/* vim: set ts=8 sw=8 noexpandtab: */ #include "qcms.h" #include "qcmstypes.h" /* used as a lookup table for the output transformation. * we refcount them so we only need to have one around per output * profile, instead of duplicating them per transform */ struct precache_output { int ref_count; /* We previously used a count of 65536 here but that seems like more * precision than we actually need. By reducing the size we can * improve startup performance and reduce memory usage. ColorSync on * 10.5 uses 4097 which is perhaps because they use a fixed point * representation where 1. is represented by 0x1000. */ #define PRECACHE_OUTPUT_SIZE 8192 #define PRECACHE_OUTPUT_MAX (PRECACHE_OUTPUT_SIZE-1) uint8_t data[PRECACHE_OUTPUT_SIZE]; }; #ifdef _MSC_VER #define ALIGN __declspec(align(16)) #else #define ALIGN __attribute__(( aligned (16) )) #endif struct _qcms_transform { float ALIGN matrix[3][4]; float *input_gamma_table_r; float *input_gamma_table_g; float *input_gamma_table_b; float *input_clut_table_r; float *input_clut_table_g; float *input_clut_table_b; uint16_t input_clut_table_length; float *r_clut; float *g_clut; float *b_clut; uint16_t grid_size; float *output_clut_table_r; float *output_clut_table_g; float *output_clut_table_b; uint16_t output_clut_table_length; float *input_gamma_table_gray; float out_gamma_r; float out_gamma_g; float out_gamma_b; float out_gamma_gray; uint16_t *output_gamma_lut_r; uint16_t *output_gamma_lut_g; uint16_t *output_gamma_lut_b; uint16_t *output_gamma_lut_gray; size_t output_gamma_lut_r_length; size_t output_gamma_lut_g_length; size_t output_gamma_lut_b_length; size_t output_gamma_lut_gray_length; struct precache_output *output_table_r; struct precache_output *output_table_g; struct precache_output *output_table_b; void (*transform_fn)(struct _qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length); }; struct matrix { float m[3][3]; bool invalid; }; struct qcms_modular_transform; typedef void (*transform_module_fn_t)(struct qcms_modular_transform *transform, float *src, float *dest, size_t length); struct qcms_modular_transform { struct matrix matrix; float tx, ty, tz; float *input_clut_table_r; float *input_clut_table_g; float *input_clut_table_b; uint16_t input_clut_table_length; float *r_clut; float *g_clut; float *b_clut; uint16_t grid_size; float *output_clut_table_r; float *output_clut_table_g; float *output_clut_table_b; uint16_t output_clut_table_length; uint16_t *output_gamma_lut_r; uint16_t *output_gamma_lut_g; uint16_t *output_gamma_lut_b; size_t output_gamma_lut_r_length; size_t output_gamma_lut_g_length; size_t output_gamma_lut_b_length; transform_module_fn_t transform_module_fn; struct qcms_modular_transform *next_transform; }; typedef int32_t s15Fixed16Number; typedef uint16_t uInt16Number; typedef uint8_t uInt8Number; struct XYZNumber { s15Fixed16Number X; s15Fixed16Number Y; s15Fixed16Number Z; }; struct curveType { uint32_t type; uint32_t count; float parameter[7]; uInt16Number data[]; }; struct lutmABType { uint8_t num_in_channels; uint8_t num_out_channels; // 16 is the upperbound, actual is 0..num_in_channels. uint8_t num_grid_points[16]; s15Fixed16Number e00; s15Fixed16Number e01; s15Fixed16Number e02; s15Fixed16Number e03; s15Fixed16Number e10; s15Fixed16Number e11; s15Fixed16Number e12; s15Fixed16Number e13; s15Fixed16Number e20; s15Fixed16Number e21; s15Fixed16Number e22; s15Fixed16Number e23; // reversed elements (for mBA) bool reversed; float *clut_table; struct curveType *a_curves[10]; struct curveType *b_curves[10]; struct curveType *m_curves[10]; float clut_table_data[]; }; /* should lut8Type and lut16Type be different types? */ struct lutType { // used by lut8Type/lut16Type (mft2) only uint8_t num_input_channels; uint8_t num_output_channels; uint8_t num_clut_grid_points; s15Fixed16Number e00; s15Fixed16Number e01; s15Fixed16Number e02; s15Fixed16Number e10; s15Fixed16Number e11; s15Fixed16Number e12; s15Fixed16Number e20; s15Fixed16Number e21; s15Fixed16Number e22; uint16_t num_input_table_entries; uint16_t num_output_table_entries; float *input_table; float *clut_table; float *output_table; float table_data[]; }; #if 0 /* this is from an intial idea of having the struct correspond to the data in * the file. I decided that it wasn't a good idea. */ struct tag_value { uint32_t type; union { struct { uint32_t reserved; struct { s15Fixed16Number X; s15Fixed16Number Y; s15Fixed16Number Z; } XYZNumber; } XYZType; }; }; // I guess we need to pack this? #endif #define RGB_SIGNATURE 0x52474220 #define GRAY_SIGNATURE 0x47524159 #define XYZ_SIGNATURE 0x58595A20 #define LAB_SIGNATURE 0x4C616220 struct _qcms_profile { uint32_t class; uint32_t color_space; uint32_t pcs; qcms_intent rendering_intent; struct XYZNumber redColorant; struct XYZNumber blueColorant; struct XYZNumber greenColorant; struct curveType *redTRC; struct curveType *blueTRC; struct curveType *greenTRC; struct curveType *grayTRC; struct lutType *A2B0; struct lutType *B2A0; struct lutmABType *mAB; struct lutmABType *mBA; struct matrix chromaticAdaption; struct precache_output *output_table_r; struct precache_output *output_table_g; struct precache_output *output_table_b; }; #ifdef _MSC_VER #define inline _inline #endif /* produces the nearest float to 'a' with a maximum error * of 1/1024 which happens for large values like 0x40000040 */ static inline float s15Fixed16Number_to_float(s15Fixed16Number a) { return ((int32_t)a)/65536.f; } static inline s15Fixed16Number double_to_s15Fixed16Number(double v) { return (int32_t)(v*65536); } static inline float uInt8Number_to_float(uInt8Number a) { return ((int32_t)a)/255.f; } static inline float uInt16Number_to_float(uInt16Number a) { return ((int32_t)a)/65535.f; } void precache_release(struct precache_output *p); qcms_bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries); qcms_bool get_rgb_colorants(struct matrix *colorants, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries); void qcms_transform_data_rgb_out_lut_sse2(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length); void qcms_transform_data_rgba_out_lut_sse2(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length); void qcms_transform_data_rgb_out_lut_sse1(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length); void qcms_transform_data_rgba_out_lut_sse1(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length); void qcms_transform_data_rgb_out_lut_altivec(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length); void qcms_transform_data_rgba_out_lut_altivec(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length); extern qcms_bool qcms_supports_iccv4; #ifdef _MSC_VER long __cdecl _InterlockedIncrement(long volatile *); long __cdecl _InterlockedDecrement(long volatile *); #pragma intrinsic(_InterlockedIncrement) #pragma intrinsic(_InterlockedDecrement) #define qcms_atomic_increment(x) _InterlockedIncrement((long volatile *)&x) #define qcms_atomic_decrement(x) _InterlockedDecrement((long volatile*)&x) #else #define qcms_atomic_increment(x) __sync_add_and_fetch(&x, 1) #define qcms_atomic_decrement(x) __sync_sub_and_fetch(&x, 1) #endif #ifdef NATIVE_OUTPUT # define RGB_OUTPUT_COMPONENTS 4 # define RGBA_OUTPUT_COMPONENTS 4 # ifdef IS_LITTLE_ENDIAN # define OUTPUT_A_INDEX 3 # define OUTPUT_R_INDEX 2 # define OUTPUT_G_INDEX 1 # define OUTPUT_B_INDEX 0 # else # define OUTPUT_A_INDEX 0 # define OUTPUT_R_INDEX 1 # define OUTPUT_G_INDEX 2 # define OUTPUT_B_INDEX 3 # endif #else # define RGB_OUTPUT_COMPONENTS 3 # define RGBA_OUTPUT_COMPONENTS 4 # define OUTPUT_R_INDEX 0 # define OUTPUT_G_INDEX 1 # define OUTPUT_B_INDEX 2 # define OUTPUT_A_INDEX 3 #endif