// // Copyright 2015 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // StateChangeTest: // Specifically designed for an ANGLE implementation of GL, these tests validate that // ANGLE's dirty bits systems don't get confused by certain sequences of state changes. // #include "test_utils/ANGLETest.h" #include "test_utils/gl_raii.h" #include "shader_utils.h" using namespace angle; namespace { const GLint kWidth = 64; const GLint kHeight = 64; // test drawing with GL_MULTISAMPLE_EXT enabled/disabled. class EXTMultisampleCompatibilityTest : public ANGLETest { protected: EXTMultisampleCompatibilityTest() { setWindowWidth(64); setWindowHeight(64); setConfigRedBits(8); setConfigBlueBits(8); setConfigAlphaBits(8); } void SetUp() override { ANGLETest::SetUp(); static const char* v_shader_str = "attribute vec4 a_Position;\n" "void main()\n" "{ gl_Position = a_Position; }"; static const char* f_shader_str = "precision mediump float;\n" "uniform vec4 color;" "void main() { gl_FragColor = color; }"; mProgram = CompileProgram(v_shader_str, f_shader_str); GLuint position_loc = glGetAttribLocation(mProgram, "a_Position"); mColorLoc = glGetUniformLocation(mProgram, "color"); glGenBuffers(1, &mVBO); glBindBuffer(GL_ARRAY_BUFFER, mVBO); static float vertices[] = { 1.0f, 1.0f, -1.0f, 1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.0f, }; glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glEnableVertexAttribArray(position_loc); glVertexAttribPointer(position_loc, 2, GL_FLOAT, GL_FALSE, 0, 0); } void TearDown() override { glDeleteBuffers(1, &mVBO); glDeleteProgram(mProgram); ANGLETest::TearDown(); } void prepareForDraw() { // Create a sample buffer. GLsizei num_samples = 4, max_samples = 0; glGetIntegerv(GL_MAX_SAMPLES, &max_samples); num_samples = std::min(num_samples, max_samples); glGenRenderbuffers(1, &mSampleRB); glBindRenderbuffer(GL_RENDERBUFFER, mSampleRB); glRenderbufferStorageMultisampleANGLE(GL_RENDERBUFFER, num_samples, GL_RGBA8_OES, kWidth, kHeight); GLint param = 0; glGetRenderbufferParameteriv(GL_RENDERBUFFER, GL_RENDERBUFFER_SAMPLES, ¶m); EXPECT_GE(param, num_samples); glGenFramebuffers(1, &mSampleFBO); glBindFramebuffer(GL_FRAMEBUFFER, mSampleFBO); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, mSampleRB); EXPECT_EQ(static_cast(GL_FRAMEBUFFER_COMPLETE), glCheckFramebufferStatus(GL_FRAMEBUFFER)); glBindFramebuffer(GL_FRAMEBUFFER, 0); // Create another FBO to resolve the multisample buffer into. glGenTextures(1, &mResolveTex); glBindTexture(GL_TEXTURE_2D, mResolveTex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, kWidth, kHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glGenFramebuffers(1, &mResolveFBO); glBindFramebuffer(GL_FRAMEBUFFER, mResolveFBO); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, mResolveTex, 0); EXPECT_EQ(static_cast(GL_FRAMEBUFFER_COMPLETE), glCheckFramebufferStatus(GL_FRAMEBUFFER)); glUseProgram(mProgram); glViewport(0, 0, kWidth, kHeight); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_BLEND); glBindFramebuffer(GL_FRAMEBUFFER, mSampleFBO); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClear(GL_COLOR_BUFFER_BIT); } void prepareForVerify() { // Resolve. glBindFramebuffer(GL_READ_FRAMEBUFFER, mSampleFBO); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, mResolveFBO); glClearColor(1.0f, 0.0f, 0.0f, 0.0f); glClear(GL_COLOR_BUFFER_BIT); glBlitFramebufferANGLE(0, 0, kWidth, kHeight, 0, 0, kWidth, kHeight, GL_COLOR_BUFFER_BIT, GL_NEAREST); glBindFramebuffer(GL_READ_FRAMEBUFFER, mResolveFBO); ASSERT_GL_NO_ERROR(); } void cleanup() { glBindFramebuffer(GL_FRAMEBUFFER, 0); glDeleteFramebuffers(1, &mResolveFBO); glDeleteFramebuffers(1, &mSampleFBO); glDeleteTextures(1, &mResolveTex); glDeleteRenderbuffers(1, &mSampleRB); ASSERT_GL_NO_ERROR(); } bool isApplicable() const { return extensionEnabled("GL_EXT_multisample_compatibility") && extensionEnabled("GL_ANGLE_framebuffer_multisample") && extensionEnabled("GL_OES_rgb8_rgba8") && !IsAMD(); } GLuint mSampleFBO; GLuint mResolveFBO; GLuint mSampleRB; GLuint mResolveTex; GLuint mColorLoc; GLuint mProgram; GLuint mVBO; }; } // // Test simple state tracking TEST_P(EXTMultisampleCompatibilityTest, TestStateTracking) { if (!isApplicable()) return; EXPECT_TRUE(glIsEnabled(GL_MULTISAMPLE_EXT)); glDisable(GL_MULTISAMPLE_EXT); EXPECT_FALSE(glIsEnabled(GL_MULTISAMPLE_EXT)); glEnable(GL_MULTISAMPLE_EXT); EXPECT_TRUE(glIsEnabled(GL_MULTISAMPLE_EXT)); EXPECT_FALSE(glIsEnabled(GL_SAMPLE_ALPHA_TO_ONE_EXT)); glEnable(GL_SAMPLE_ALPHA_TO_ONE_EXT); EXPECT_TRUE(glIsEnabled(GL_SAMPLE_ALPHA_TO_ONE_EXT)); glDisable(GL_SAMPLE_ALPHA_TO_ONE_EXT); EXPECT_FALSE(glIsEnabled(GL_SAMPLE_ALPHA_TO_ONE_EXT)); EXPECT_EQ(static_cast(GL_NO_ERROR), glGetError()); } // Test that disabling GL_MULTISAMPLE_EXT is handled correctly. TEST_P(EXTMultisampleCompatibilityTest, DrawAndResolve) { if (!isApplicable()) return; static const float kBlue[] = {0.0f, 0.0f, 1.0f, 1.0f}; static const float kGreen[] = {0.0f, 1.0f, 0.0f, 1.0f}; static const float kRed[] = {1.0f, 0.0f, 0.0f, 1.0f}; // Different drivers seem to behave differently with respect to resulting // values. These might be due to different MSAA sample counts causing // different samples to hit. Other option is driver bugs. Just test that // disabling multisample causes a difference. std::unique_ptr results[3]; const GLint kResultSize = kWidth * kHeight * 4; for (int pass = 0; pass < 3; pass++) { prepareForDraw(); // Green: from top right to bottom left. glUniform4fv(mColorLoc, 1, kGreen); glDrawArrays(GL_TRIANGLES, 0, 3); // Blue: from top left to bottom right. glUniform4fv(mColorLoc, 1, kBlue); glDrawArrays(GL_TRIANGLES, 3, 3); // Red, with and without MSAA: from bottom left to top right. if (pass == 1) { glDisable(GL_MULTISAMPLE_EXT); } glUniform4fv(mColorLoc, 1, kRed); glDrawArrays(GL_TRIANGLES, 6, 3); if (pass == 1) { glEnable(GL_MULTISAMPLE_EXT); } prepareForVerify(); results[pass].reset(new uint8_t[kResultSize]); memset(results[pass].get(), 123u, kResultSize); glReadPixels(0, 0, kWidth, kHeight, GL_RGBA, GL_UNSIGNED_BYTE, results[pass].get()); cleanup(); } EXPECT_NE(0, memcmp(results[0].get(), results[1].get(), kResultSize)); // Verify that rendering is deterministic, so that the pass above does not // come from non-deterministic rendering. EXPECT_EQ(0, memcmp(results[0].get(), results[2].get(), kResultSize)); } // Test that enabling GL_SAMPLE_ALPHA_TO_ONE_EXT affects rendering. TEST_P(EXTMultisampleCompatibilityTest, DrawAlphaOneAndResolve) { if (!isApplicable()) return; // SAMPLE_ALPHA_TO_ONE is specified to transform alpha values of // covered samples to 1.0. In order to detect it, we use non-1.0 // alpha. static const float kBlue[] = {0.0f, 0.0f, 1.0f, 0.5f}; static const float kGreen[] = {0.0f, 1.0f, 0.0f, 0.5f}; static const float kRed[] = {1.0f, 0.0f, 0.0f, 0.5f}; // Different drivers seem to behave differently with respect to resulting // alpha value. These might be due to different MSAA sample counts causing // different samples to hit. Other option is driver bugs. Testing exact or // even approximate sample values is not that easy. Thus, just test // representative positions which have fractional pixels, inspecting that // normal rendering is different to SAMPLE_ALPHA_TO_ONE rendering. std::unique_ptr results[3]; const GLint kResultSize = kWidth * kHeight * 4; for (int pass = 0; pass < 3; ++pass) { prepareForDraw(); if (pass == 1) { glEnable(GL_SAMPLE_ALPHA_TO_ONE_EXT); } glEnable(GL_MULTISAMPLE_EXT); glUniform4fv(mColorLoc, 1, kGreen); glDrawArrays(GL_TRIANGLES, 0, 3); glUniform4fv(mColorLoc, 1, kBlue); glDrawArrays(GL_TRIANGLES, 3, 3); glDisable(GL_MULTISAMPLE_EXT); glUniform4fv(mColorLoc, 1, kRed); glDrawArrays(GL_TRIANGLES, 6, 3); prepareForVerify(); results[pass].reset(new uint8_t[kResultSize]); memset(results[pass].get(), 123u, kResultSize); glReadPixels(0, 0, kWidth, kHeight, GL_RGBA, GL_UNSIGNED_BYTE, results[pass].get()); if (pass == 1) { glDisable(GL_SAMPLE_ALPHA_TO_ONE_EXT); } cleanup(); } EXPECT_NE(0, memcmp(results[0].get(), results[1].get(), kResultSize)); // Verify that rendering is deterministic, so that the pass above does not // come from non-deterministic rendering. EXPECT_EQ(0, memcmp(results[0].get(), results[2].get(), kResultSize)); } ANGLE_INSTANTIATE_TEST(EXTMultisampleCompatibilityTest, ES2_OPENGL(), ES2_OPENGLES(), ES3_OPENGL()); class MultisampleCompatibilityTest : public ANGLETest { protected: MultisampleCompatibilityTest() { setWindowWidth(64); setWindowHeight(64); setConfigRedBits(8); setConfigBlueBits(8); setConfigAlphaBits(8); } void prepareForDraw(GLsizei numSamples) { // Create a sample buffer. glGenRenderbuffers(1, &mSampleRB); glBindRenderbuffer(GL_RENDERBUFFER, mSampleRB); glRenderbufferStorageMultisampleANGLE(GL_RENDERBUFFER, numSamples, GL_RGBA8, kWidth, kHeight); GLint param = 0; glGetRenderbufferParameteriv(GL_RENDERBUFFER, GL_RENDERBUFFER_SAMPLES, ¶m); EXPECT_GE(param, numSamples); glGenFramebuffers(1, &mSampleFBO); glBindFramebuffer(GL_FRAMEBUFFER, mSampleFBO); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, mSampleRB); EXPECT_GLENUM_EQ(GL_FRAMEBUFFER_COMPLETE, glCheckFramebufferStatus(GL_FRAMEBUFFER)); glBindFramebuffer(GL_FRAMEBUFFER, 0); // Create another FBO to resolve the multisample buffer into. glGenTextures(1, &mResolveTex); glBindTexture(GL_TEXTURE_2D, mResolveTex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, kWidth, kHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glGenFramebuffers(1, &mResolveFBO); glBindFramebuffer(GL_FRAMEBUFFER, mResolveFBO); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, mResolveTex, 0); EXPECT_GLENUM_EQ(GL_FRAMEBUFFER_COMPLETE, glCheckFramebufferStatus(GL_FRAMEBUFFER)); glViewport(0, 0, kWidth, kHeight); glBindFramebuffer(GL_FRAMEBUFFER, mSampleFBO); glClearColor(0.0f, 0.0f, 0.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); ASSERT_GL_NO_ERROR(); } void prepareForVerify() { // Resolve. glBindFramebuffer(GL_READ_FRAMEBUFFER, mSampleFBO); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, mResolveFBO); glClearColor(0.0f, 0.0f, 0.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); glBlitFramebufferANGLE(0, 0, kWidth, kHeight, 0, 0, kWidth, kHeight, GL_COLOR_BUFFER_BIT, GL_NEAREST); glBindFramebuffer(GL_READ_FRAMEBUFFER, mResolveFBO); ASSERT_GL_NO_ERROR(); } void cleanup() { glBindFramebuffer(GL_FRAMEBUFFER, 0); glDeleteFramebuffers(1, &mResolveFBO); glDeleteFramebuffers(1, &mSampleFBO); glDeleteTextures(1, &mResolveTex); glDeleteRenderbuffers(1, &mSampleRB); ASSERT_GL_NO_ERROR(); } bool isApplicable() const { return extensionEnabled("GL_ANGLE_framebuffer_multisample") && extensionEnabled("GL_OES_rgb8_rgba8"); } GLuint mSampleFBO; GLuint mResolveFBO; GLuint mSampleRB; GLuint mResolveTex; }; // Test that enabling GL_SAMPLE_COVERAGE affects rendering. TEST_P(MultisampleCompatibilityTest, DrawCoverageAndResolve) { if (!isApplicable()) return; // TODO: Figure out why this fails on Android. if (IsAndroid()) { std::cout << "Test skipped on Android." << std::endl; return; } const std::string &vertex = "attribute vec4 position;\n" "void main()\n" "{ gl_Position = position; }"; const std::string &fragment = "void main()\n" "{ gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0); }"; ANGLE_GL_PROGRAM(drawRed, vertex, fragment); GLsizei maxSamples = 0; glGetIntegerv(GL_MAX_SAMPLES, &maxSamples); int iterationCount = maxSamples + 1; for (int samples = 1; samples < iterationCount; samples++) { prepareForDraw(samples); glEnable(GL_SAMPLE_COVERAGE); glSampleCoverage(1.0, false); drawQuad(drawRed.get(), "position", 0.5f); prepareForVerify(); GLsizei pixelCount = kWidth * kHeight; std::vector actual(pixelCount, GLColor::black); glReadPixels(0, 0, kWidth, kHeight, GL_RGBA, GL_UNSIGNED_BYTE, actual.data()); glDisable(GL_SAMPLE_COVERAGE); cleanup(); std::vector expected(pixelCount, GLColor::red); EXPECT_EQ(expected, actual); } } ANGLE_INSTANTIATE_TEST(MultisampleCompatibilityTest, ES2_D3D9(), ES2_OPENGL(), ES2_OPENGLES(), ES3_D3D11(), ES3_OPENGL(), ES3_OPENGLES());