#define R16_BITS 5 #define G16_BITS 6 #define B16_BITS 5 #define R16_SHIFT (B16_BITS + G16_BITS) #define G16_SHIFT (B16_BITS) #define B16_SHIFT 0 #define MASK 0xff #define ONE_HALF 0x80 #define A_SHIFT 8 * 3 #define R_SHIFT 8 * 2 #define G_SHIFT 8 #define A_MASK 0xff000000 #define R_MASK 0xff0000 #define G_MASK 0xff00 #define RB_MASK 0xff00ff #define AG_MASK 0xff00ff00 #define RB_ONE_HALF 0x800080 #define RB_MASK_PLUS_ONE 0x10000100 #define ALPHA_8(x) ((x) >> A_SHIFT) #define RED_8(x) (((x) >> R_SHIFT) & MASK) #define GREEN_8(x) (((x) >> G_SHIFT) & MASK) #define BLUE_8(x) ((x) & MASK) // This uses the same dithering technique that Skia does. // It is essentially preturbing the lower bit based on the // high bit static inline uint16_t dither_32_to_16(uint32_t c) { uint8_t b = BLUE_8(c); uint8_t g = GREEN_8(c); uint8_t r = RED_8(c); r = ((r << 1) - ((r >> (8 - R16_BITS) << (8 - R16_BITS)) | (r >> R16_BITS))) >> (8 - R16_BITS); g = ((g << 1) - ((g >> (8 - G16_BITS) << (8 - G16_BITS)) | (g >> G16_BITS))) >> (8 - G16_BITS); b = ((b << 1) - ((b >> (8 - B16_BITS) << (8 - B16_BITS)) | (b >> B16_BITS))) >> (8 - B16_BITS); return ((r << R16_SHIFT) | (g << G16_SHIFT) | (b << B16_SHIFT)); } static inline uint16_t dither_8888_to_0565(uint32_t color, pixman_bool_t toggle) { // alternate between a preturbed truncation and a regular truncation if (toggle) { return dither_32_to_16(color); } else { return convert_8888_to_0565(color); } }