here we merge the quick match details of the two branches. details->Merge(&new_details, characters_filled_in); } } bool ChoiceNode::FillInBMInfo(int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { if (!bm->CheckOverRecursed()) return false; const GuardedAlternativeVector& alts = alternatives(); budget = (budget - 1) / alts.length(); for (size_t i = 0; i < alts.length(); i++) { const GuardedAlternative& alt = alts[i]; if (alt.guards() != nullptr && alt.guards()->length() != 0) { bm->SetRest(offset); // Give up trying to fill in info. SaveBMInfo(bm, not_at_start, offset); return true; } if (!alt.node()->FillInBMInfo(offset, budget, bm, not_at_start)) return false; } SaveBMInfo(bm, not_at_start, offset); return true; } RegExpNode* ChoiceNode::FilterASCII(int depth, bool ignore_case, bool unicode) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; if (info()->visited) return this; VisitMarker marker(info()); int choice_count = alternatives().length(); for (int i = 0; i < choice_count; i++) { const GuardedAlternative alternative = alternatives()[i]; if (alternative.guards() != nullptr && alternative.guards()->length() != 0) { set_replacement(this); return this; } } int surviving = 0; RegExpNode* survivor = nullptr; for (int i = 0; i < choice_count; i++) { GuardedAlternative alternative = alternatives()[i]; RegExpNode* replacement = alternative.node()->FilterASCII(depth - 1, ignore_case, unicode); MOZ_ASSERT(replacement != this); // No missing EMPTY_MATCH_CHECK. if (replacement != nullptr) { alternatives()[i].set_node(replacement); surviving++; survivor = replacement; } } if (surviving < 2) return set_replacement(survivor); set_replacement(this); if (surviving == choice_count) return this; // Only some of the nodes survived the filtering. We need to rebuild the // alternatives list. GuardedAlternativeVector new_alternatives(*alloc()); new_alternatives.reserve(surviving); for (int i = 0; i < choice_count; i++) { RegExpNode* replacement = alternatives()[i].node()->FilterASCII(depth - 1, ignore_case, unicode); if (replacement != nullptr) { alternatives()[i].set_node(replacement); new_alternatives.append(alternatives()[i]); } } alternatives_ = Move(new_alternatives); return this; } // ------------------------------------------------------------------- // NegativeLookaheadChoiceNode bool NegativeLookaheadChoiceNode::FillInBMInfo(int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { if (!bm->CheckOverRecursed()) return false; if (!alternatives()[1].node()->FillInBMInfo(offset, budget - 1, bm, not_at_start)) return false; if (offset == 0) set_bm_info(not_at_start, bm); return true; } int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find, int budget, bool not_at_start) { if (budget <= 0) return 0; // Alternative 0 is the negative lookahead, alternative 1 is what comes // afterwards. RegExpNode* node = alternatives()[1].node(); return node->EatsAtLeast(still_to_find, budget - 1, not_at_start); } void NegativeLookaheadChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in, bool not_at_start) { // Alternative 0 is the negative lookahead, alternative 1 is what comes // afterwards. RegExpNode* node = alternatives()[1].node(); return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); } RegExpNode* NegativeLookaheadChoiceNode::FilterASCII(int depth, bool ignore_case, bool unicode) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; if (info()->visited) return this; VisitMarker marker(info()); // Alternative 0 is the negative lookahead, alternative 1 is what comes // afterwards. RegExpNode* node = alternatives()[1].node(); RegExpNode* replacement = node->FilterASCII(depth - 1, ignore_case, unicode); if (replacement == nullptr) return set_replacement(nullptr); alternatives()[1].set_node(replacement); RegExpNode* neg_node = alternatives()[0].node(); RegExpNode* neg_replacement = neg_node->FilterASCII(depth - 1, ignore_case, unicode); // If the negative lookahead is always going to fail then // we don't need to check it. if (neg_replacement == nullptr) return set_replacement(replacement); alternatives()[0].set_node(neg_replacement); return set_replacement(this); } // ------------------------------------------------------------------- // LoopChoiceNode void GuardedAlternative::AddGuard(LifoAlloc* alloc, Guard* guard) { if (guards_ == nullptr) guards_ = alloc->newInfallible(*alloc); guards_->append(guard); } void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) { MOZ_ASSERT(loop_node_ == nullptr); AddAlternative(alt); loop_node_ = alt.node(); } void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) { MOZ_ASSERT(continue_node_ == nullptr); AddAlternative(alt); continue_node_ = alt.node(); } int LoopChoiceNode::EatsAtLeast(int still_to_find, int budget, bool not_at_start) { return EatsAtLeastHelper(still_to_find, budget - 1, loop_node_, not_at_start); } void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) { if (body_can_be_zero_length_ || info()->visited) return; VisitMarker marker(info()); return ChoiceNode::GetQuickCheckDetails(details, compiler, characters_filled_in, not_at_start); } bool LoopChoiceNode::FillInBMInfo(int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { if (body_can_be_zero_length_ || budget <= 0) { bm->SetRest(offset); SaveBMInfo(bm, not_at_start, offset); return true; } if (!ChoiceNode::FillInBMInfo(offset, budget - 1, bm, not_at_start)) return false; SaveBMInfo(bm, not_at_start, offset); return true; } RegExpNode* LoopChoiceNode::FilterASCII(int depth, bool ignore_case, bool unicode) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; if (info()->visited) return this; { VisitMarker marker(info()); RegExpNode* continue_replacement = continue_node_->FilterASCII(depth - 1, ignore_case, unicode); // If we can't continue after the loop then there is no sense in doing the // loop. if (continue_replacement == nullptr) return set_replacement(nullptr); } return ChoiceNode::FilterASCII(depth - 1, ignore_case, unicode); } // ------------------------------------------------------------------- // Analysis void Analysis::EnsureAnalyzed(RegExpNode* that) { JS_CHECK_RECURSION(cx, failASCII("Stack overflow"); return); if (that->info()->been_analyzed || that->info()->being_analyzed) return; that->info()->being_analyzed = true; that->Accept(this); that->info()->being_analyzed = false; that->info()->been_analyzed = true; } void Analysis::VisitEnd(EndNode* that) { // nothing to do } void Analysis::VisitText(TextNode* that) { if (ignore_case_) that->MakeCaseIndependent(is_ascii_, unicode_); EnsureAnalyzed(that->on_success()); if (!has_failed()) { that->CalculateOffsets(); } } void Analysis::VisitAction(ActionNode* that) { RegExpNode* target = that->on_success(); EnsureAnalyzed(target); if (!has_failed()) { // If the next node is interested in what it follows then this node // has to be interested too so it can pass the information on. that->info()->AddFromFollowing(target->info()); } } void Analysis::VisitChoice(ChoiceNode* that) { NodeInfo* info = that->info(); for (size_t i = 0; i < that->alternatives().length(); i++) { RegExpNode* node = that->alternatives()[i].node(); EnsureAnalyzed(node); if (has_failed()) return; // Anything the following nodes need to know has to be known by // this node also, so it can pass it on. info->AddFromFollowing(node->info()); } } void Analysis::VisitLoopChoice(LoopChoiceNode* that) { NodeInfo* info = that->info(); for (size_t i = 0; i < that->alternatives().length(); i++) { RegExpNode* node = that->alternatives()[i].node(); if (node != that->loop_node()) { EnsureAnalyzed(node); if (has_failed()) return; info->AddFromFollowing(node->info()); } } // Check the loop last since it may need the value of this node // to get a correct result. EnsureAnalyzed(that->loop_node()); if (!has_failed()) info->AddFromFollowing(that->loop_node()->info()); } void Analysis::VisitBackReference(BackReferenceNode* that) { EnsureAnalyzed(that->on_success()); } void Analysis::VisitAssertion(AssertionNode* that) { EnsureAnalyzed(that->on_success()); } // ------------------------------------------------------------------- // Implementation of the Irregexp regular expression engine. // // The Irregexp regular expression engine is intended to be a complete // implementation of ECMAScript regular expressions. It generates either // bytecodes or native code. // The Irregexp regexp engine is structured in three steps. // 1) The parser generates an abstract syntax tree. See RegExpAST.cpp. // 2) From the AST a node network is created. The nodes are all // subclasses of RegExpNode. The nodes represent states when // executing a regular expression. Several optimizations are // performed on the node network. // 3) From the nodes we generate either byte codes or native code // that can actually execute the regular expression (perform // the search). The code generation step is described in more // detail below. // Code generation. // // The nodes are divided into four main categories. // * Choice nodes // These represent places where the regular expression can // match in more than one way. For example on entry to an // alternation (foo|bar) or a repetition (*, +, ? or {}). // * Action nodes // These represent places where some action should be // performed. Examples include recording the current position // in the input string to a register (in order to implement // captures) or other actions on register for example in order // to implement the counters needed for {} repetitions. // * Matching nodes // These attempt to match some element part of the input string. // Examples of elements include character classes, plain strings // or back references. // * End nodes // These are used to implement the actions required on finding // a successful match or failing to find a match. // // The code generated (whether as byte codes or native code) maintains // some state as it runs. This consists of the following elements: // // * The capture registers. Used for string captures. // * Other registers. Used for counters etc. // * The current position. // * The stack of backtracking information. Used when a matching node // fails to find a match and needs to try an alternative. // // Conceptual regular expression execution model: // // There is a simple conceptual model of regular expression execution // which will be presented first. The actual code generated is a more // efficient simulation of the simple conceptual model: // // * Choice nodes are implemented as follows: // For each choice except the last { // push current position // push backtrack code location // // backtrack code location: // pop current position // } // // // * Actions nodes are generated as follows // // // push backtrack code location // // backtrack code location: // // // // * Matching nodes are generated as follows: // if input string matches at current position // update current position // // else // // // Thus it can be seen that the current position is saved and restored // by the choice nodes, whereas the registers are saved and restored by // by the action nodes that manipulate them. // // The other interesting aspect of this model is that nodes are generated // at the point where they are needed by a recursive call to Emit(). If // the node has already been code generated then the Emit() call will // generate a jump to the previously generated code instead. In order to // limit recursion it is possible for the Emit() function to put the node // on a work list for later generation and instead generate a jump. The // destination of the jump is resolved later when the code is generated. // // Actual regular expression code generation. // // Code generation is actually more complicated than the above. In order // to improve the efficiency of the generated code some optimizations are // performed // // * Choice nodes have 1-character lookahead. // A choice node looks at the following character and eliminates some of // the choices immediately based on that character. This is not yet // implemented. // * Simple greedy loops store reduced backtracking information. // A quantifier like /.*foo/m will greedily match the whole input. It will // then need to backtrack to a point where it can match "foo". The naive // implementation of this would push each character position onto the // backtracking stack, then pop them off one by one. This would use space // proportional to the length of the input string. However since the "." // can only match in one way and always has a constant length (in this case // of 1) it suffices to store the current position on the top of the stack // once. Matching now becomes merely incrementing the current position and // backtracking becomes decrementing the current position and checking the // result against the stored current position. This is faster and saves // space. // * The current state is virtualized. // This is used to defer expensive operations until it is clear that they // are needed and to generate code for a node more than once, allowing // specialized an efficient versions of the code to be created. This is // explained in the section below. // // Execution state virtualization. // // Instead of emitting code, nodes that manipulate the state can record their // manipulation in an object called the Trace. The Trace object can record a // current position offset, an optional backtrack code location on the top of // the virtualized backtrack stack and some register changes. When a node is // to be emitted it can flush the Trace or update it. Flushing the Trace // will emit code to bring the actual state into line with the virtual state. // Avoiding flushing the state can postpone some work (e.g. updates of capture // registers). Postponing work can save time when executing the regular // expression since it may be found that the work never has to be done as a // failure to match can occur. In addition it is much faster to jump to a // known backtrack code location than it is to pop an unknown backtrack // location from the stack and jump there. // // The virtual state found in the Trace affects code generation. For example // the virtual state contains the difference between the actual current // position and the virtual current position, and matching code needs to use // this offset to attempt a match in the correct location of the input // string. Therefore code generated for a non-trivial trace is specialized // to that trace. The code generator therefore has the ability to generate // code for each node several times. In order to limit the size of the // generated code there is an arbitrary limit on how many specialized sets of // code may be generated for a given node. If the limit is reached, the // trace is flushed and a generic version of the code for a node is emitted. // This is subsequently used for that node. The code emitted for non-generic // trace is not recorded in the node and so it cannot currently be reused in // the event that code generation is requested for an identical trace. /* static */ TextElement TextElement::Atom(RegExpAtom* atom) { return TextElement(ATOM, atom); } /* static */ TextElement TextElement::CharClass(RegExpCharacterClass* char_class) { return TextElement(CHAR_CLASS, char_class); } int TextElement::length() const { switch (text_type()) { case ATOM: return atom()->length(); case CHAR_CLASS: return 1; } MOZ_CRASH("Bad text type"); } class FrequencyCollator { public: FrequencyCollator() : total_samples_(0) { for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) { frequencies_[i] = CharacterFrequency(i); } } void CountCharacter(int character) { int index = (character & RegExpMacroAssembler::kTableMask); frequencies_[index].Increment(); total_samples_++; } // Does not measure in percent, but rather per-128 (the table size from the // regexp macro assembler). int Frequency(int in_character) { MOZ_ASSERT((in_character & RegExpMacroAssembler::kTableMask) == in_character); if (total_samples_ < 1) return 1; // Division by zero. int freq_in_per128 = (frequencies_[in_character].counter() * 128) / total_samples_; return freq_in_per128; } private: class CharacterFrequency { public: CharacterFrequency() : counter_(0), character_(-1) { } explicit CharacterFrequency(int character) : counter_(0), character_(character) {} void Increment() { counter_++; } int counter() { return counter_; } int character() { return character_; } private: int counter_; int character_; }; private: CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize]; int total_samples_; }; class irregexp::RegExpCompiler { public: RegExpCompiler(JSContext* cx, LifoAlloc* alloc, int capture_count, bool ignore_case, bool is_ascii, bool match_only, bool unicode); int AllocateRegister() { if (next_register_ >= RegExpMacroAssembler::kMaxRegister) { reg_exp_too_big_ = true; return next_register_; } return next_register_++; } RegExpCode Assemble(JSContext* cx, RegExpMacroAssembler* assembler, RegExpNode* start, int capture_count); inline void AddWork(RegExpNode* node) { AutoEnterOOMUnsafeRegion oomUnsafe; if (!work_list_.append(node)) oomUnsafe.crash("AddWork"); } static const int kImplementationOffset = 0; static const int kNumberOfRegistersOffset = 0; static const int kCodeOffset = 1; RegExpMacroAssembler* macro_assembler() { return macro_assembler_; } EndNode* accept() { return accept_; } static const int kMaxRecursion = 100; inline int recursion_depth() { return recursion_depth_; } inline void IncrementRecursionDepth() { recursion_depth_++; } inline void DecrementRecursionDepth() { recursion_depth_--; } void SetRegExpTooBig() { reg_exp_too_big_ = true; } inline bool ignore_case() { return ignore_case_; } inline bool ascii() { return ascii_; } inline bool unicode() { return unicode_; } FrequencyCollator* frequency_collator() { return &frequency_collator_; } int current_expansion_factor() { return current_expansion_factor_; } void set_current_expansion_factor(int value) { current_expansion_factor_ = value; } JSContext* cx() const { return cx_; } LifoAlloc* alloc() const { return alloc_; } static const int kNoRegister = -1; private: EndNode* accept_; int next_register_; Vector work_list_; int recursion_depth_; RegExpMacroAssembler* macro_assembler_; bool ignore_case_; bool ascii_; bool match_only_; bool unicode_; bool reg_exp_too_big_; int current_expansion_factor_; FrequencyCollator frequency_collator_; JSContext* cx_; LifoAlloc* alloc_; }; class RecursionCheck { public: explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) { compiler->IncrementRecursionDepth(); } ~RecursionCheck() { compiler_->DecrementRecursionDepth(); } private: RegExpCompiler* compiler_; }; // Attempts to compile the regexp using an Irregexp code generator. Returns // a fixed array or a null handle depending on whether it succeeded. RegExpCompiler::RegExpCompiler(JSContext* cx, LifoAlloc* alloc, int capture_count, bool ignore_case, bool ascii, bool match_only, bool unicode) : next_register_(2 * (capture_count + 1)), recursion_depth_(0), ignore_case_(ignore_case), ascii_(ascii), match_only_(match_only), unicode_(unicode), reg_exp_too_big_(false), current_expansion_factor_(1), frequency_collator_(), cx_(cx), alloc_(alloc) { accept_ = alloc->newInfallible(alloc, EndNode::ACCEPT); MOZ_ASSERT(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister); } RegExpCode RegExpCompiler::Assemble(JSContext* cx, RegExpMacroAssembler* assembler, RegExpNode* start, int capture_count) { macro_assembler_ = assembler; macro_assembler_->set_slow_safe(false); // The LifoAlloc used by the regexp compiler is infallible and is currently // expected to crash on OOM. Thus we have to disable the assertions made to // prevent us from allocating any new chunk in the LifoAlloc. This is needed // because the jit::MacroAssembler turns these assertions on by default. LifoAlloc::AutoFallibleScope fallibleAllocator(alloc()); jit::Label fail; macro_assembler_->PushBacktrack(&fail); Trace new_trace; start->Emit(this, &new_trace); macro_assembler_->BindBacktrack(&fail); macro_assembler_->Fail(); while (!work_list_.empty()) work_list_.popCopy()->Emit(this, &new_trace); RegExpCode code = macro_assembler_->GenerateCode(cx, match_only_); if (code.empty()) return RegExpCode(); if (reg_exp_too_big_) { code.destroy(); JS_ReportErrorASCII(cx, "regexp too big"); return RegExpCode(); } return code; } template static void SampleChars(FrequencyCollator* collator, const CharT* chars, size_t length) { // Sample some characters from the middle of the string. static const int kSampleSize = 128; int chars_sampled = 0; int half_way = (int(length) - kSampleSize) / 2; for (size_t i = Max(0, half_way); i < length && chars_sampled < kSampleSize; i++, chars_sampled++) { collator->CountCharacter(chars[i]); } } static bool IsNativeRegExpEnabled(JSContext* cx) { #ifdef JS_CODEGEN_NONE return false; #else return cx->options().nativeRegExp(); #endif } RegExpCode irregexp::CompilePattern(JSContext* cx, RegExpShared* shared, RegExpCompileData* data, HandleLinearString sample, bool is_global, bool ignore_case, bool is_ascii, bool match_only, bool force_bytecode, bool sticky, bool unicode) { if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) { JS_ReportErrorASCII(cx, "regexp too big"); return RegExpCode(); } LifoAlloc& alloc = cx->tempLifoAlloc(); RegExpCompiler compiler(cx, &alloc, data->capture_count, ignore_case, is_ascii, match_only, unicode); // Sample some characters from the middle of the string. if (sample->hasLatin1Chars()) { JS::AutoCheckCannotGC nogc; SampleChars(compiler.frequency_collator(), sample->latin1Chars(nogc), sample->length()); } else { JS::AutoCheckCannotGC nogc; SampleChars(compiler.frequency_collator(), sample->twoByteChars(nogc), sample->length()); } // Wrap the body of the regexp in capture #0. RegExpNode* captured_body = RegExpCapture::ToNode(data->tree, 0, &compiler, compiler.accept()); RegExpNode* node = captured_body; bool is_end_anchored = data->tree->IsAnchoredAtEnd(); bool is_start_anchored = sticky || data->tree->IsAnchoredAtStart(); int max_length = data->tree->max_match(); if (!is_start_anchored) { // Add a .*? at the beginning, outside the body capture, unless // this expression is anchored at the beginning. RegExpNode* loop_node = RegExpQuantifier::ToNode(0, RegExpTree::kInfinity, false, alloc.newInfallible('*'), &compiler, captured_body, data->contains_anchor); if (data->contains_anchor) { // Unroll loop once, to take care of the case that might start // at the start of input. ChoiceNode* first_step_node = alloc.newInfallible(&alloc, 2); RegExpNode* char_class = alloc.newInfallible(alloc.newInfallible('*'), loop_node); first_step_node->AddAlternative(GuardedAlternative(captured_body)); first_step_node->AddAlternative(GuardedAlternative(char_class)); node = first_step_node; } else { node = loop_node; } } if (is_ascii) { node = node->FilterASCII(RegExpCompiler::kMaxRecursion, ignore_case, unicode); // Do it again to propagate the new nodes to places where they were not // put because they had not been calculated yet. if (node != nullptr) { node = node->FilterASCII(RegExpCompiler::kMaxRecursion, ignore_case, unicode); } } if (node == nullptr) node = alloc.newInfallible(&alloc, EndNode::BACKTRACK); Analysis analysis(cx, ignore_case, is_ascii, unicode); analysis.EnsureAnalyzed(node); if (analysis.has_failed()) { JS_ReportErrorASCII(cx, "%s", analysis.errorMessage()); return RegExpCode(); } Maybe ctx; Maybe native_assembler; Maybe interpreted_assembler; RegExpMacroAssembler* assembler; if (IsNativeRegExpEnabled(cx) && !force_bytecode && jit::CanLikelyAllocateMoreExecutableMemory() && shared->getSource()->length() < 32 * 1024) { NativeRegExpMacroAssembler::Mode mode = is_ascii ? NativeRegExpMacroAssembler::ASCII : NativeRegExpMacroAssembler::CHAR16; ctx.emplace(cx, (jit::TempAllocator*) nullptr); native_assembler.emplace(&alloc, shared, cx->runtime(), mode, (data->capture_count + 1) * 2); assembler = native_assembler.ptr(); } else { interpreted_assembler.emplace(&alloc, shared, (data->capture_count + 1) * 2); assembler = interpreted_assembler.ptr(); } // Inserted here, instead of in Assembler, because it depends on information // in the AST that isn't replicated in the Node structure. static const int kMaxBacksearchLimit = 1024; if (is_end_anchored && !is_start_anchored && max_length < kMaxBacksearchLimit) { assembler->SetCurrentPositionFromEnd(max_length); } if (is_global) { assembler->set_global_mode((data->tree->min_match() > 0) ? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK : RegExpMacroAssembler::GLOBAL); } return compiler.Assemble(cx, assembler, node, data->capture_count); } template RegExpRunStatus irregexp::ExecuteCode(JSContext* cx, jit::JitCode* codeBlock, const CharT* chars, size_t start, size_t length, MatchPairs* matches, size_t* endIndex) { typedef void (*RegExpCodeSignature)(InputOutputData*); InputOutputData data(chars, chars + length, start, matches, endIndex); RegExpCodeSignature function = reinterpret_cast(codeBlock->raw()); { JS::AutoSuppressGCAnalysis nogc; CALL_GENERATED_1(function, &data); } return (RegExpRunStatus) data.result; } template RegExpRunStatus irregexp::ExecuteCode(JSContext* cx, jit::JitCode* codeBlock, const Latin1Char* chars, size_t start, size_t length, MatchPairs* matches, size_t* endIndex); template RegExpRunStatus irregexp::ExecuteCode(JSContext* cx, jit::JitCode* codeBlock, const char16_t* chars, size_t start, size_t length, MatchPairs* matches, size_t* endIndex); // ------------------------------------------------------------------- // Tree to graph conversion RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { TextElementVector* elms = compiler->alloc()->newInfallible(*compiler->alloc()); elms->append(TextElement::Atom(this)); return compiler->alloc()->newInfallible(elms, on_success); } RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { return compiler->alloc()->newInfallible(&elements_, on_success); } RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { return compiler->alloc()->newInfallible(this, on_success); } RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { const RegExpTreeVector& alternatives = this->alternatives(); size_t length = alternatives.length(); ChoiceNode* result = compiler->alloc()->newInfallible(compiler->alloc(), length); for (size_t i = 0; i < length; i++) { GuardedAlternative alternative(alternatives[i]->ToNode(compiler, on_success)); result->AddAlternative(alternative); } return result; } RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { return ToNode(min(), max(), is_greedy(), body(), compiler, on_success); } // Scoped object to keep track of how much we unroll quantifier loops in the // regexp graph generator. class RegExpExpansionLimiter { public: static const int kMaxExpansionFactor = 6; RegExpExpansionLimiter(RegExpCompiler* compiler, int factor) : compiler_(compiler), saved_expansion_factor_(compiler->current_expansion_factor()), ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) { MOZ_ASSERT(factor > 0); if (ok_to_expand_) { if (factor > kMaxExpansionFactor) { // Avoid integer overflow of the current expansion factor. ok_to_expand_ = false; compiler->set_current_expansion_factor(kMaxExpansionFactor + 1); } else { int new_factor = saved_expansion_factor_ * factor; ok_to_expand_ = (new_factor <= kMaxExpansionFactor); compiler->set_current_expansion_factor(new_factor); } } } ~RegExpExpansionLimiter() { compiler_->set_current_expansion_factor(saved_expansion_factor_); } bool ok_to_expand() { return ok_to_expand_; } private: RegExpCompiler* compiler_; int saved_expansion_factor_; bool ok_to_expand_; }; /* static */ RegExpNode* RegExpQuantifier::ToNode(int min, int max, bool is_greedy, RegExpTree* body, RegExpCompiler* compiler, RegExpNode* on_success, bool not_at_start /* = false */) { // x{f, t} becomes this: // // (r++)<-. // | ` // | (x) // v ^ // (r=0)-->(?)---/ [if r < t] // | // [if r >= f] \----> ... // // 15.10.2.5 RepeatMatcher algorithm. // The parser has already eliminated the case where max is 0. In the case // where max_match is zero the parser has removed the quantifier if min was // > 0 and removed the atom if min was 0. See AddQuantifierToAtom. // If we know that we cannot match zero length then things are a little // simpler since we don't need to make the special zero length match check // from step 2.1. If the min and max are small we can unroll a little in // this case. static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,} static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3} if (max == 0) return on_success; // This can happen due to recursion. bool body_can_be_empty = (body->min_match() == 0); int body_start_reg = RegExpCompiler::kNoRegister; Interval capture_registers = body->CaptureRegisters(); bool needs_capture_clearing = !capture_registers.is_empty(); LifoAlloc* alloc = compiler->alloc(); if (body_can_be_empty) { body_start_reg = compiler->AllocateRegister(); } else if (!needs_capture_clearing) { // Only unroll if there are no captures and the body can't be // empty. { RegExpExpansionLimiter limiter(compiler, min + ((max != min) ? 1 : 0)); if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) { int new_max = (max == kInfinity) ? max : max - min; // Recurse once to get the loop or optional matches after the fixed // ones. RegExpNode* answer = ToNode(0, new_max, is_greedy, body, compiler, on_success, true); // Unroll the forced matches from 0 to min. This can cause chains of // TextNodes (which the parser does not generate). These should be // combined if it turns out they hinder good code generation. for (int i = 0; i < min; i++) answer = body->ToNode(compiler, answer); return answer; } } if (max <= kMaxUnrolledMaxMatches && min == 0) { MOZ_ASSERT(max > 0); // Due to the 'if' above. RegExpExpansionLimiter limiter(compiler, max); if (limiter.ok_to_expand()) { // Unroll the optional matches up to max. RegExpNode* answer = on_success; for (int i = 0; i < max; i++) { ChoiceNode* alternation = alloc->newInfallible(alloc, 2); if (is_greedy) { alternation->AddAlternative(GuardedAlternative(body->ToNode(compiler, answer))); alternation->AddAlternative(GuardedAlternative(on_success)); } else { alternation->AddAlternative(GuardedAlternative(on_success)); alternation->AddAlternative(GuardedAlternative(body->ToNode(compiler, answer))); } answer = alternation; if (not_at_start) alternation->set_not_at_start(); } return answer; } } } bool has_min = min > 0; bool has_max = max < RegExpTree::kInfinity; bool needs_counter = has_min || has_max; int reg_ctr = needs_counter ? compiler->AllocateRegister() : RegExpCompiler::kNoRegister; LoopChoiceNode* center = alloc->newInfallible(alloc, body->min_match() == 0); if (not_at_start) center->set_not_at_start(); RegExpNode* loop_return = needs_counter ? static_cast(ActionNode::IncrementRegister(reg_ctr, center)) : static_cast(center); if (body_can_be_empty) { // If the body can be empty we need to check if it was and then // backtrack. loop_return = ActionNode::EmptyMatchCheck(body_start_reg, reg_ctr, min, loop_return); } RegExpNode* body_node = body->ToNode(compiler, loop_return); if (body_can_be_empty) { // If the body can be empty we need to store the start position // so we can bail out if it was empty. body_node = ActionNode::StorePosition(body_start_reg, false, body_node); } if (needs_capture_clearing) { // Before entering the body of this loop we need to clear captures. body_node = ActionNode::ClearCaptures(capture_registers, body_node); } GuardedAlternative body_alt(body_node); if (has_max) { Guard* body_guard = alloc->newInfallible(reg_ctr, Guard::LT, max); body_alt.AddGuard(alloc, body_guard); } GuardedAlternative rest_alt(on_success); if (has_min) { Guard* rest_guard = alloc->newInfallible(reg_ctr, Guard::GEQ, min); rest_alt.AddGuard(alloc, rest_guard); } if (is_greedy) { center->AddLoopAlternative(body_alt); center->AddContinueAlternative(rest_alt); } else { center->AddContinueAlternative(rest_alt); center->AddLoopAlternative(body_alt); } if (needs_counter) return ActionNode::SetRegister(reg_ctr, 0, center); return center; } RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { NodeInfo info; LifoAlloc* alloc = compiler->alloc(); switch (assertion_type()) { case START_OF_LINE: return AssertionNode::AfterNewline(on_success); case START_OF_INPUT: return AssertionNode::AtStart(on_success); case BOUNDARY: return AssertionNode::AtBoundary(on_success); case NON_BOUNDARY: return AssertionNode::AtNonBoundary(on_success); case END_OF_INPUT: return AssertionNode::AtEnd(on_success); case END_OF_LINE: { // Compile $ in multiline regexps as an alternation with a positive // lookahead in one side and an end-of-input on the other side. // We need two registers for the lookahead. int stack_pointer_register = compiler->AllocateRegister(); int position_register = compiler->AllocateRegister(); // The ChoiceNode to distinguish between a newline and end-of-input. ChoiceNode* result = alloc->newInfallible(alloc, 2); // Create a newline atom. CharacterRangeVector* newline_ranges = alloc->newInfallible(*alloc); CharacterRange::AddClassEscape(alloc, 'n', newline_ranges); RegExpCharacterClass* newline_atom = alloc->newInfallible('n'); TextNode* newline_matcher = alloc->newInfallible(newline_atom, ActionNode::PositiveSubmatchSuccess(stack_pointer_register, position_register, 0, // No captures inside. -1, // Ignored if no captures. on_success)); // Create an end-of-input matcher. RegExpNode* end_of_line = ActionNode::BeginSubmatch(stack_pointer_register, position_register, newline_matcher); // Add the two alternatives to the ChoiceNode. GuardedAlternative eol_alternative(end_of_line); result->AddAlternative(eol_alternative); GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success)); result->AddAlternative(end_alternative); return result; } case NOT_AFTER_LEAD_SURROGATE: return AssertionNode::NotAfterLeadSurrogate(on_success); case NOT_IN_SURROGATE_PAIR: return AssertionNode::NotInSurrogatePair(on_success); default: MOZ_CRASH("Bad assertion type"); } return on_success; } RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { return compiler->alloc()->newInfallible(RegExpCapture::StartRegister(index()), RegExpCapture::EndRegister(index()), on_success); } RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { return on_success; } RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { int stack_pointer_register = compiler->AllocateRegister(); int position_register = compiler->AllocateRegister(); const int registers_per_capture = 2; const int register_of_first_capture = 2; int register_count = capture_count_ * registers_per_capture; int register_start = register_of_first_capture + capture_from_ * registers_per_capture; if (is_positive()) { RegExpNode* bodyNode = body()->ToNode(compiler, ActionNode::PositiveSubmatchSuccess(stack_pointer_register, position_register, register_count, register_start, on_success)); return ActionNode::BeginSubmatch(stack_pointer_register, position_register, bodyNode); } // We use a ChoiceNode for a negative lookahead because it has most of // the characteristics we need. It has the body of the lookahead as its // first alternative and the expression after the lookahead of the second // alternative. If the first alternative succeeds then the // NegativeSubmatchSuccess will unwind the stack including everything the // choice node set up and backtrack. If the first alternative fails then // the second alternative is tried, which is exactly the desired result // for a negative lookahead. The NegativeLookaheadChoiceNode is a special // ChoiceNode that knows to ignore the first exit when calculating quick // checks. LifoAlloc* alloc = compiler->alloc(); RegExpNode* success = alloc->newInfallible(alloc, stack_pointer_register, position_register, register_count, register_start); GuardedAlternative body_alt(body()->ToNode(compiler, success)); ChoiceNode* choice_node = alloc->newInfallible(alloc, body_alt, GuardedAlternative(on_success)); return ActionNode::BeginSubmatch(stack_pointer_register, position_register, choice_node); } RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { return ToNode(body(), index(), compiler, on_success); } /* static */ RegExpNode* RegExpCapture::ToNode(RegExpTree* body, int index, RegExpCompiler* compiler, RegExpNode* on_success) { int start_reg = RegExpCapture::StartRegister(index); int end_reg = RegExpCapture::EndRegister(index); RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success); RegExpNode* body_node = body->ToNode(compiler, store_end); return ActionNode::StorePosition(start_reg, true, body_node); } RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { const RegExpTreeVector& children = nodes(); RegExpNode* current = on_success; for (int i = children.length() - 1; i >= 0; i--) current = children[i]->ToNode(compiler, current); return current; } // ------------------------------------------------------------------- // BoyerMooreLookahead ContainedInLattice irregexp::AddRange(ContainedInLattice containment, const int* ranges, int ranges_length, Interval new_range) { MOZ_ASSERT((ranges_length & 1) == 1); MOZ_ASSERT(ranges[ranges_length - 1] == kMaxUtf16CodeUnit + 1); if (containment == kLatticeUnknown) return containment; bool inside = false; int last = 0; for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) { // Consider the range from last to ranges[i]. // We haven't got to the new range yet. if (ranges[i] <= new_range.from()) continue; // New range is wholly inside last-ranges[i]. Note that new_range.to() is // inclusive, but the values in ranges are not. if (last <= new_range.from() && new_range.to() < ranges[i]) return Combine(containment, inside ? kLatticeIn : kLatticeOut); return kLatticeUnknown; } return containment; } void BoyerMoorePositionInfo::Set(int character) { SetInterval(Interval(character, character)); } void BoyerMoorePositionInfo::SetInterval(const Interval& interval) { s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval); if (unicode_ignore_case_) w_ = AddRange(w_, kIgnoreCaseWordRanges, kIgnoreCaseWordRangeCount, interval); else w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval); d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval); surrogate_ = AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval); if (interval.to() - interval.from() >= kMapSize - 1) { if (map_count_ != kMapSize) { map_count_ = kMapSize; for (int i = 0; i < kMapSize; i++) map_[i] = true; } return; } for (int i = interval.from(); i <= interval.to(); i++) { int mod_character = (i & kMask); if (!map_[mod_character]) { map_count_++; map_[mod_character] = true; } if (map_count_ == kMapSize) return; } } void BoyerMoorePositionInfo::SetAll() { s_ = w_ = d_ = kLatticeUnknown; if (map_count_ != kMapSize) { map_count_ = kMapSize; for (int i = 0; i < kMapSize; i++) map_[i] = true; } } BoyerMooreLookahead::BoyerMooreLookahead(LifoAlloc* alloc, size_t length, RegExpCompiler* compiler) : length_(length), compiler_(compiler), bitmaps_(*alloc) { bool unicode_ignore_case = compiler->unicode() && compiler->ignore_case(); max_char_ = MaximumCharacter(compiler->ascii()); bitmaps_.reserve(length); for (size_t i = 0; i < length; i++) bitmaps_.append(alloc->newInfallible(alloc, unicode_ignore_case)); } // Find the longest range of lookahead that has the fewest number of different // characters that can occur at a given position. Since we are optimizing two // different parameters at once this is a tradeoff. bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) { int biggest_points = 0; // If more than 32 characters out of 128 can occur it is unlikely that we can // be lucky enough to step forwards much of the time. const int kMaxMax = 32; for (int max_number_of_chars = 4; max_number_of_chars < kMaxMax; max_number_of_chars *= 2) { biggest_points = FindBestInterval(max_number_of_chars, biggest_points, from, to); } if (biggest_points == 0) return false; return true; } // Find the highest-points range between 0 and length_ where the character // information is not too vague. 'Too vague' means that there are more than // max_number_of_chars that can occur at this position. Calculates the number // of points as the product of width-of-the-range and // probability-of-finding-one-of-the-characters, where the probability is // calculated using the frequency distribution of the sample subject string. int BoyerMooreLookahead::FindBestInterval(int max_number_of_chars, int old_biggest_points, int* from, int* to) { int biggest_points = old_biggest_points; static const int kSize = RegExpMacroAssembler::kTableSize; for (int i = 0; i < length_; ) { while (i < length_ && Count(i) > max_number_of_chars) i++; if (i == length_) break; int remembered_from = i; bool union_map[kSize]; for (int j = 0; j < kSize; j++) union_map[j] = false; while (i < length_ && Count(i) <= max_number_of_chars) { BoyerMoorePositionInfo* map = bitmaps_[i]; for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j); i++; } int frequency = 0; for (int j = 0; j < kSize; j++) { if (union_map[j]) { // Add 1 to the frequency to give a small per-character boost for // the cases where our sampling is not good enough and many // characters have a frequency of zero. This means the frequency // can theoretically be up to 2*kSize though we treat it mostly as // a fraction of kSize. frequency += compiler_->frequency_collator()->Frequency(j) + 1; } } // We use the probability of skipping times the distance we are skipping to // judge the effectiveness of this. Actually we have a cut-off: By // dividing by 2 we switch off the skipping if the probability of skipping // is less than 50%. This is because the multibyte mask-and-compare // skipping in quickcheck is more likely to do well on this case. bool in_quickcheck_range = ((i - remembered_from < 4) || (compiler_->ascii() ? remembered_from <= 4 : remembered_from <= 2)); // Called 'probability' but it is only a rough estimate and can actually // be outside the 0-kSize range. int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency; int points = (i - remembered_from) * probability; if (points > biggest_points) { *from = remembered_from; *to = i - 1; biggest_points = points; } } return biggest_points; } // Take all the characters that will not prevent a successful match if they // occur in the subject string in the range between min_lookahead and // max_lookahead (inclusive) measured from the current position. If the // character at max_lookahead offset is not one of these characters, then we // can safely skip forwards by the number of characters in the range. int BoyerMooreLookahead::GetSkipTable(int min_lookahead, int max_lookahead, uint8_t* boolean_skip_table) { const int kSize = RegExpMacroAssembler::kTableSize; const int kSkipArrayEntry = 0; const int kDontSkipArrayEntry = 1; for (int i = 0; i < kSize; i++) boolean_skip_table[i] = kSkipArrayEntry; int skip = max_lookahead + 1 - min_lookahead; for (int i = max_lookahead; i >= min_lookahead; i--) { BoyerMoorePositionInfo* map = bitmaps_[i]; for (int j = 0; j < kSize; j++) { if (map->at(j)) boolean_skip_table[j] = kDontSkipArrayEntry; } } return skip; } // See comment on the implementation of GetSkipTable. bool BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { const int kSize = RegExpMacroAssembler::kTableSize; int min_lookahead = 0; int max_lookahead = 0; if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return false; bool found_single_character = false; int single_character = 0; for (int i = max_lookahead; i >= min_lookahead; i--) { BoyerMoorePositionInfo* map = bitmaps_[i]; if (map->map_count() > 1 || (found_single_character && map->map_count() != 0)) { found_single_character = false; break; } for (int j = 0; j < kSize; j++) { if (map->at(j)) { found_single_character = true; single_character = j; break; } } } int lookahead_width = max_lookahead + 1 - min_lookahead; if (found_single_character && lookahead_width == 1 && max_lookahead < 3) { // The mask-compare can probably handle this better. return false; } if (found_single_character) { jit::Label cont, again; masm->Bind(&again); masm->LoadCurrentCharacter(max_lookahead, &cont, true); if (max_char_ > kSize) { masm->CheckCharacterAfterAnd(single_character, RegExpMacroAssembler::kTableMask, &cont); } else { masm->CheckCharacter(single_character, &cont); } masm->AdvanceCurrentPosition(lookahead_width); masm->JumpOrBacktrack(&again); masm->Bind(&cont); return true; } uint8_t* boolean_skip_table; { AutoEnterOOMUnsafeRegion oomUnsafe; boolean_skip_table = static_cast(js_malloc(kSize)); if (!boolean_skip_table || !masm->shared->addTable(boolean_skip_table)) oomUnsafe.crash("Table malloc"); } int skip_distance = GetSkipTable(min_lookahead, max_lookahead, boolean_skip_table); MOZ_ASSERT(skip_distance != 0); jit::Label cont, again; masm->Bind(&again); masm->LoadCurrentCharacter(max_lookahead, &cont, true); masm->CheckBitInTable(boolean_skip_table, &cont); masm->AdvanceCurrentPosition(skip_distance); masm->JumpOrBacktrack(&again); masm->Bind(&cont); return true; } bool BoyerMooreLookahead::CheckOverRecursed() { JS_CHECK_RECURSION(compiler()->cx(), compiler()->SetRegExpTooBig(); return false); return true; } // ------------------------------------------------------------------- // Trace bool Trace::DeferredAction::Mentions(int that) { if (action_type() == ActionNode::CLEAR_CAPTURES) { Interval range = static_cast(this)->range(); return range.Contains(that); } return reg() == that; } bool Trace::mentions_reg(int reg) { for (DeferredAction* action = actions_; action != nullptr; action = action->next()) { if (action->Mentions(reg)) return true; } return false; } bool Trace::GetStoredPosition(int reg, int* cp_offset) { MOZ_ASSERT(0 == *cp_offset); for (DeferredAction* action = actions_; action != nullptr; action = action->next()) { if (action->Mentions(reg)) { if (action->action_type() == ActionNode::STORE_POSITION) { *cp_offset = static_cast(action)->cp_offset(); return true; } return false; } } return false; } int Trace::FindAffectedRegisters(LifoAlloc* alloc, OutSet* affected_registers) { int max_register = RegExpCompiler::kNoRegister; for (DeferredAction* action = actions_; action != nullptr; action = action->next()) { if (action->action_type() == ActionNode::CLEAR_CAPTURES) { Interval range = static_cast(action)->range(); for (int i = range.from(); i <= range.to(); i++) affected_registers->Set(alloc, i); if (range.to() > max_register) max_register = range.to(); } else { affected_registers->Set(alloc, action->reg()); if (action->reg() > max_register) max_register = action->reg(); } } return max_register; } void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler, int max_register, OutSet& registers_to_pop, OutSet& registers_to_clear) { for (int reg = max_register; reg >= 0; reg--) { if (registers_to_pop.Get(reg)) assembler->PopRegister(reg); else if (registers_to_clear.Get(reg)) { int clear_to = reg; while (reg > 0 && registers_to_clear.Get(reg - 1)) reg--; assembler->ClearRegisters(reg, clear_to); } } } enum DeferredActionUndoType { DEFER_IGNORE, DEFER_RESTORE, DEFER_CLEAR }; void Trace::PerformDeferredActions(LifoAlloc* alloc, RegExpMacroAssembler* assembler, int max_register, OutSet& affected_registers, OutSet* registers_to_pop, OutSet* registers_to_clear) { // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1. const int push_limit = (assembler->stack_limit_slack() + 1) / 2; // Count pushes performed to force a stack limit check occasionally. int pushes = 0; for (int reg = 0; reg <= max_register; reg++) { if (!affected_registers.Get(reg)) continue; // The chronologically first deferred action in the trace // is used to infer the action needed to restore a register // to its previous state (or not, if it's safe to ignore it). DeferredActionUndoType undo_action = DEFER_IGNORE; int value = 0; bool absolute = false; bool clear = false; int store_position = -1; // This is a little tricky because we are scanning the actions in reverse // historical order (newest first). for (DeferredAction* action = actions_; action != nullptr; action = action->next()) { if (action->Mentions(reg)) { switch (action->action_type()) { case ActionNode::SET_REGISTER: { Trace::DeferredSetRegister* psr = static_cast(action); if (!absolute) { value += psr->value(); absolute = true; } // SET_REGISTER is currently only used for newly introduced loop // counters. They can have a significant previous value if they // occour in a loop. TODO(lrn): Propagate this information, so // we can set undo_action to IGNORE if we know there is no value to // restore. undo_action = DEFER_RESTORE; MOZ_ASSERT(store_position == -1); MOZ_ASSERT(!clear); break; } case ActionNode::INCREMENT_REGISTER: if (!absolute) { value++; } MOZ_ASSERT(store_position == -1); MOZ_ASSERT(!clear); undo_action = DEFER_RESTORE; break; case ActionNode::STORE_POSITION: { Trace::DeferredCapture* pc = static_cast(action); if (!clear && store_position == -1) { store_position = pc->cp_offset(); } // For captures we know that stores and clears alternate. // Other register, are never cleared, and if the occur // inside a loop, they might be assigned more than once. if (reg <= 1) { // Registers zero and one, aka "capture zero", is // always set correctly if we succeed. There is no // need to undo a setting on backtrack, because we // will set it again or fail. undo_action = DEFER_IGNORE; } else { undo_action = pc->is_capture() ? DEFER_CLEAR : DEFER_RESTORE; } MOZ_ASSERT(!absolute); MOZ_ASSERT(value == 0); break; } case ActionNode::CLEAR_CAPTURES: { // Since we're scanning in reverse order, if we've already // set the position we have to ignore historically earlier // clearing operations. if (store_position == -1) { clear = true; } undo_action = DEFER_RESTORE; MOZ_ASSERT(!absolute); MOZ_ASSERT(value == 0); break; } default: MOZ_CRASH("Bad action"); } } } // Prepare for the undo-action (e.g., push if it's going to be popped). if (undo_action == DEFER_RESTORE) { pushes++; RegExpMacroAssembler::StackCheckFlag stack_check = RegExpMacroAssembler::kNoStackLimitCheck; if (pushes == push_limit) { stack_check = RegExpMacroAssembler::kCheckStackLimit; pushes = 0; } assembler->PushRegister(reg, stack_check); registers_to_pop->Set(alloc, reg); } else if (undo_action == DEFER_CLEAR) { registers_to_clear->Set(alloc, reg); } // Perform the chronologically last action (or accumulated increment) // for the register. if (store_position != -1) { assembler->WriteCurrentPositionToRegister(reg, store_position); } else if (clear) { assembler->ClearRegisters(reg, reg); } else if (absolute) { assembler->SetRegister(reg, value); } else if (value != 0) { assembler->AdvanceRegister(reg, value); } } } // This is called as we come into a loop choice node and some other tricky // nodes. It normalizes the state of the code generator to ensure we can // generate generic code. void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); MOZ_ASSERT(!is_trivial()); if (actions_ == nullptr && backtrack() == nullptr) { // Here we just have some deferred cp advances to fix and we are back to // a normal situation. We may also have to forget some information gained // through a quick check that was already performed. if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_); // Create a new trivial state and generate the node with that. Trace new_state; successor->Emit(compiler, &new_state); return; } // Generate deferred actions here along with code to undo them again. OutSet affected_registers; if (backtrack() != nullptr) { // Here we have a concrete backtrack location. These are set up by choice // nodes and so they indicate that we have a deferred save of the current // position which we may need to emit here. assembler->PushCurrentPosition(); } int max_register = FindAffectedRegisters(compiler->alloc(), &affected_registers); OutSet registers_to_pop; OutSet registers_to_clear; PerformDeferredActions(compiler->alloc(), assembler, max_register, affected_registers, ®isters_to_pop, ®isters_to_clear); if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_); // Create a new trivial state and generate the node with that. jit::Label undo; assembler->PushBacktrack(&undo); Trace new_state; successor->Emit(compiler, &new_state); // On backtrack we need to restore state. assembler->BindBacktrack(&undo); RestoreAffectedRegisters(assembler, max_register, registers_to_pop, registers_to_clear); if (backtrack() == nullptr) { assembler->Backtrack(); } else { assembler->PopCurrentPosition(); assembler->JumpOrBacktrack(backtrack()); } } void Trace::InvalidateCurrentCharacter() { characters_preloaded_ = 0; } void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) { MOZ_ASSERT(by > 0); // We don't have an instruction for shifting the current character register // down or for using a shifted value for anything so lets just forget that // we preloaded any characters into it. characters_preloaded_ = 0; // Adjust the offsets of the quick check performed information. This // information is used to find out what we already determined about the // characters by means of mask and compare. quick_check_performed_.Advance(by, compiler->ascii()); cp_offset_ += by; if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) { compiler->SetRegExpTooBig(); cp_offset_ = 0; } bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by); } void OutSet::Set(LifoAlloc* alloc, unsigned value) { if (value < kFirstLimit) { first_ |= (1 << value); } else { if (remaining_ == nullptr) remaining_ = alloc->newInfallible(*alloc); for (size_t i = 0; i < remaining().length(); i++) { if (remaining()[i] == value) return; } remaining().append(value); } } bool OutSet::Get(unsigned value) { if (value < kFirstLimit) return (first_ & (1 << value)) != 0; if (remaining_ == nullptr) return false; for (size_t i = 0; i < remaining().length(); i++) { if (remaining()[i] == value) return true; } return false; } // ------------------------------------------------------------------- // Graph emitting void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); // Omit flushing the trace. We discard the entire stack frame anyway. if (!label()->bound()) { // We are completely independent of the trace, since we ignore it, // so this code can be used as the generic version. assembler->Bind(label()); } // Throw away everything on the backtrack stack since the start // of the negative submatch and restore the character position. assembler->ReadCurrentPositionFromRegister(current_position_register_); assembler->ReadBacktrackStackPointerFromRegister(stack_pointer_register_); if (clear_capture_count_ > 0) { // Clear any captures that might have been performed during the success // of the body of the negative look-ahead. int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1; assembler->ClearRegisters(clear_capture_start_, clear_capture_end); } // Now that we have unwound the stack we find at the top of the stack the // backtrack that the BeginSubmatch node got. assembler->Backtrack(); } void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) { if (!trace->is_trivial()) { trace->Flush(compiler, this); return; } RegExpMacroAssembler* assembler = compiler->macro_assembler(); if (!label()->bound()) { assembler->Bind(label()); } switch (action_) { case ACCEPT: assembler->Succeed(); return; case BACKTRACK: assembler->JumpOrBacktrack(trace->backtrack()); return; case NEGATIVE_SUBMATCH_SUCCESS: // This case is handled in a different virtual method. MOZ_CRASH("Bad action: NEGATIVE_SUBMATCH_SUCCESS"); } MOZ_CRASH("Bad action"); } // Emit the code to check for a ^ in multiline mode (1-character lookbehind // that matches newline or the start of input). static void EmitHat(RegExpCompiler* compiler, RegExpNode* on_success, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); // We will be loading the previous character into the current character // register. Trace new_trace(*trace); new_trace.InvalidateCurrentCharacter(); jit::Label ok; if (new_trace.cp_offset() == 0) { // The start of input counts as a newline in this context, so skip to // ok if we are at the start. assembler->CheckAtStart(&ok); } // We already checked that we are not at the start of input so it must be // OK to load the previous character. assembler->LoadCurrentCharacter(new_trace.cp_offset() -1, new_trace.backtrack(), false); if (!assembler->CheckSpecialCharacterClass('n', new_trace.backtrack())) { // Newline means \n, \r, 0x2028 or 0x2029. if (!compiler->ascii()) assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok); assembler->CheckCharacter('\n', &ok); assembler->CheckNotCharacter('\r', new_trace.backtrack()); } assembler->Bind(&ok); on_success->Emit(compiler, &new_trace); } // Assert that the next character cannot be a part of a surrogate pair. static void EmitNotAfterLeadSurrogate(RegExpCompiler* compiler, RegExpNode* on_success, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); // We will be loading the previous character into the current character // register. Trace new_trace(*trace); new_trace.InvalidateCurrentCharacter(); jit::Label ok; if (new_trace.cp_offset() == 0) assembler->CheckAtStart(&ok); // We already checked that we are not at the start of input so it must be // OK to load the previous character. assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, new_trace.backtrack(), false); assembler->CheckCharacterInRange(unicode::LeadSurrogateMin, unicode::LeadSurrogateMax, new_trace.backtrack()); assembler->Bind(&ok); on_success->Emit(compiler, &new_trace); } // Assert that the next character is not a trail surrogate that has a // corresponding lead surrogate. static void EmitNotInSurrogatePair(RegExpCompiler* compiler, RegExpNode* on_success, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); jit::Label ok; assembler->CheckPosition(trace->cp_offset(), &ok); // We will be loading the next and previous characters into the current // character register. Trace new_trace(*trace); new_trace.InvalidateCurrentCharacter(); if (new_trace.cp_offset() == 0) assembler->CheckAtStart(&ok); // First check if next character is a trail surrogate. assembler->LoadCurrentCharacter(new_trace.cp_offset(), new_trace.backtrack(), false); assembler->CheckCharacterNotInRange(unicode::TrailSurrogateMin, unicode::TrailSurrogateMax, &ok); // Next check if previous character is a lead surrogate. // We already checked that we are not at the start of input so it must be // OK to load the previous character. assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, new_trace.backtrack(), false); assembler->CheckCharacterInRange(unicode::LeadSurrogateMin, unicode::LeadSurrogateMax, new_trace.backtrack()); assembler->Bind(&ok); on_success->Emit(compiler, &new_trace); } // Check for [0-9A-Z_a-z]. static void EmitWordCheck(RegExpMacroAssembler* assembler, jit::Label* word, jit::Label* non_word, bool fall_through_on_word, bool unicode_ignore_case) { if (!unicode_ignore_case && assembler->CheckSpecialCharacterClass(fall_through_on_word ? 'w' : 'W', fall_through_on_word ? non_word : word)) { // Optimized implementation available. return; } if (unicode_ignore_case) { assembler->CheckCharacter(0x017F, word); assembler->CheckCharacter(0x212A, word); } assembler->CheckCharacterGT('z', non_word); assembler->CheckCharacterLT('0', non_word); assembler->CheckCharacterGT('a' - 1, word); assembler->CheckCharacterLT('9' + 1, word); assembler->CheckCharacterLT('A', non_word); assembler->CheckCharacterLT('Z' + 1, word); if (fall_through_on_word) assembler->CheckNotCharacter('_', non_word); else assembler->CheckCharacter('_', word); } // Emit the code to handle \b and \B (word-boundary or non-word-boundary). void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); Trace::TriBool next_is_word_character = Trace::UNKNOWN; bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE); BoyerMooreLookahead* lookahead = bm_info(not_at_start); if (lookahead == nullptr) { int eats_at_least = Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore, kRecursionBudget, not_at_start)); if (eats_at_least >= 1) { BoyerMooreLookahead* bm = alloc()->newInfallible(alloc(), eats_at_least, compiler); FillInBMInfo(0, kRecursionBudget, bm, not_at_start); if (bm->at(0)->is_non_word()) next_is_word_character = Trace::FALSE_VALUE; if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE; } } else { if (lookahead->at(0)->is_non_word()) next_is_word_character = Trace::FALSE_VALUE; if (lookahead->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE; } bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY); if (next_is_word_character == Trace::UNKNOWN) { jit::Label before_non_word; jit::Label before_word; if (trace->characters_preloaded() != 1) { assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word); } // Fall through on non-word. EmitWordCheck(assembler, &before_word, &before_non_word, false, compiler->unicode() && compiler->ignore_case()); // Next character is not a word character. assembler->Bind(&before_non_word); jit::Label ok; BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); assembler->JumpOrBacktrack(&ok); assembler->Bind(&before_word); BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); assembler->Bind(&ok); } else if (next_is_word_character == Trace::TRUE_VALUE) { BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); } else { MOZ_ASSERT(next_is_word_character == Trace::FALSE_VALUE); BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); } } void AssertionNode::BacktrackIfPrevious(RegExpCompiler* compiler, Trace* trace, AssertionNode::IfPrevious backtrack_if_previous) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); Trace new_trace(*trace); new_trace.InvalidateCurrentCharacter(); jit::Label fall_through, dummy; jit::Label* non_word = backtrack_if_previous == kIsNonWord ? new_trace.backtrack() : &fall_through; jit::Label* word = backtrack_if_previous == kIsNonWord ? &fall_through : new_trace.backtrack(); if (new_trace.cp_offset() == 0) { // The start of input counts as a non-word character, so the question is // decided if we are at the start. assembler->CheckAtStart(non_word); } // We already checked that we are not at the start of input so it must be // OK to load the previous character. assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false); EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord, compiler->unicode() && compiler->ignore_case()); assembler->Bind(&fall_through); on_success()->Emit(compiler, &new_trace); } void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in, bool not_at_start) { if (assertion_type_ == AT_START && not_at_start) { details->set_cannot_match(); return; } return on_success()->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); } void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); switch (assertion_type_) { case AT_END: { jit::Label ok; assembler->CheckPosition(trace->cp_offset(), &ok); assembler->JumpOrBacktrack(trace->backtrack()); assembler->Bind(&ok); break; } case AT_START: { if (trace->at_start() == Trace::FALSE_VALUE) { assembler->JumpOrBacktrack(trace->backtrack()); return; } if (trace->at_start() == Trace::UNKNOWN) { assembler->CheckNotAtStart(trace->backtrack()); Trace at_start_trace = *trace; at_start_trace.set_at_start(true); on_success()->Emit(compiler, &at_start_trace); return; } } break; case AFTER_NEWLINE: EmitHat(compiler, on_success(), trace); return; case AT_BOUNDARY: case AT_NON_BOUNDARY: { EmitBoundaryCheck(compiler, trace); return; } case NOT_AFTER_LEAD_SURROGATE: EmitNotAfterLeadSurrogate(compiler, on_success(), trace); return; case NOT_IN_SURROGATE_PAIR: EmitNotInSurrogatePair(compiler, on_success(), trace); return; } on_success()->Emit(compiler, trace); } static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) { if (quick_check == nullptr) return false; if (offset >= quick_check->characters()) return false; return quick_check->positions(offset)->determines_perfectly; } static void UpdateBoundsCheck(int index, int* checked_up_to) { if (index > *checked_up_to) *checked_up_to = index; } static void EmitBoundaryTest(RegExpMacroAssembler* masm, int border, jit::Label* fall_through, jit::Label* above_or_equal, jit::Label* below) { if (below != fall_through) { masm->CheckCharacterLT(border, below); if (above_or_equal != fall_through) masm->JumpOrBacktrack(above_or_equal); } else { masm->CheckCharacterGT(border - 1, above_or_equal); } } static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm, int first, int last, jit::Label* fall_through, jit::Label* in_range, jit::Label* out_of_range) { if (in_range == fall_through) { if (first == last) masm->CheckNotCharacter(first, out_of_range); else masm->CheckCharacterNotInRange(first, last, out_of_range); } else { if (first == last) masm->CheckCharacter(first, in_range); else masm->CheckCharacterInRange(first, last, in_range); if (out_of_range != fall_through) masm->JumpOrBacktrack(out_of_range); } } typedef InfallibleVector RangeBoundaryVector; // even_label is for ranges[i] to ranges[i + 1] where i - start_index is even. // odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd. static void EmitUseLookupTable(RegExpMacroAssembler* masm, RangeBoundaryVector& ranges, int start_index, int end_index, int min_char, jit::Label* fall_through, jit::Label* even_label, jit::Label* odd_label) { static const int kSize = RegExpMacroAssembler::kTableSize; static const int kMask = RegExpMacroAssembler::kTableMask; DebugOnly base = (min_char & ~kMask); // Assert that everything is on one kTableSize page. for (int i = start_index; i <= end_index; i++) MOZ_ASSERT((ranges[i] & ~kMask) == base); MOZ_ASSERT(start_index == 0 || (ranges[start_index - 1] & ~kMask) <= base); char templ[kSize]; jit::Label* on_bit_set; jit::Label* on_bit_clear; int bit; if (even_label == fall_through) { on_bit_set = odd_label; on_bit_clear = even_label; bit = 1; } else { on_bit_set = even_label; on_bit_clear = odd_label; bit = 0; } for (int i = 0; i < (ranges[start_index] & kMask) && i < kSize; i++) templ[i] = bit; int j = 0; bit ^= 1; for (int i = start_index; i < end_index; i++) { for (j = (ranges[i] & kMask); j < (ranges[i + 1] & kMask); j++) { templ[j] = bit; } bit ^= 1; } for (int i = j; i < kSize; i++) { templ[i] = bit; } // TODO(erikcorry): Cache these. uint8_t* ba; { AutoEnterOOMUnsafeRegion oomUnsafe; ba = static_cast(js_malloc(kSize)); if (!ba || !masm->shared->addTable(ba)) oomUnsafe.crash("Table malloc"); } for (int i = 0; i < kSize; i++) ba[i] = templ[i]; masm->CheckBitInTable(ba, on_bit_set); if (on_bit_clear != fall_through) masm->JumpOrBacktrack(on_bit_clear); } static void CutOutRange(RegExpMacroAssembler* masm, RangeBoundaryVector& ranges, int start_index, int end_index, int cut_index, jit::Label* even_label, jit::Label* odd_label) { bool odd = (((cut_index - start_index) & 1) == 1); jit::Label* in_range_label = odd ? odd_label : even_label; jit::Label dummy; EmitDoubleBoundaryTest(masm, ranges[cut_index], ranges[cut_index + 1] - 1, &dummy, in_range_label, &dummy); MOZ_ASSERT(!dummy.used()); // Cut out the single range by rewriting the array. This creates a new // range that is a merger of the two ranges on either side of the one we // are cutting out. The oddity of the labels is preserved. for (int j = cut_index; j > start_index; j--) ranges[j] = ranges[j - 1]; for (int j = cut_index + 1; j < end_index; j++) ranges[j] = ranges[j + 1]; } // Unicode case. Split the search space into kSize spaces that are handled // with recursion. static void SplitSearchSpace(RangeBoundaryVector& ranges, int start_index, int end_index, int* new_start_index, int* new_end_index, int* border) { static const int kSize = RegExpMacroAssembler::kTableSize; static const int kMask = RegExpMacroAssembler::kTableMask; int first = ranges[start_index]; int last = ranges[end_index] - 1; *new_start_index = start_index; *border = (ranges[start_index] & ~kMask) + kSize; while (*new_start_index < end_index) { if (ranges[*new_start_index] > *border) break; (*new_start_index)++; } // new_start_index is the index of the first edge that is beyond the // current kSize space. // For very large search spaces we do a binary chop search of the non-ASCII // space instead of just going to the end of the current kSize space. The // heuristics are complicated a little by the fact that any 128-character // encoding space can be quickly tested with a table lookup, so we don't // wish to do binary chop search at a smaller granularity than that. A // 128-character space can take up a lot of space in the ranges array if, // for example, we only want to match every second character (eg. the lower // case characters on some Unicode pages). int binary_chop_index = (end_index + start_index) / 2; // The first test ensures that we get to the code that handles the ASCII // range with a single not-taken branch, speeding up this important // character range (even non-ASCII charset-based text has spaces and // punctuation). if (*border - 1 > kMaxOneByteCharCode && // ASCII case. end_index - start_index > (*new_start_index - start_index) * 2 && last - first > kSize * 2 && binary_chop_index > *new_start_index && ranges[binary_chop_index] >= first + 2 * kSize) { int scan_forward_for_section_border = binary_chop_index;; int new_border = (ranges[binary_chop_index] | kMask) + 1; while (scan_forward_for_section_border < end_index) { if (ranges[scan_forward_for_section_border] > new_border) { *new_start_index = scan_forward_for_section_border; *border = new_border; break; } scan_forward_for_section_border++; } } MOZ_ASSERT(*new_start_index > start_index); *new_end_index = *new_start_index - 1; if (ranges[*new_end_index] == *border) (*new_end_index)--; if (*border >= ranges[end_index]) { *border = ranges[end_index]; *new_start_index = end_index; // Won't be used. *new_end_index = end_index - 1; } } // Gets a series of segment boundaries representing a character class. If the // character is in the range between an even and an odd boundary (counting from // start_index) then go to even_label, otherwise go to odd_label. We already // know that the character is in the range of min_char to max_char inclusive. // Either label can be nullptr indicating backtracking. Either label can also be // equal to the fall_through label. static void GenerateBranches(RegExpMacroAssembler* masm, RangeBoundaryVector& ranges, int start_index, int end_index, char16_t min_char, char16_t max_char, jit::Label* fall_through, jit::Label* even_label, jit::Label* odd_label) { int first = ranges[start_index]; int last = ranges[end_index] - 1; MOZ_ASSERT(min_char < first); // Just need to test if the character is before or on-or-after // a particular character. if (start_index == end_index) { EmitBoundaryTest(masm, first, fall_through, even_label, odd_label); return; } // Another almost trivial case: There is one interval in the middle that is // different from the end intervals. if (start_index + 1 == end_index) { EmitDoubleBoundaryTest(masm, first, last, fall_through, even_label, odd_label); return; } // It's not worth using table lookup if there are very few intervals in the // character class. if (end_index - start_index <= 6) { // It is faster to test for individual characters, so we look for those // first, then try arbitrary ranges in the second round. static int kNoCutIndex = -1; int cut = kNoCutIndex; for (int i = start_index; i < end_index; i++) { if (ranges[i] == ranges[i + 1] - 1) { cut = i; break; } } if (cut == kNoCutIndex) cut = start_index; CutOutRange(masm, ranges, start_index, end_index, cut, even_label, odd_label); MOZ_ASSERT(end_index - start_index >= 2); GenerateBranches(masm, ranges, start_index + 1, end_index - 1, min_char, max_char, fall_through, even_label, odd_label); return; } // If there are a lot of intervals in the regexp, then we will use tables to // determine whether the character is inside or outside the character class. static const int kBits = RegExpMacroAssembler::kTableSizeBits; if ((max_char >> kBits) == (min_char >> kBits)) { EmitUseLookupTable(masm, ranges, start_index, end_index, min_char, fall_through, even_label, odd_label); return; } if ((min_char >> kBits) != (first >> kBits)) { masm->CheckCharacterLT(first, odd_label); GenerateBranches(masm, ranges, start_index + 1, end_index, first, max_char, fall_through, odd_label, even_label); return; } int new_start_index = 0; int new_end_index = 0; int border = 0; SplitSearchSpace(ranges, start_index, end_index, &new_start_index, &new_end_index, &border); jit::Label handle_rest; jit::Label* above = &handle_rest; if (border == last + 1) { // We didn't find any section that started after the limit, so everything // above the border is one of the terminal labels. above = (end_index & 1) != (start_index & 1) ? odd_label : even_label; MOZ_ASSERT(new_end_index == end_index - 1); } MOZ_ASSERT(start_index <= new_end_index); MOZ_ASSERT(new_start_index <= end_index); MOZ_ASSERT(start_index < new_start_index); MOZ_ASSERT(new_end_index < end_index); MOZ_ASSERT(new_end_index + 1 == new_start_index || (new_end_index + 2 == new_start_index && border == ranges[new_end_index + 1])); MOZ_ASSERT(min_char < border - 1); MOZ_ASSERT(border < max_char); MOZ_ASSERT(ranges[new_end_index] < border); MOZ_ASSERT(border < ranges[new_start_index] || (border == ranges[new_start_index] && new_start_index == end_index && new_end_index == end_index - 1 && border == last + 1)); MOZ_ASSERT(new_start_index == 0 || border >= ranges[new_start_index - 1]); masm->CheckCharacterGT(border - 1, above); jit::Label dummy; GenerateBranches(masm, ranges, start_index, new_end_index, min_char, border - 1, &dummy, even_label, odd_label); if (handle_rest.used()) { masm->Bind(&handle_rest); bool flip = (new_start_index & 1) != (start_index & 1); GenerateBranches(masm, ranges, new_start_index, end_index, border, max_char, &dummy, flip ? odd_label : even_label, flip ? even_label : odd_label); } } static void EmitCharClass(LifoAlloc* alloc, RegExpMacroAssembler* macro_assembler, RegExpCharacterClass* cc, bool ascii, jit::Label* on_failure, int cp_offset, bool check_offset, bool preloaded) { CharacterRangeVector& ranges = cc->ranges(alloc); if (!CharacterRange::IsCanonical(ranges)) { CharacterRange::Canonicalize(ranges); } int max_char = MaximumCharacter(ascii); int range_count = ranges.length(); int last_valid_range = range_count - 1; while (last_valid_range >= 0) { CharacterRange& range = ranges[last_valid_range]; if (range.from() <= max_char) { break; } last_valid_range--; } if (last_valid_range < 0) { if (!cc->is_negated()) { macro_assembler->JumpOrBacktrack(on_failure); } if (check_offset) { macro_assembler->CheckPosition(cp_offset, on_failure); } return; } if (last_valid_range == 0 && ranges[0].IsEverything(max_char)) { if (cc->is_negated()) { macro_assembler->JumpOrBacktrack(on_failure); } else { // This is a common case hit by non-anchored expressions. if (check_offset) { macro_assembler->CheckPosition(cp_offset, on_failure); } } return; } if (last_valid_range == 0 && !cc->is_negated() && ranges[0].IsEverything(max_char)) { // This is a common case hit by non-anchored expressions. if (check_offset) { macro_assembler->CheckPosition(cp_offset, on_failure); } return; } if (!preloaded) { macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset); } if (cc->is_standard(alloc) && macro_assembler->CheckSpecialCharacterClass(cc->standard_type(), on_failure)) { return; } // A new list with ascending entries. Each entry is a code unit // where there is a boundary between code units that are part of // the class and code units that are not. Normally we insert an // entry at zero which goes to the failure label, but if there // was already one there we fall through for success on that entry. // Subsequent entries have alternating meaning (success/failure). RangeBoundaryVector* range_boundaries = alloc->newInfallible(*alloc); bool zeroth_entry_is_failure = !cc->is_negated(); range_boundaries->reserve(last_valid_range); for (int i = 0; i <= last_valid_range; i++) { CharacterRange& range = ranges[i]; if (range.from() == 0) { MOZ_ASSERT(i == 0); zeroth_entry_is_failure = !zeroth_entry_is_failure; } else { range_boundaries->append(range.from()); } range_boundaries->append(range.to() + 1); } int end_index = range_boundaries->length() - 1; if ((*range_boundaries)[end_index] > max_char) end_index--; jit::Label fall_through; GenerateBranches(macro_assembler, *range_boundaries, 0, // start_index. end_index, 0, // min_char. max_char, &fall_through, zeroth_entry_is_failure ? &fall_through : on_failure, zeroth_entry_is_failure ? on_failure : &fall_through); macro_assembler->Bind(&fall_through); } typedef bool EmitCharacterFunction(RegExpCompiler* compiler, char16_t c, jit::Label* on_failure, int cp_offset, bool check, bool preloaded); static inline bool EmitSimpleCharacter(RegExpCompiler* compiler, char16_t c, jit::Label* on_failure, int cp_offset, bool check, bool preloaded) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); bool bound_checked = false; if (!preloaded) { assembler->LoadCurrentCharacter(cp_offset, on_failure, check); bound_checked = true; } assembler->CheckNotCharacter(c, on_failure); return bound_checked; } // Only emits non-letters (things that don't have case). Only used for case // independent matches. static inline bool EmitAtomNonLetter(RegExpCompiler* compiler, char16_t c, jit::Label* on_failure, int cp_offset, bool check, bool preloaded) { RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); bool ascii = compiler->ascii(); char16_t chars[kEcma262UnCanonicalizeMaxWidth]; int length = GetCaseIndependentLetters(c, ascii, compiler->unicode(), chars); if (length < 1) { // This can't match. Must be an ASCII subject and a non-ASCII character. // We do not need to do anything since the ASCII pass already handled this. return false; // Bounds not checked. } bool checked = false; // We handle the length > 1 case in a later pass. if (length == 1) { if (ascii && c > kMaxOneByteCharCode) { // Can't match - see above. return false; // Bounds not checked. } if (!preloaded) { macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); checked = check; } macro_assembler->CheckNotCharacter(c, on_failure); } return checked; } static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler, bool ascii, char16_t c1, char16_t c2, jit::Label* on_failure) { char16_t char_mask = MaximumCharacter(ascii); MOZ_ASSERT(c1 != c2); if (c1 > c2) { char16_t tmp = c1; c1 = c2; c2 = tmp; } char16_t exor = c1 ^ c2; // Check whether exor has only one bit set. if (((exor - 1) & exor) == 0) { // If c1 and c2 differ only by one bit. char16_t mask = char_mask ^ exor; macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure); return true; } char16_t diff = c2 - c1; if (((diff - 1) & diff) == 0 && c1 >= diff) { // If the characters differ by 2^n but don't differ by one bit then // subtract the difference from the found character, then do the or // trick. We avoid the theoretical case where negative numbers are // involved in order to simplify code generation. char16_t mask = char_mask ^ diff; macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff, diff, mask, on_failure); return true; } return false; } // Only emits letters (things that have case). Only used for case independent // matches. static inline bool EmitAtomLetter(RegExpCompiler* compiler, char16_t c, jit::Label* on_failure, int cp_offset, bool check, bool preloaded) { RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); bool ascii = compiler->ascii(); char16_t chars[kEcma262UnCanonicalizeMaxWidth]; int length = GetCaseIndependentLetters(c, ascii, compiler->unicode(), chars); if (length <= 1) return false; // We may not need to check against the end of the input string // if this character lies before a character that matched. if (!preloaded) macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); jit::Label ok; MOZ_ASSERT(kEcma262UnCanonicalizeMaxWidth == 4); switch (length) { case 2: { if (ShortCutEmitCharacterPair(macro_assembler, ascii, chars[0], chars[1], on_failure)) { } else { macro_assembler->CheckCharacter(chars[0], &ok); macro_assembler->CheckNotCharacter(chars[1], on_failure); macro_assembler->Bind(&ok); } break; } case 4: macro_assembler->CheckCharacter(chars[3], &ok); MOZ_FALLTHROUGH; case 3: macro_assembler->CheckCharacter(chars[0], &ok); macro_assembler->CheckCharacter(chars[1], &ok); macro_assembler->CheckNotCharacter(chars[2], on_failure); macro_assembler->Bind(&ok); break; default: MOZ_CRASH("Bad length"); } return true; } // We call this repeatedly to generate code for each pass over the text node. // The passes are in increasing order of difficulty because we hope one // of the first passes will fail in which case we are saved the work of the // later passes. for example for the case independent regexp /%[asdfghjkl]a/ // we will check the '%' in the first pass, the case independent 'a' in the // second pass and the character class in the last pass. // // The passes are done from right to left, so for example to test for /bar/ // we will first test for an 'r' with offset 2, then an 'a' with offset 1 // and then a 'b' with offset 0. This means we can avoid the end-of-input // bounds check most of the time. In the example we only need to check for // end-of-input when loading the putative 'r'. // // A slight complication involves the fact that the first character may already // be fetched into a register by the previous node. In this case we want to // do the test for that character first. We do this in separate passes. The // 'preloaded' argument indicates that we are doing such a 'pass'. If such a // pass has been performed then subsequent passes will have true in // first_element_checked to indicate that that character does not need to be // checked again. // // In addition to all this we are passed a Trace, which can // contain an AlternativeGeneration object. In this AlternativeGeneration // object we can see details of any quick check that was already passed in // order to get to the code we are now generating. The quick check can involve // loading characters, which means we do not need to recheck the bounds // up to the limit the quick check already checked. In addition the quick // check can have involved a mask and compare operation which may simplify // or obviate the need for further checks at some character positions. void TextNode::TextEmitPass(RegExpCompiler* compiler, TextEmitPassType pass, bool preloaded, Trace* trace, bool first_element_checked, int* checked_up_to) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); bool ascii = compiler->ascii(); jit::Label* backtrack = trace->backtrack(); QuickCheckDetails* quick_check = trace->quick_check_performed(); int element_count = elements().length(); for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) { TextElement elm = elements()[i]; int cp_offset = trace->cp_offset() + elm.cp_offset(); if (elm.text_type() == TextElement::ATOM) { const CharacterVector& quarks = elm.atom()->data(); for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) { if (first_element_checked && i == 0 && j == 0) continue; if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue; EmitCharacterFunction* emit_function = nullptr; switch (pass) { case NON_ASCII_MATCH: MOZ_ASSERT(ascii); if (quarks[j] > kMaxOneByteCharCode) { assembler->JumpOrBacktrack(backtrack); return; } break; case NON_LETTER_CHARACTER_MATCH: emit_function = &EmitAtomNonLetter; break; case SIMPLE_CHARACTER_MATCH: emit_function = &EmitSimpleCharacter; break; case CASE_CHARACTER_MATCH: emit_function = &EmitAtomLetter; break; default: break; } if (emit_function != nullptr) { bool bound_checked = emit_function(compiler, quarks[j], backtrack, cp_offset + j, *checked_up_to < cp_offset + j, preloaded); if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to); } } } else { MOZ_ASSERT(TextElement::CHAR_CLASS == elm.text_type()); if (pass == CHARACTER_CLASS_MATCH) { if (first_element_checked && i == 0) continue; if (DeterminedAlready(quick_check, elm.cp_offset())) continue; RegExpCharacterClass* cc = elm.char_class(); EmitCharClass(alloc(), assembler, cc, ascii, backtrack, cp_offset, *checked_up_to < cp_offset, preloaded); UpdateBoundsCheck(cp_offset, checked_up_to); } } } } int TextNode::Length() { TextElement elm = elements()[elements().length() - 1]; MOZ_ASSERT(elm.cp_offset() >= 0); return elm.cp_offset() + elm.length(); } bool TextNode::SkipPass(int int_pass, bool ignore_case) { TextEmitPassType pass = static_cast(int_pass); if (ignore_case) return pass == SIMPLE_CHARACTER_MATCH; return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH; } // This generates the code to match a text node. A text node can contain // straight character sequences (possibly to be matched in a case-independent // way) and character classes. For efficiency we do not do this in a single // pass from left to right. Instead we pass over the text node several times, // emitting code for some character positions every time. See the comment on // TextEmitPass for details. void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { LimitResult limit_result = LimitVersions(compiler, trace); if (limit_result == DONE) return; MOZ_ASSERT(limit_result == CONTINUE); if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) { compiler->SetRegExpTooBig(); return; } if (compiler->ascii()) { int dummy = 0; TextEmitPass(compiler, NON_ASCII_MATCH, false, trace, false, &dummy); } bool first_elt_done = false; int bound_checked_to = trace->cp_offset() - 1; bound_checked_to += trace->bound_checked_up_to(); // If a character is preloaded into the current character register then // check that now. if (trace->characters_preloaded() == 1) { for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { if (!SkipPass(pass, compiler->ignore_case())) { TextEmitPass(compiler, static_cast(pass), true, trace, false, &bound_checked_to); } } first_elt_done = true; } for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { if (!SkipPass(pass, compiler->ignore_case())) { TextEmitPass(compiler, static_cast(pass), false, trace, first_elt_done, &bound_checked_to); } } Trace successor_trace(*trace); successor_trace.set_at_start(false); successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler); RecursionCheck rc(compiler); on_success()->Emit(compiler, &successor_trace); } void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); if (trace->stop_node() == this) { int text_length = GreedyLoopTextLengthForAlternative(&alternatives()[0]); MOZ_ASSERT(text_length != kNodeIsTooComplexForGreedyLoops); // Update the counter-based backtracking info on the stack. This is an // optimization for greedy loops (see below). MOZ_ASSERT(trace->cp_offset() == text_length); macro_assembler->AdvanceCurrentPosition(text_length); macro_assembler->JumpOrBacktrack(trace->loop_label()); return; } MOZ_ASSERT(trace->stop_node() == nullptr); if (!trace->is_trivial()) { trace->Flush(compiler, this); return; } ChoiceNode::Emit(compiler, trace); } /* Code generation for choice nodes. * * We generate quick checks that do a mask and compare to eliminate a * choice. If the quick check succeeds then it jumps to the continuation to * do slow checks and check subsequent nodes. If it fails (the common case) * it falls through to the next choice. * * Here is the desired flow graph. Nodes directly below each other imply * fallthrough. Alternatives 1 and 2 have quick checks. Alternative * 3 doesn't have a quick check so we have to call the slow check. * Nodes are marked Qn for quick checks and Sn for slow checks. The entire * regexp continuation is generated directly after the Sn node, up to the * next JumpOrBacktrack if we decide to reuse some already generated code. Some * nodes expect preload_characters to be preloaded into the current * character register. R nodes do this preloading. Vertices are marked * F for failures and S for success (possible success in the case of quick * nodes). L, V, < and > are used as arrow heads. * * ----------> R * | * V * Q1 -----> S1 * | S / * F| / * | F/ * | / * | R * | / * V L * Q2 -----> S2 * | S / * F| / * | F/ * | / * | R * | / * V L * S3 * | * F| * | * R * | * backtrack V * <----------Q4 * \ F | * \ |S * \ F V * \-----S4 * * For greedy loops we reverse our expectation and expect to match rather * than fail. Therefore we want the loop code to look like this (U is the * unwind code that steps back in the greedy loop). The following alternatives * look the same as above. * _____ * / \ * V | * ----------> S1 | * /| | * / |S | * F/ \_____/ * / * |<----------- * | \ * V \ * Q2 ---> S2 \ * | S / | * F| / | * | F/ | * | / | * | R | * | / | * F VL | * <------U | * back |S | * \______________/ */ // This class is used when generating the alternatives in a choice node. It // records the way the alternative is being code generated. class irregexp::AlternativeGeneration { public: AlternativeGeneration() : possible_success(), expects_preload(false), after(), quick_check_details() {} jit::Label possible_success; bool expects_preload; jit::Label after; QuickCheckDetails quick_check_details; }; void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler, Guard* guard, Trace* trace) { switch (guard->op()) { case Guard::LT: MOZ_ASSERT(!trace->mentions_reg(guard->reg())); macro_assembler->IfRegisterGE(guard->reg(), guard->value(), trace->backtrack()); break; case Guard::GEQ: MOZ_ASSERT(!trace->mentions_reg(guard->reg())); macro_assembler->IfRegisterLT(guard->reg(), guard->value(), trace->backtrack()); break; } } int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least) { int preload_characters = Min(4, eats_at_least); if (compiler->macro_assembler()->CanReadUnaligned()) { bool ascii = compiler->ascii(); if (ascii) { if (preload_characters > 4) preload_characters = 4; // We can't preload 3 characters because there is no machine instruction // to do that. We can't just load 4 because we could be reading // beyond the end of the string, which could cause a memory fault. if (preload_characters == 3) preload_characters = 2; } else { if (preload_characters > 2) preload_characters = 2; } } else { if (preload_characters > 1) preload_characters = 1; } return preload_characters; } RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(RegExpCompiler* compiler) { if (elements().length() != 1) return nullptr; TextElement elm = elements()[0]; if (elm.text_type() != TextElement::CHAR_CLASS) return nullptr; RegExpCharacterClass* node = elm.char_class(); CharacterRangeVector& ranges = node->ranges(alloc()); if (!CharacterRange::IsCanonical(ranges)) CharacterRange::Canonicalize(ranges); if (node->is_negated()) return ranges.length() == 0 ? on_success() : nullptr; if (ranges.length() != 1) return nullptr; uint32_t max_char = MaximumCharacter(compiler->ascii()); return ranges[0].IsEverything(max_char) ? on_success() : nullptr; } // Finds the fixed match length of a sequence of nodes that goes from // this alternative and back to this choice node. If there are variable // length nodes or other complications in the way then return a sentinel // value indicating that a greedy loop cannot be constructed. int ChoiceNode::GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative) { int length = 0; RegExpNode* node = alternative->node(); // Later we will generate code for all these text nodes using recursion // so we have to limit the max number. int recursion_depth = 0; while (node != this) { if (recursion_depth++ > RegExpCompiler::kMaxRecursion) { return kNodeIsTooComplexForGreedyLoops; } int node_length = node->GreedyLoopTextLength(); if (node_length == kNodeIsTooComplexForGreedyLoops) { return kNodeIsTooComplexForGreedyLoops; } length += node_length; SeqRegExpNode* seq_node = static_cast(node); node = seq_node->on_success(); } return length; } // Creates a list of AlternativeGenerations. If the list has a reasonable // size then it is on the stack, otherwise the excess is on the heap. class AlternativeGenerationList { public: AlternativeGenerationList(LifoAlloc* alloc, size_t count) : alt_gens_(*alloc) { alt_gens_.reserve(count); for (size_t i = 0; i < count && i < kAFew; i++) alt_gens_.append(a_few_alt_gens_ + i); for (size_t i = kAFew; i < count; i++) { AutoEnterOOMUnsafeRegion oomUnsafe; AlternativeGeneration* gen = js_new(); if (!gen) oomUnsafe.crash("AlternativeGenerationList js_new"); alt_gens_.append(gen); } } ~AlternativeGenerationList() { for (size_t i = kAFew; i < alt_gens_.length(); i++) { js_delete(alt_gens_[i]); alt_gens_[i] = nullptr; } } AlternativeGeneration* at(int i) { return alt_gens_[i]; } private: static const size_t kAFew = 10; InfallibleVector alt_gens_; AlternativeGeneration a_few_alt_gens_[kAFew]; }; void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); size_t choice_count = alternatives().length(); #ifdef DEBUG for (size_t i = 0; i < choice_count - 1; i++) { const GuardedAlternative& alternative = alternatives()[i]; const GuardVector* guards = alternative.guards(); if (guards) { for (size_t j = 0; j < guards->length(); j++) MOZ_ASSERT(!trace->mentions_reg((*guards)[j]->reg())); } } #endif LimitResult limit_result = LimitVersions(compiler, trace); if (limit_result == DONE) return; MOZ_ASSERT(limit_result == CONTINUE); int new_flush_budget = trace->flush_budget() / choice_count; if (trace->flush_budget() == 0 && trace->actions() != nullptr) { trace->Flush(compiler, this); return; } RecursionCheck rc(compiler); Trace* current_trace = trace; int text_length = GreedyLoopTextLengthForAlternative(&alternatives()[0]); bool greedy_loop = false; jit::Label greedy_loop_label; Trace counter_backtrack_trace; counter_backtrack_trace.set_backtrack(&greedy_loop_label); if (not_at_start()) counter_backtrack_trace.set_at_start(false); if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) { // Here we have special handling for greedy loops containing only text nodes // and other simple nodes. These are handled by pushing the current // position on the stack and then incrementing the current position each // time around the switch. On backtrack we decrement the current position // and check it against the pushed value. This avoids pushing backtrack // information for each iteration of the loop, which could take up a lot of // space. greedy_loop = true; MOZ_ASSERT(trace->stop_node() == nullptr); macro_assembler->PushCurrentPosition(); current_trace = &counter_backtrack_trace; jit::Label greedy_match_failed; Trace greedy_match_trace; if (not_at_start()) greedy_match_trace.set_at_start(false); greedy_match_trace.set_backtrack(&greedy_match_failed); jit::Label loop_label; macro_assembler->Bind(&loop_label); greedy_match_trace.set_stop_node(this); greedy_match_trace.set_loop_label(&loop_label); alternatives()[0].node()->Emit(compiler, &greedy_match_trace); macro_assembler->Bind(&greedy_match_failed); } jit::Label second_choice; // For use in greedy matches. macro_assembler->Bind(&second_choice); size_t first_normal_choice = greedy_loop ? 1 : 0; bool not_at_start = current_trace->at_start() == Trace::FALSE_VALUE; const int kEatsAtLeastNotYetInitialized = -1; int eats_at_least = kEatsAtLeastNotYetInitialized; bool skip_was_emitted = false; if (!greedy_loop && choice_count == 2) { GuardedAlternative alt1 = alternatives()[1]; if (!alt1.guards() || alt1.guards()->length() == 0) { RegExpNode* eats_anything_node = alt1.node(); if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) == this) { // At this point we know that we are at a non-greedy loop that will eat // any character one at a time. Any non-anchored regexp has such a // loop prepended to it in order to find where it starts. We look for // a pattern of the form ...abc... where we can look 6 characters ahead // and step forwards 3 if the character is not one of abc. Abc need // not be atoms, they can be any reasonably limited character class or // small alternation. MOZ_ASSERT(trace->is_trivial()); // This is the case on LoopChoiceNodes. BoyerMooreLookahead* lookahead = bm_info(not_at_start); if (lookahead == nullptr) { eats_at_least = Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore, kRecursionBudget, not_at_start)); if (eats_at_least >= 1) { BoyerMooreLookahead* bm = alloc()->newInfallible(alloc(), eats_at_least, compiler); GuardedAlternative alt0 = alternatives()[0]; alt0.node()->FillInBMInfo(0, kRecursionBudget, bm, not_at_start); skip_was_emitted = bm->EmitSkipInstructions(macro_assembler); } } else { skip_was_emitted = lookahead->EmitSkipInstructions(macro_assembler); } } } } if (eats_at_least == kEatsAtLeastNotYetInitialized) { // Save some time by looking at most one machine word ahead. eats_at_least = EatsAtLeast(compiler->ascii() ? 4 : 2, kRecursionBudget, not_at_start); } int preload_characters = CalculatePreloadCharacters(compiler, eats_at_least); bool preload_is_current = !skip_was_emitted && (current_trace->characters_preloaded() == preload_characters); bool preload_has_checked_bounds = preload_is_current; AlternativeGenerationList alt_gens(alloc(), choice_count); // For now we just call all choices one after the other. The idea ultimately // is to use the Dispatch table to try only the relevant ones. for (size_t i = first_normal_choice; i < choice_count; i++) { GuardedAlternative alternative = alternatives()[i]; AlternativeGeneration* alt_gen = alt_gens.at(i); alt_gen->quick_check_details.set_characters(preload_characters); const GuardVector* guards = alternative.guards(); Trace new_trace(*current_trace); new_trace.set_characters_preloaded(preload_is_current ? preload_characters : 0); if (preload_has_checked_bounds) { new_trace.set_bound_checked_up_to(preload_characters); } new_trace.quick_check_performed()->Clear(); if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE); alt_gen->expects_preload = preload_is_current; bool generate_full_check_inline = false; if (try_to_emit_quick_check_for_alternative(i) && alternative.node()->EmitQuickCheck(compiler, &new_trace, preload_has_checked_bounds, &alt_gen->possible_success, &alt_gen->quick_check_details, i < choice_count - 1)) { // Quick check was generated for this choice. preload_is_current = true; preload_has_checked_bounds = true; // On the last choice in the ChoiceNode we generated the quick // check to fall through on possible success. So now we need to // generate the full check inline. if (i == choice_count - 1) { macro_assembler->Bind(&alt_gen->possible_success); new_trace.set_quick_check_performed(&alt_gen->quick_check_details); new_trace.set_characters_preloaded(preload_characters); new_trace.set_bound_checked_up_to(preload_characters); generate_full_check_inline = true; } } else if (alt_gen->quick_check_details.cannot_match()) { if (i == choice_count - 1 && !greedy_loop) { macro_assembler->JumpOrBacktrack(trace->backtrack()); } continue; } else { // No quick check was generated. Put the full code here. // If this is not the first choice then there could be slow checks from // previous cases that go here when they fail. There's no reason to // insist that they preload characters since the slow check we are about // to generate probably can't use it. if (i != first_normal_choice) { alt_gen->expects_preload = false; new_trace.InvalidateCurrentCharacter(); } if (i < choice_count - 1) { new_trace.set_backtrack(&alt_gen->after); } generate_full_check_inline = true; } if (generate_full_check_inline) { if (new_trace.actions() != nullptr) new_trace.set_flush_budget(new_flush_budget); if (guards) { for (size_t j = 0; j < guards->length(); j++) GenerateGuard(macro_assembler, (*guards)[j], &new_trace); } alternative.node()->Emit(compiler, &new_trace); preload_is_current = false; } macro_assembler->Bind(&alt_gen->after); } if (greedy_loop) { macro_assembler->Bind(&greedy_loop_label); // If we have unwound to the bottom then backtrack. macro_assembler->CheckGreedyLoop(trace->backtrack()); // Otherwise try the second priority at an earlier position. macro_assembler->AdvanceCurrentPosition(-text_length); macro_assembler->JumpOrBacktrack(&second_choice); } // At this point we need to generate slow checks for the alternatives where // the quick check was inlined. We can recognize these because the associated // label was bound. for (size_t i = first_normal_choice; i < choice_count - 1; i++) { AlternativeGeneration* alt_gen = alt_gens.at(i); Trace new_trace(*current_trace); // If there are actions to be flushed we have to limit how many times // they are flushed. Take the budget of the parent trace and distribute // it fairly amongst the children. if (new_trace.actions() != nullptr) { new_trace.set_flush_budget(new_flush_budget); } EmitOutOfLineContinuation(compiler, &new_trace, alternatives()[i], alt_gen, preload_characters, alt_gens.at(i + 1)->expects_preload); } } void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler, Trace* trace, GuardedAlternative alternative, AlternativeGeneration* alt_gen, int preload_characters, bool next_expects_preload) { if (!alt_gen->possible_success.used()) return; RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); macro_assembler->Bind(&alt_gen->possible_success); Trace out_of_line_trace(*trace); out_of_line_trace.set_characters_preloaded(preload_characters); out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details); if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE); const GuardVector* guards = alternative.guards(); if (next_expects_preload) { jit::Label reload_current_char; out_of_line_trace.set_backtrack(&reload_current_char); if (guards) { for (size_t j = 0; j < guards->length(); j++) GenerateGuard(macro_assembler, (*guards)[j], &out_of_line_trace); } alternative.node()->Emit(compiler, &out_of_line_trace); macro_assembler->Bind(&reload_current_char); // Reload the current character, since the next quick check expects that. // We don't need to check bounds here because we only get into this // code through a quick check which already did the checked load. macro_assembler->LoadCurrentCharacter(trace->cp_offset(), nullptr, false, preload_characters); macro_assembler->JumpOrBacktrack(&(alt_gen->after)); } else { out_of_line_trace.set_backtrack(&(alt_gen->after)); if (guards) { for (size_t j = 0; j < guards->length(); j++) GenerateGuard(macro_assembler, (*guards)[j], &out_of_line_trace); } alternative.node()->Emit(compiler, &out_of_line_trace); } } void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); LimitResult limit_result = LimitVersions(compiler, trace); if (limit_result == DONE) return; MOZ_ASSERT(limit_result == CONTINUE); RecursionCheck rc(compiler); switch (action_type_) { case STORE_POSITION: { Trace::DeferredCapture new_capture(data_.u_position_register.reg, data_.u_position_register.is_capture, trace); Trace new_trace = *trace; new_trace.add_action(&new_capture); on_success()->Emit(compiler, &new_trace); break; } case INCREMENT_REGISTER: { Trace::DeferredIncrementRegister new_increment(data_.u_increment_register.reg); Trace new_trace = *trace; new_trace.add_action(&new_increment); on_success()->Emit(compiler, &new_trace); break; } case SET_REGISTER: { Trace::DeferredSetRegister new_set(data_.u_store_register.reg, data_.u_store_register.value); Trace new_trace = *trace; new_trace.add_action(&new_set); on_success()->Emit(compiler, &new_trace); break; } case CLEAR_CAPTURES: { Trace::DeferredClearCaptures new_capture(Interval(data_.u_clear_captures.range_from, data_.u_clear_captures.range_to)); Trace new_trace = *trace; new_trace.add_action(&new_capture); on_success()->Emit(compiler, &new_trace); break; } case BEGIN_SUBMATCH: if (!trace->is_trivial()) { trace->Flush(compiler, this); } else { assembler->WriteCurrentPositionToRegister(data_.u_submatch.current_position_register, 0); assembler->WriteBacktrackStackPointerToRegister(data_.u_submatch.stack_pointer_register); on_success()->Emit(compiler, trace); } break; case EMPTY_MATCH_CHECK: { int start_pos_reg = data_.u_empty_match_check.start_register; int stored_pos = 0; int rep_reg = data_.u_empty_match_check.repetition_register; bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister); bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos); if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) { // If we know we haven't advanced and there is no minimum we // can just backtrack immediately. assembler->JumpOrBacktrack(trace->backtrack()); } else if (know_dist && stored_pos < trace->cp_offset()) { // If we know we've advanced we can generate the continuation // immediately. on_success()->Emit(compiler, trace); } else if (!trace->is_trivial()) { trace->Flush(compiler, this); } else { jit::Label skip_empty_check; // If we have a minimum number of repetitions we check the current // number first and skip the empty check if it's not enough. if (has_minimum) { int limit = data_.u_empty_match_check.repetition_limit; assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check); } // If the match is empty we bail out, otherwise we fall through // to the on-success continuation. assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register, trace->backtrack()); assembler->Bind(&skip_empty_check); on_success()->Emit(compiler, trace); } break; } case POSITIVE_SUBMATCH_SUCCESS: { if (!trace->is_trivial()) { trace->Flush(compiler, this); return; } assembler->ReadCurrentPositionFromRegister(data_.u_submatch.current_position_register); assembler->ReadBacktrackStackPointerFromRegister(data_.u_submatch.stack_pointer_register); int clear_register_count = data_.u_submatch.clear_register_count; if (clear_register_count == 0) { on_success()->Emit(compiler, trace); return; } int clear_registers_from = data_.u_submatch.clear_register_from; jit::Label clear_registers_backtrack; Trace new_trace = *trace; new_trace.set_backtrack(&clear_registers_backtrack); on_success()->Emit(compiler, &new_trace); assembler->Bind(&clear_registers_backtrack); int clear_registers_to = clear_registers_from + clear_register_count - 1; assembler->ClearRegisters(clear_registers_from, clear_registers_to); MOZ_ASSERT(trace->backtrack() == nullptr); assembler->Backtrack(); return; } default: MOZ_CRASH("Bad action"); } } void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); if (!trace->is_trivial()) { trace->Flush(compiler, this); return; } LimitResult limit_result = LimitVersions(compiler, trace); if (limit_result == DONE) return; MOZ_ASSERT(limit_result == CONTINUE); RecursionCheck rc(compiler); MOZ_ASSERT(start_reg_ + 1 == end_reg_); if (compiler->ignore_case()) { assembler->CheckNotBackReferenceIgnoreCase(start_reg_, trace->backtrack(), compiler->unicode()); } else { assembler->CheckNotBackReference(start_reg_, trace->backtrack()); } on_success()->Emit(compiler, trace); } RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, Trace* trace) { // If we are generating a greedy loop then don't stop and don't reuse code. if (trace->stop_node() != nullptr) return CONTINUE; RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); if (trace->is_trivial()) { if (label()->bound()) { // We are being asked to generate a generic version, but that's already // been done so just go to it. macro_assembler->JumpOrBacktrack(label()); return DONE; } if (compiler->recursion_depth() >= RegExpCompiler::kMaxRecursion) { // To avoid too deep recursion we push the node to the work queue and just // generate a goto here. compiler->AddWork(this); macro_assembler->JumpOrBacktrack(label()); return DONE; } // Generate generic version of the node and bind the label for later use. macro_assembler->Bind(label()); return CONTINUE; } // We are being asked to make a non-generic version. Keep track of how many // non-generic versions we generate so as not to overdo it. trace_count_++; if (trace_count_ < kMaxCopiesCodeGenerated && compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) { return CONTINUE; } // If we get here code has been generated for this node too many times or // recursion is too deep. Time to switch to a generic version. The code for // generic versions above can handle deep recursion properly. trace->Flush(compiler, this); return DONE; } bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, Trace* trace, bool preload_has_checked_bounds, jit::Label* on_possible_success, QuickCheckDetails* details, bool fall_through_on_failure) { if (details->characters() == 0) return false; GetQuickCheckDetails( details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE); if (details->cannot_match()) return false; if (!details->Rationalize(compiler->ascii())) return false; MOZ_ASSERT(details->characters() == 1 || compiler->macro_assembler()->CanReadUnaligned()); uint32_t mask = details->mask(); uint32_t value = details->value(); RegExpMacroAssembler* assembler = compiler->macro_assembler(); if (trace->characters_preloaded() != details->characters()) { assembler->LoadCurrentCharacter(trace->cp_offset(), trace->backtrack(), !preload_has_checked_bounds, details->characters()); } bool need_mask = true; if (details->characters() == 1) { // If number of characters preloaded is 1 then we used a byte or 16 bit // load so the value is already masked down. uint32_t char_mask = MaximumCharacter(compiler->ascii()); if ((mask & char_mask) == char_mask) need_mask = false; mask &= char_mask; } else { // For 2-character preloads in ASCII mode or 1-character preloads in // TWO_BYTE mode we also use a 16 bit load with zero extend. if (details->characters() == 2 && compiler->ascii()) { if ((mask & 0xffff) == 0xffff) need_mask = false; } else if (details->characters() == 1 && !compiler->ascii()) { if ((mask & 0xffff) == 0xffff) need_mask = false; } else { if (mask == 0xffffffff) need_mask = false; } } if (fall_through_on_failure) { if (need_mask) { assembler->CheckCharacterAfterAnd(value, mask, on_possible_success); } else { assembler->CheckCharacter(value, on_possible_success); } } else { if (need_mask) { assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack()); } else { assembler->CheckNotCharacter(value, trace->backtrack()); } } return true; } bool TextNode::FillInBMInfo(int initial_offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { if (!bm->CheckOverRecursed()) return false; if (initial_offset >= bm->length()) return true; int offset = initial_offset; int max_char = bm->max_char(); for (size_t i = 0; i < elements().length(); i++) { if (offset >= bm->length()) { if (initial_offset == 0) set_bm_info(not_at_start, bm); return true; } TextElement text = elements()[i]; if (text.text_type() == TextElement::ATOM) { RegExpAtom* atom = text.atom(); for (int j = 0; j < atom->length(); j++, offset++) { if (offset >= bm->length()) { if (initial_offset == 0) set_bm_info(not_at_start, bm); return true; } char16_t character = atom->data()[j]; if (bm->compiler()->ignore_case()) { char16_t chars[kEcma262UnCanonicalizeMaxWidth]; int length = GetCaseIndependentLetters(character, bm->max_char() == kMaxOneByteCharCode, bm->compiler()->unicode(), chars); for (int j = 0; j < length; j++) bm->Set(offset, chars[j]); } else { if (character <= max_char) bm->Set(offset, character); } } } else { MOZ_ASSERT(TextElement::CHAR_CLASS == text.text_type()); RegExpCharacterClass* char_class = text.char_class(); const CharacterRangeVector& ranges = char_class->ranges(alloc()); if (char_class->is_negated()) { bm->SetAll(offset); } else { for (size_t k = 0; k < ranges.length(); k++) { const CharacterRange& range = ranges[k]; if (range.from() > max_char) continue; int to = Min(max_char, static_cast(range.to())); bm->SetInterval(offset, Interval(range.from(), to)); } } offset++; } } if (offset >= bm->length()) { if (initial_offset == 0) set_bm_info(not_at_start, bm); return true; } if (!on_success()->FillInBMInfo(offset, budget - 1, bm, true)) // Not at start after a text node. return false; if (initial_offset == 0) set_bm_info(not_at_start, bm); return true; } // ------------------------------------------------------------------- // QuickCheckDetails // Takes the left-most 1-bit and smears it out, setting all bits to its right. static inline uint32_t SmearBitsRight(uint32_t v) { v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; return v; } // Here is the meat of GetQuickCheckDetails (see also the comment on the // super-class in the .h file). // // We iterate along the text object, building up for each character a // mask and value that can be used to test for a quick failure to match. // The masks and values for the positions will be combined into a single // machine word for the current character width in order to be used in // generating a quick check. void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) { MOZ_ASSERT(characters_filled_in < details->characters()); int characters = details->characters(); int char_mask = MaximumCharacter(compiler->ascii()); for (size_t k = 0; k < elements().length(); k++) { TextElement elm = elements()[k]; if (elm.text_type() == TextElement::ATOM) { const CharacterVector& quarks = elm.atom()->data(); for (size_t i = 0; i < (size_t) characters && i < quarks.length(); i++) { QuickCheckDetails::Position* pos = details->positions(characters_filled_in); char16_t c = quarks[i]; if (c > char_mask) { // If we expect a non-ASCII character from an ASCII string, // there is no way we can match. Not even case independent // matching can turn an ASCII character into non-ASCII or // vice versa. details->set_cannot_match(); pos->determines_perfectly = false; return; } if (compiler->ignore_case()) { char16_t chars[kEcma262UnCanonicalizeMaxWidth]; size_t length = GetCaseIndependentLetters(c, compiler->ascii(), compiler->unicode(), chars); MOZ_ASSERT(length != 0); // Can only happen if c > char_mask (see above). if (length == 1) { // This letter has no case equivalents, so it's nice and simple // and the mask-compare will determine definitely whether we have // a match at this character position. pos->mask = char_mask; pos->value = c; pos->determines_perfectly = true; } else { uint32_t common_bits = char_mask; uint32_t bits = chars[0]; for (size_t j = 1; j < length; j++) { uint32_t differing_bits = ((chars[j] & common_bits) ^ bits); common_bits ^= differing_bits; bits &= common_bits; } // If length is 2 and common bits has only one zero in it then // our mask and compare instruction will determine definitely // whether we have a match at this character position. Otherwise // it can only be an approximate check. uint32_t one_zero = (common_bits | ~char_mask); if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) { pos->determines_perfectly = true; } pos->mask = common_bits; pos->value = bits; } } else { // Don't ignore case. Nice simple case where the mask-compare will // determine definitely whether we have a match at this character // position. pos->mask = char_mask; pos->value = c; pos->determines_perfectly = true; } characters_filled_in++; MOZ_ASSERT(characters_filled_in <= details->characters()); if (characters_filled_in == details->characters()) { return; } } } else { QuickCheckDetails::Position* pos = details->positions(characters_filled_in); RegExpCharacterClass* tree = elm.char_class(); const CharacterRangeVector& ranges = tree->ranges(alloc()); if (tree->is_negated()) { // A quick check uses multi-character mask and compare. There is no // useful way to incorporate a negative char class into this scheme // so we just conservatively create a mask and value that will always // succeed. pos->mask = 0; pos->value = 0; } else { size_t first_range = 0; while (ranges[first_range].from() > char_mask) { first_range++; if (first_range == ranges.length()) { details->set_cannot_match(); pos->determines_perfectly = false; return; } } CharacterRange range = ranges[first_range]; char16_t from = range.from(); char16_t to = range.to(); if (to > char_mask) { to = char_mask; } uint32_t differing_bits = (from ^ to); // A mask and compare is only perfect if the differing bits form a // number like 00011111 with one single block of trailing 1s. if ((differing_bits & (differing_bits + 1)) == 0 && from + differing_bits == to) { pos->determines_perfectly = true; } uint32_t common_bits = ~SmearBitsRight(differing_bits); uint32_t bits = (from & common_bits); for (size_t i = first_range + 1; i < ranges.length(); i++) { CharacterRange range = ranges[i]; char16_t from = range.from(); char16_t to = range.to(); if (from > char_mask) continue; if (to > char_mask) to = char_mask; // Here we are combining more ranges into the mask and compare // value. With each new range the mask becomes more sparse and // so the chances of a false positive rise. A character class // with multiple ranges is assumed never to be equivalent to a // mask and compare operation. pos->determines_perfectly = false; uint32_t new_common_bits = (from ^ to); new_common_bits = ~SmearBitsRight(new_common_bits); common_bits &= new_common_bits; bits &= new_common_bits; uint32_t differing_bits = (from & common_bits) ^ bits; common_bits ^= differing_bits; bits &= common_bits; } pos->mask = common_bits; pos->value = bits; } characters_filled_in++; MOZ_ASSERT(characters_filled_in <= details->characters()); if (characters_filled_in == details->characters()) { return; } } } MOZ_ASSERT(characters_filled_in != details->characters()); if (!details->cannot_match()) { on_success()-> GetQuickCheckDetails(details, compiler, characters_filled_in, true); } } void QuickCheckDetails::Clear() { for (int i = 0; i < characters_; i++) { positions_[i].mask = 0; positions_[i].value = 0; positions_[i].determines_perfectly = false; } characters_ = 0; } void QuickCheckDetails::Advance(int by, bool ascii) { MOZ_ASSERT(by >= 0); if (by >= characters_) { Clear(); return; } for (int i = 0; i < characters_ - by; i++) { positions_[i] = positions_[by + i]; } for (int i = characters_ - by; i < characters_; i++) { positions_[i].mask = 0; positions_[i].value = 0; positions_[i].determines_perfectly = false; } characters_ -= by; // We could change mask_ and value_ here but we would never advance unless // they had already been used in a check and they won't be used again because // it would gain us nothing. So there's no point. } bool QuickCheckDetails::Rationalize(bool is_ascii) { bool found_useful_op = false; uint32_t char_mask = MaximumCharacter(is_ascii); mask_ = 0; value_ = 0; int char_shift = 0; for (int i = 0; i < characters_; i++) { Position* pos = &positions_[i]; if ((pos->mask & kMaxOneByteCharCode) != 0) found_useful_op = true; mask_ |= (pos->mask & char_mask) << char_shift; value_ |= (pos->value & char_mask) << char_shift; char_shift += is_ascii ? 8 : 16; } return found_useful_op; } void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) { MOZ_ASSERT(characters_ == other->characters_); if (other->cannot_match_) return; if (cannot_match_) { *this = *other; return; } for (int i = from_index; i < characters_; i++) { QuickCheckDetails::Position* pos = positions(i); QuickCheckDetails::Position* other_pos = other->positions(i); if (pos->mask != other_pos->mask || pos->value != other_pos->value || !other_pos->determines_perfectly) { // Our mask-compare operation will be approximate unless we have the // exact same operation on both sides of the alternation. pos->determines_perfectly = false; } pos->mask &= other_pos->mask; pos->value &= pos->mask; other_pos->value &= pos->mask; char16_t differing_bits = (pos->value ^ other_pos->value); pos->mask &= ~differing_bits; pos->value &= pos->mask; } }