float4x4 mLayerTransform; float4 vRenderTargetOffset; float4x4 mProjection; typedef float4 rect; rect vTextureCoords; rect vLayerQuad; rect vMaskQuad; texture tex0; sampler s2D; sampler s2DWhite; sampler s2DY; sampler s2DCb; sampler s2DCr; sampler s2DMask; float fLayerOpacity; float4 fLayerColor; row_major float3x3 mYuvColorMatrix : register(ps, c1); struct VS_INPUT { float4 vPosition : POSITION; }; struct VS_OUTPUT { float4 vPosition : POSITION; float2 vTexCoords : TEXCOORD0; }; struct VS_OUTPUT_MASK { float4 vPosition : POSITION; float2 vTexCoords : TEXCOORD0; float3 vMaskCoords : TEXCOORD1; }; VS_OUTPUT LayerQuadVS(const VS_INPUT aVertex) { VS_OUTPUT outp; outp.vPosition = aVertex.vPosition; // We use 4 component floats to uniquely describe a rectangle, by the structure // of x, y, width, height. This allows us to easily generate the 4 corners // of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the // stream source for our LayerQuad vertex shader. We do this by doing: // Xout = x + Xin * width // Yout = y + Yin * height float2 position = vLayerQuad.xy; float2 size = vLayerQuad.zw; outp.vPosition.x = position.x + outp.vPosition.x * size.x; outp.vPosition.y = position.y + outp.vPosition.y * size.y; outp.vPosition = mul(mLayerTransform, outp.vPosition); outp.vPosition.xyz /= outp.vPosition.w; outp.vPosition = outp.vPosition - vRenderTargetOffset; outp.vPosition.xyz *= outp.vPosition.w; // adjust our vertices to match d3d9's pixel coordinate system // which has pixel centers at integer locations outp.vPosition.xy -= 0.5; outp.vPosition = mul(mProjection, outp.vPosition); position = vTextureCoords.xy; size = vTextureCoords.zw; outp.vTexCoords.x = position.x + aVertex.vPosition.x * size.x; outp.vTexCoords.y = position.y + aVertex.vPosition.y * size.y; return outp; } VS_OUTPUT_MASK LayerQuadVSMask(const VS_INPUT aVertex) { VS_OUTPUT_MASK outp; float4 position = float4(0, 0, 0, 1); // We use 4 component floats to uniquely describe a rectangle, by the structure // of x, y, width, height. This allows us to easily generate the 4 corners // of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the // stream source for our LayerQuad vertex shader. We do this by doing: // Xout = x + Xin * width // Yout = y + Yin * height float2 size = vLayerQuad.zw; position.x = vLayerQuad.x + aVertex.vPosition.x * size.x; position.y = vLayerQuad.y + aVertex.vPosition.y * size.y; position = mul(mLayerTransform, position); outp.vPosition.w = position.w; outp.vPosition.xyz = position.xyz / position.w; outp.vPosition = outp.vPosition - vRenderTargetOffset; outp.vPosition.xyz *= outp.vPosition.w; // adjust our vertices to match d3d9's pixel coordinate system // which has pixel centers at integer locations outp.vPosition.xy -= 0.5; outp.vPosition = mul(mProjection, outp.vPosition); // calculate the position on the mask texture outp.vMaskCoords.x = (position.x - vMaskQuad.x) / vMaskQuad.z; outp.vMaskCoords.y = (position.y - vMaskQuad.y) / vMaskQuad.w; // correct for perspective correct interpolation, see comment in D3D11 shader outp.vMaskCoords.z = 1; outp.vMaskCoords *= position.w; size = vTextureCoords.zw; outp.vTexCoords.x = vTextureCoords.x + aVertex.vPosition.x * size.x; outp.vTexCoords.y = vTextureCoords.y + aVertex.vPosition.y * size.y; return outp; } float4 ComponentPass1Shader(const VS_OUTPUT aVertex) : COLOR { float4 src = tex2D(s2D, aVertex.vTexCoords); float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src; alphas.a = alphas.g; return alphas * fLayerOpacity; } float4 ComponentPass2Shader(const VS_OUTPUT aVertex) : COLOR { float4 src = tex2D(s2D, aVertex.vTexCoords); float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src; src.a = alphas.g; return src * fLayerOpacity; } float4 RGBAShader(const VS_OUTPUT aVertex) : COLOR { return tex2D(s2D, aVertex.vTexCoords) * fLayerOpacity; } float4 RGBShader(const VS_OUTPUT aVertex) : COLOR { float4 result; result = tex2D(s2D, aVertex.vTexCoords); result.a = 1.0; return result * fLayerOpacity; } /* From Rec601: [R] [1.1643835616438356, 0.0, 1.5960267857142858] [ Y - 16] [G] = [1.1643835616438358, -0.3917622900949137, -0.8129676472377708] x [Cb - 128] [B] [1.1643835616438356, 2.017232142857143, 8.862867620416422e-17] [Cr - 128] For [0,1] instead of [0,255], and to 5 places: [R] [1.16438, 0.00000, 1.59603] [ Y - 0.06275] [G] = [1.16438, -0.39176, -0.81297] x [Cb - 0.50196] [B] [1.16438, 2.01723, 0.00000] [Cr - 0.50196] From Rec709: [R] [1.1643835616438356, 4.2781193979771426e-17, 1.7927410714285714] [ Y - 16] [G] = [1.1643835616438358, -0.21324861427372963, -0.532909328559444] x [Cb - 128] [B] [1.1643835616438356, 2.1124017857142854, 0.0] [Cr - 128] For [0,1] instead of [0,255], and to 5 places: [R] [1.16438, 0.00000, 1.79274] [ Y - 0.06275] [G] = [1.16438, -0.21325, -0.53291] x [Cb - 0.50196] [B] [1.16438, 2.11240, 0.00000] [Cr - 0.50196] */ float4 YCbCrShader(const VS_OUTPUT aVertex) : COLOR { float3 yuv; float4 color; yuv.x = tex2D(s2DY, aVertex.vTexCoords).a - 0.06275; yuv.y = tex2D(s2DCb, aVertex.vTexCoords).a - 0.50196; yuv.z = tex2D(s2DCr, aVertex.vTexCoords).a - 0.50196; color.rgb = mul(mYuvColorMatrix, yuv); color.a = 1.0f; return color * fLayerOpacity; } float4 SolidColorShader(const VS_OUTPUT aVertex) : COLOR { return fLayerColor; } float4 ComponentPass1ShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR { float4 src = tex2D(s2D, aVertex.vTexCoords); float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src; alphas.a = alphas.g; float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z; float mask = tex2D(s2DMask, maskCoords).a; return alphas * fLayerOpacity * mask; } float4 ComponentPass2ShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR { float4 src = tex2D(s2D, aVertex.vTexCoords); float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src; src.a = alphas.g; float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z; float mask = tex2D(s2DMask, maskCoords).a; return src * fLayerOpacity * mask; } float4 RGBAShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR { float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z; float mask = tex2D(s2DMask, maskCoords).a; return tex2D(s2D, aVertex.vTexCoords) * fLayerOpacity * mask; } float4 RGBShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR { float4 result; result = tex2D(s2D, aVertex.vTexCoords); result.a = 1.0; float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z; float mask = tex2D(s2DMask, maskCoords).a; return result * fLayerOpacity * mask; } float4 YCbCrShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR { float3 yuv; float4 color; yuv.x = tex2D(s2DY, aVertex.vTexCoords).a - 0.06275; yuv.y = tex2D(s2DCb, aVertex.vTexCoords).a - 0.50196; yuv.z = tex2D(s2DCr, aVertex.vTexCoords).a - 0.50196; color.rgb = mul((float3x3)mYuvColorMatrix, yuv); color.a = 1.0f; float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z; float mask = tex2D(s2DMask, maskCoords).a; return color * fLayerOpacity * mask; } float4 SolidColorShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR { float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z; float mask = tex2D(s2DMask, maskCoords).a; return fLayerColor * mask; }