#include <math.h> #include <assert.h> #include <string.h> //memcpy #include "qcmsint.h" #include "transform_util.h" #include "matrix.h" #define PARAMETRIC_CURVE_TYPE 0x70617261 //'para' /* value must be a value between 0 and 1 */ //XXX: is the above a good restriction to have? // the output range of this functions is 0..1 float lut_interp_linear(double input_value, uint16_t *table, int length) { int upper, lower; float value; input_value = input_value * (length - 1); // scale to length of the array upper = ceil(input_value); lower = floor(input_value); //XXX: can we be more performant here? value = table[upper]*(1. - (upper - input_value)) + table[lower]*(upper - input_value); /* scale the value */ return value * (1.f/65535.f); } /* same as above but takes and returns a uint16_t value representing a range from 0..1 */ uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) { /* Start scaling input_value to the length of the array: 65535*(length-1). * We'll divide out the 65535 next */ uint32_t value = (input_value * (length - 1)); uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65535) */ uint32_t lower = value / 65535; /* equivalent to floor(value/65535) */ /* interp is the distance from upper to value scaled to 0..65535 */ uint32_t interp = value % 65535; value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; // 0..65535*65535 return value; } /* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX * and returns a uint8_t value representing a range from 0..1 */ static uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table, int length) { /* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1). * We'll divide out the PRECACHE_OUTPUT_MAX next */ uint32_t value = (input_value * (length - 1)); /* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */ uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX; /* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */ uint32_t lower = value / PRECACHE_OUTPUT_MAX; /* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */ uint32_t interp = value % PRECACHE_OUTPUT_MAX; /* the table values range from 0..65535 */ value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - interp)); // 0..(65535*PRECACHE_OUTPUT_MAX) /* round and scale */ value += (PRECACHE_OUTPUT_MAX*65535/255)/2; value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255 return value; } /* value must be a value between 0 and 1 */ //XXX: is the above a good restriction to have? float lut_interp_linear_float(float value, float *table, int length) { int upper, lower; value = value * (length - 1); upper = ceilf(value); lower = floorf(value); //XXX: can we be more performant here? value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value); /* scale the value */ return value; } #if 0 /* if we use a different representation i.e. one that goes from 0 to 0x1000 we can be more efficient * because we can avoid the divisions and use a shifting instead */ /* same as above but takes and returns a uint16_t value representing a range from 0..1 */ uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) { uint32_t value = (input_value * (length - 1)); uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096) */ uint32_t lower = value / 4096; /* equivalent to floor(value/4096) */ uint32_t interp = value % 4096; value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; // 0..4096*4096 return value; } #endif void compute_curve_gamma_table_type1(float gamma_table[256], uint16_t gamma) { unsigned int i; float gamma_float = u8Fixed8Number_to_float(gamma); for (i = 0; i < 256; i++) { // 0..1^(0..255 + 255/256) will always be between 0 and 1 gamma_table[i] = pow(i/255., gamma_float); } } void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, int length) { unsigned int i; for (i = 0; i < 256; i++) { gamma_table[i] = lut_interp_linear(i/255., table, length); } } void compute_curve_gamma_table_type_parametric(float gamma_table[256], float parameter[7], int count) { size_t X; float interval; float a, b, c, e, f; float y = parameter[0]; if (count == 0) { a = 1; b = 0; c = 0; e = 0; f = 0; interval = -1; } else if(count == 1) { a = parameter[1]; b = parameter[2]; c = 0; e = 0; f = 0; interval = -1 * parameter[2] / parameter[1]; } else if(count == 2) { a = parameter[1]; b = parameter[2]; c = 0; e = parameter[3]; f = parameter[3]; interval = -1 * parameter[2] / parameter[1]; } else if(count == 3) { a = parameter[1]; b = parameter[2]; c = parameter[3]; e = -c; f = 0; interval = parameter[4]; } else if(count == 4) { a = parameter[1]; b = parameter[2]; c = parameter[3]; e = parameter[5] - c; f = parameter[6]; interval = parameter[4]; } else { assert(0 && "invalid parametric function type."); a = 1; b = 0; c = 0; e = 0; f = 0; interval = -1; } for (X = 0; X < 256; X++) { if (X >= interval) { // XXX The equations are not exactly as defined in the spec but are // algebraically equivalent. // TODO Should division by 255 be for the whole expression. gamma_table[X] = clamp_float(pow(a * X / 255. + b, y) + c + e); } else { gamma_table[X] = clamp_float(c * X / 255. + f); } } } void compute_curve_gamma_table_type0(float gamma_table[256]) { unsigned int i; for (i = 0; i < 256; i++) { gamma_table[i] = i/255.; } } float *build_input_gamma_table(struct curveType *TRC) { float *gamma_table; if (!TRC) return NULL; gamma_table = malloc(sizeof(float)*256); if (gamma_table) { if (TRC->type == PARAMETRIC_CURVE_TYPE) { compute_curve_gamma_table_type_parametric(gamma_table, TRC->parameter, TRC->count); } else { if (TRC->count == 0) { compute_curve_gamma_table_type0(gamma_table); } else if (TRC->count == 1) { compute_curve_gamma_table_type1(gamma_table, TRC->data[0]); } else { compute_curve_gamma_table_type2(gamma_table, TRC->data, TRC->count); } } } return gamma_table; } struct matrix build_colorant_matrix(qcms_profile *p) { struct matrix result; result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X); result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X); result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X); result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y); result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y); result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y); result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z); result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z); result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z); result.invalid = false; return result; } /* The following code is copied nearly directly from lcms. * I think it could be much better. For example, Argyll seems to have better code in * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way * to a working solution and allows for easy comparing with lcms. */ uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int length) { int l = 1; int r = 0x10000; int x = 0, res; // 'int' Give spacing for negative values int NumZeroes, NumPoles; int cell0, cell1; double val2; double y0, y1, x0, x1; double a, b, f; // July/27 2001 - Expanded to handle degenerated curves with an arbitrary // number of elements containing 0 at the begining of the table (Zeroes) // and another arbitrary number of poles (FFFFh) at the end. // First the zero and pole extents are computed, then value is compared. NumZeroes = 0; while (LutTable[NumZeroes] == 0 && NumZeroes < length-1) NumZeroes++; // There are no zeros at the beginning and we are trying to find a zero, so // return anything. It seems zero would be the less destructive choice /* I'm not sure that this makes sense, but oh well... */ if (NumZeroes == 0 && Value == 0) return 0; NumPoles = 0; while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1) NumPoles++; // Does the curve belong to this case? if (NumZeroes > 1 || NumPoles > 1) { int a, b; // Identify if value fall downto 0 or FFFF zone if (Value == 0) return 0; // if (Value == 0xFFFF) return 0xFFFF; // else restrict to valid zone if (NumZeroes > 1) { a = ((NumZeroes-1) * 0xFFFF) / (length-1); l = a - 1; } if (NumPoles > 1) { b = ((length-1 - NumPoles) * 0xFFFF) / (length-1); r = b + 1; } } if (r <= l) { // If this happens LutTable is not invertible return 0; } // Seems not a degenerated case... apply binary search while (r > l) { x = (l + r) / 2; res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable, length); if (res == Value) { // Found exact match. return (uint16_fract_t) (x - 1); } if (res > Value) r = x - 1; else l = x + 1; } // Not found, should we interpolate? // Get surrounding nodes assert(x >= 1); val2 = (length-1) * ((double) (x - 1) / 65535.0); cell0 = (int) floor(val2); cell1 = (int) ceil(val2); if (cell0 == cell1) return (uint16_fract_t) x; y0 = LutTable[cell0] ; x0 = (65535.0 * cell0) / (length-1); y1 = LutTable[cell1] ; x1 = (65535.0 * cell1) / (length-1); a = (y1 - y0) / (x1 - x0); b = y0 - a * x0; if (fabs(a) < 0.01) return (uint16_fract_t) x; f = ((Value - b) / a); if (f < 0.0) return (uint16_fract_t) 0; if (f >= 65535.0) return (uint16_fract_t) 0xFFFF; return (uint16_fract_t) floor(f + 0.5); } /* The number of entries needed to invert a lookup table should not necessarily be the same as the original number of entries. This is especially true of lookup tables that have a small number of entries. For example: Using a table like: {0, 3104, 14263, 34802, 65535} invert_lut will produce an inverse of: {3, 34459, 47529, 56801, 65535} which has an maximum error of about 9855 (pixel difference of ~38.346) For now, we punt the decision of output size to the caller. */ static uint16_t *invert_lut(uint16_t *table, int length, int out_length) { int i; /* for now we invert the lut by creating a lut of size out_length * and attempting to lookup a value for each entry using lut_inverse_interp16 */ uint16_t *output = malloc(sizeof(uint16_t)*out_length); if (!output) return NULL; for (i = 0; i < out_length; i++) { double x = ((double) i * 65535.) / (double) (out_length - 1); uint16_fract_t input = floor(x + .5); output[i] = lut_inverse_interp16(input, table, length); } return output; } static void compute_precache_pow(uint8_t *output, float gamma) { uint32_t v = 0; for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { //XXX: don't do integer/float conversion... and round? output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma); } } void compute_precache_lut(uint8_t *output, uint16_t *table, int length) { uint32_t v = 0; for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { output[v] = lut_interp_linear_precache_output(v, table, length); } } void compute_precache_linear(uint8_t *output) { uint32_t v = 0; for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { //XXX: round? output[v] = v / (PRECACHE_OUTPUT_SIZE/256); } } qcms_bool compute_precache(struct curveType *trc, uint8_t *output) { if (trc->type == PARAMETRIC_CURVE_TYPE) { float gamma_table[256]; uint16_t gamma_table_uint[256]; uint16_t i; uint16_t *inverted; int inverted_size = 256; compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count); for(i = 0; i < 256; i++) { gamma_table_uint[i] = (uint16_t)(gamma_table[i] * 65535); } //XXX: the choice of a minimum of 256 here is not backed by any theory, // measurement or data, howeve r it is what lcms uses. // the maximum number we would need is 65535 because that's the // accuracy used for computing the pre cache table if (inverted_size < 256) inverted_size = 256; inverted = invert_lut(gamma_table_uint, 256, inverted_size); if (!inverted) return false; compute_precache_lut(output, inverted, inverted_size); free(inverted); } else { if (trc->count == 0) { compute_precache_linear(output); } else if (trc->count == 1) { compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->data[0])); } else { uint16_t *inverted; int inverted_size = trc->count; //XXX: the choice of a minimum of 256 here is not backed by any theory, // measurement or data, howeve r it is what lcms uses. // the maximum number we would need is 65535 because that's the // accuracy used for computing the pre cache table if (inverted_size < 256) inverted_size = 256; inverted = invert_lut(trc->data, trc->count, inverted_size); if (!inverted) return false; compute_precache_lut(output, inverted, inverted_size); free(inverted); } } return true; } static uint16_t *build_linear_table(int length) { int i; uint16_t *output = malloc(sizeof(uint16_t)*length); if (!output) return NULL; for (i = 0; i < length; i++) { double x = ((double) i * 65535.) / (double) (length - 1); uint16_fract_t input = floor(x + .5); output[i] = input; } return output; } static uint16_t *build_pow_table(float gamma, int length) { int i; uint16_t *output = malloc(sizeof(uint16_t)*length); if (!output) return NULL; for (i = 0; i < length; i++) { uint16_fract_t result; double x = ((double) i) / (double) (length - 1); x = pow(x, gamma); //XXX turn this conversion into a function result = floor(x*65535. + .5); output[i] = result; } return output; } void build_output_lut(struct curveType *trc, uint16_t **output_gamma_lut, size_t *output_gamma_lut_length) { if (trc->type == PARAMETRIC_CURVE_TYPE) { float gamma_table[256]; uint16_t i; uint16_t *output = malloc(sizeof(uint16_t)*256); if (!output) { *output_gamma_lut = NULL; return; } compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count); *output_gamma_lut_length = 256; for(i = 0; i < 256; i++) { output[i] = (uint16_t)(gamma_table[i] * 65535); } *output_gamma_lut = output; } else { if (trc->count == 0) { *output_gamma_lut = build_linear_table(4096); *output_gamma_lut_length = 4096; } else if (trc->count == 1) { float gamma = 1./u8Fixed8Number_to_float(trc->data[0]); *output_gamma_lut = build_pow_table(gamma, 4096); *output_gamma_lut_length = 4096; } else { //XXX: the choice of a minimum of 256 here is not backed by any theory, // measurement or data, however it is what lcms uses. *output_gamma_lut_length = trc->count; if (*output_gamma_lut_length < 256) *output_gamma_lut_length = 256; *output_gamma_lut = invert_lut(trc->data, trc->count, *output_gamma_lut_length); } } }